Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Samples Collection and Physicochemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Plant Height (cm)
3.2. Spike Length (cm)
3.3. Grains Spike−1
3.4. 1000-Grain Weight
3.5. Grain Yield (kg ha−1)
3.6. Straw Yield (kg ha−1)
3.7. Biological Yield (kg ha−1)
3.8. Harvest Index (%)
3.9. Plant Phosphorus Concentration (g kg−1)
3.10. Phosphorous Uptake by the Plant (kg ha−1)
3.11. Soil Organic Matter
3.12. AB-DTPA Extractable Phosphorus
3.13. Water-Solublephosphorus
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacCarthy, P.; Clapp, C.; Malcolm, R.; Bloom, P. Humic substances in soil and crop sciences: Selected readings. In Proceedings of the Symposium Cosponsored by the International Humic Substances Society, Chicago, IL, USA, 2 December 1985. [Google Scholar]
- Magdoff, F.; Weil, R.R. Soil Organic Matter in Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kumar, S.; Lai, L.; Kumar, P.; Valentín Feliciano, Y.M.; Battaglia, M.L.; Hong, C.O.; Owens, V.N.; Fike, J.; Farris, R.; Galbraith, J. Impacts of Nitrogen Rate and Landscape Position on Soils and Switchgrass Root Growth Parameters. Agron. J. 2019, 111, 1046–1059. [Google Scholar] [CrossRef]
- Kumar, P.; Lai, L.; Battaglia, M.L.; Kumar, S.; Owens, V.; Fike, J.; Galbraith, J.; Hong, C.O.; Farris, R.; Crawford, R.; et al. Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. CATENA 2019, 180, 183–193. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Zamin, M.; Shah, S.; Mian, I.A.; Danish, S.; Zafar-Ul-hye, M.; Battaglia, M.L.; Naz, R.M.M.; Saeed, B.; et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 2020, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Afif, E.; Matar, A.; Torrent, J. Availability of Phosphate Applied to Calcareous Soils of West Asia and North Africa. Soil Sci. Soc. Am. J. 1993, 57, 756–760. [Google Scholar] [CrossRef]
- Ketterings, Q.; Czymmek, K. Removal of Phosphorus by Field Crops. Agron. Fact Sheet 2007, 28. [Google Scholar]
- Alam, S. Wheat yield and P fertilizer efficiency as influenced by rate andintegrated use of chemical and organic fertilizers. Pakistan J. Soil Sci. 2003, 22, 72–76. [Google Scholar]
- Kaleem, S.; Ansar, M.; Ali, M.A.; Sher, A.; Ahmad, G.; Rashid, M. Effect of Phosphorus on the Yield and Yield Components of Wheat Variety “ Inqlab-91 ” Under Rainfed Conditions. Sarhad J. Agric. 2009, 25, 1989–1992. [Google Scholar]
- Molaei, A.; Lakzian, A.; Haghnia, G.; Astaraei, A.; Rasouli-Sadaghiani, M.; Teresa Ceccherini, M.; Datta, R. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE 2017, 12, e0180663. [Google Scholar] [CrossRef]
- Molaei, A.; Lakzian, A.; Datta, R.; Haghnia, G.; Astaraei, A.; Rasouli-Sadaghiani, M.; Ceccherini, M.T. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int. Agrophysics 2017, 31, 499. [Google Scholar] [CrossRef] [Green Version]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Brtnicky, M.; Dokulilova, T.; Holatko, J.; Pecina, V.; Kintl, A.; Latal, O.; Vyhnanek, T.; Prichystalova, J. Datta, R. Long-Term Effects of Biochar-Based Organic Amendments on Soil Microbial Parameters. Agronomy 2019, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, M.; Groover, G.; Thomason, W. Harvesting and Nutrient Replacement Costs Associated with Corn Stover Removal in Virginia; Virginia Tech: Blacksburg, VA, USA, 2018. [Google Scholar]
- Ibrikci, H.; Ryan, J.; Ulger, A.C.; Buyuk, G.; Cakir, B.; Korkmaz, K.; Karnez, E.; Ozgenturk, G.; Konuskan, O. Maintenance of phosphorus fertilizer and residual phosphorus effect on corn production. Nutr. Cycl. Agroecosystems 2005, 72, 279–286. [Google Scholar] [CrossRef]
- Albayrak, S.; Camas, N. Effects of Different Levels and Application Times of Humic Acid on Root and Leaf Yield and Yield Components of Forage Turnip (Brassica rapa L.). J. Agron. 2005, 4, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Majidian, M.; Ghalavand, A.; Karimian, N.; Haghighi, A. Effects of water stress, nitrogen fertilizer and organic fertilizer in various farming systems in different growth stages on physiological characteristics, physical characteristics, quality and chlorophyll content of maize single cross hybrid 704. Iran. Crop Sci. J. 2006, 10, 303–330. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons: Hoboken, NJ, USA, 1994; ISBN 0-471-59474-1. [Google Scholar]
- Chen, Y.; Aviad, T. Effects of Humic Substances on Plant Growth. In Humic Substances in Soil and Crop Sciences: Selected Readings; Soil Science Society of America: Madison, WI, USA, 1990; pp. 161–186. [Google Scholar]
- Jorquera, M.; Inostroza, N.; Lagos, L.; Barra, P.; Marileo, L.; Rilling, J.; Campos, D.; Crowley, D.; Richardson, A.; Mora, M.L. Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol. Fertil. Soils 2014, 50, 1141–1153. [Google Scholar] [CrossRef]
- Brannon, C.A.; Sommers, L.E. Preparation and characterization of model humic polymers containing organic phosphorus. Soil Biol. Biochem. 1985, 17, 213–219. [Google Scholar] [CrossRef]
- Malik, K.A.; Bhatti, N.A.; Kauser, F. Effect of Soil Salinity on Decomposition and Humification of Organic Matter by Some Cellulolytic Fungi. Mycologia 1979, 71, 811. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 2014, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Pizzeghello, D.; Gessa, C.; Ferrarese, L.; Trainotti, L.; Casadoro, G. A low molecular weight humic fraction on nitrate uptake and protein synthesis in maize seedlings. Soil Biol. Biochem. 2000, 32, 415–419. [Google Scholar] [CrossRef]
- Francioso, O.; Sanchez-Cortes, S.; Tugnoli, V.; Ciavatta, C.; Sitti, L.; Gessa, C. Infrared, raman, and nuclear magnetic resonance (1H, 13C, and 31P) spectroscopy in the study of fractions of peat humic acids. Appl. Spectrosc. 1996, 50, 1165–1174. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, M.J.; Muhammad, D. Response of maize to different phosphorus levels under calcareous soil conditions. Sarhad J. Agric. 2013, 29, 43–48. [Google Scholar]
- Hai, S.; Mir, S. The lignitic coal derived humic acid and the prospective utilization in Pakistan’s agriculture and industry. Sci. Technol. Dev. 1998, 17, 32–40. [Google Scholar]
- Marfo, T.D.; Datta, R.; Pathan, S.I.; Vranová, V. Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity 2019, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Danso Marfo, T.; Datta, R.; Vranová, V.; Ekielski, A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture 2019, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Yadav, G.S.; Datta, R.; Imran Pathan, S.; Lal, R.; Meena, R.S.; Babu, S.; Das, A.; Bhowmik, S.N.; Datta, M.; Saha, P. Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)–rice system in north eastern region of India. Sustainability 2017, 9, 1816. [Google Scholar] [CrossRef] [Green Version]
- Weidhuner, A.; Afshar, R.K.; Luo, Y.; Battaglia, M.; Sadeghpour, A. Particle size affects nitrogen and carbon estimate of a wheat cover crop. Agron. J. 2019, 111, 3398–3402. [Google Scholar] [CrossRef]
- Datta, R.; Vranová, V.; Pavelka, M.; Rejsek, K.; Formánek, P. Effect of soil sieving on respiration induced by low-molecular-weight substrates. Int. Agrophysics 2014, 28, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, J.D. Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis, Part 3, Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 417–435. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Madison, WI, USA, 1996; Volume 5, pp. 475–490. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy; Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Soltanpour, P.N.; Schwab, A.P. A new soil test for simultaneous extraction of macroand micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Loeppert, R.H.; Suarez, D.L. Carbonate and Gypsum. In Methods of Soil Analysis, Part 3, Chemical Methods; Soil Science Society of America: Madison, WI, USA, 2018; Volume 9, pp. 181–197. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-Size analysis. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Jones, J.B.; WolfH, B.; Mills, H.A. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing Inc.: Athens, GA, USA, 1991. [Google Scholar]
- Steel, R.G.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book International Co.: Jurong West, Singapore, 1997. [Google Scholar]
- Khattak, R.A.; Dost, M. Seed cotton yield and nutrient concentrations as influenced by lignitic coal derived humic acid in salt-affected soils. Sarhad J. Agric. 2010, 26, 43–49. [Google Scholar]
- Tahir, M.; Khurshid, M.; Khan, M.; Abbasi, M.; Kazmi, M. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 2011, 21, 124–131. [Google Scholar] [CrossRef]
- Ibrahim, M.; Hassan, A.U.; Iqbal, M.; Valeem, E.E. Response of wheat growth and yield to various levels of compost and organic manure. Pakistan J. Bot. 2008, 40, 2135–2141. [Google Scholar]
- Danish, S.; Younis, U.; Akhtar, N.; Ameer, A.; Ijaz, M.; Nasreen, S.; Huma, F.; Sharif, S.; Ehsanullah, M. Phosphorus solubilizing bacteria and rice straw biochar consequence on maize pigments synthesis. Int. J. Biosci. 2015, 5, 31–39. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Danish, S.; Abbas, M.; Ahmad, M.; Munir, T.M. ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Danish, S.; Zafar-ul-Hye, M.; Mohsin, F.; Hussain, M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE 2020, 15, e0230615. [Google Scholar] [CrossRef] [Green Version]
- Danish, S.; Zafar-ul-Hye, M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019, 9, 5999. [Google Scholar] [CrossRef] [Green Version]
- Datta, R.; Anand, S.; Moulick, A.; Baraniya, D.; Pathan, S.I.; Rejsek, K.; Vranova, V.; Sharma, M.; Sharma, D.; Kelkar, A. How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. Int. Agrophysics 2017, 31, 287. [Google Scholar] [CrossRef]
- Datta, R.; Kelkar, A.; Baraniya, D.; Molaei, A.; Moulick, A.; Meena, R.S.; Formanek, P. Enzymatic degradation of lignin in soil: A review. Sustainability 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Sarir, M.; Akhlaq, M.; Zeb, A.; Sharif, M. Comparison of various organic manures with or without chemicalfertilizers on the yield and components of maize. Sarhad J. Agric. 2005, 21, 237–245. [Google Scholar]
- Sharif, M.; Burni, T.; Wahid, F.; Khan, F.; Khan, S.; Khan, A.; Shah, A. Effect of rock phosphate composted with organic materials on yield and phosphorus uptake of wheat and mung bean crops. Pak. J. Bot. 2013, 45, 1349–1356. [Google Scholar]
- Majumdar, B.; Venkatesh, M.; Kumar, K. Effect of rock phosphate, superphosphate and their mixtures with FYM on soybean and soil-P pools in a typic hapludalf of Meghalaya. J. Indian Soc. Soil Sci. 2007, 55, 167–174. [Google Scholar]
- Cooper, R.J.; Liu, C.; Fisher, D.S. Influence of humic substances on rooting and nutrient content of creeping bentgrass. Crop Sci. 1998, 38, 1639–1644. [Google Scholar] [CrossRef]
- Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour. Technol. 2002, 84, 7–14. [Google Scholar] [CrossRef]
- Erdal, İ.; Bozkurt, M.A.; Çimrin, K.M.; Karaca, S.; Sağlam, M. Effects of Humic Acid and Phosphorus Applications on Growth and Phosphorus Uptake of Corn Plant (Zea mays L.) Grown in a Calcareous Soil. Turkish J. Agric. For. 2000, 24, 663–668. [Google Scholar]
- Pettit, R.E. Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Res. 2004, 1–17. [Google Scholar]
- Jiang, Z.Q.; C.N., F.; Huang, L.L.; Guo, W.S.; Zhu, X.K.; Peng, Y.X. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (Triticum aestivum L.). Plant Nutr. Fertil. Sci. 2006, 12, 32–38. [Google Scholar]
- Tamayo, V.; Munoz, A.; Diaz, A. Organic fertilizer application to maize on alluvial soils in a moderate climate. Actual. Corpoica 1997, 108, 19–249. [Google Scholar]
- Han, X.; Wang, S.; Veneman, P.L.M.; Xing, B. Change of organic carbon content and its fractions in black soil under long-term application of chemical fertilizers and recycled organic manure. Commun. Soil Sci. Plant Anal. 2006, 37, 1127–1137. [Google Scholar] [CrossRef]
- Ulukan, H. Effect of soil applied humic acid at different sowing times on some yield components in wheat (Triticum spp.) hybrids. Int. J. Bot. 2008, 4, 164–175. [Google Scholar] [CrossRef]
- Kaya, C.; Akram, N.A.; Ashraf, M.; Sonmez, O. Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Res. Commun. 2018, 46, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Sonmez, O.; Pierzynski, G.M.; Frees, L.; Davis, B.; Leikam, D.F.; Sweeney, D.W.; Janssen, K.A. A field-based assessment tool for phosphorus losses in runoff in Kansas. J. Soil Water Conserv. 2009, 64, 212–222. [Google Scholar] [CrossRef]
- Naseer, M.; Muhammad, D. Direct and residual effect of Hazara rock phosphate (HRP) on wheat and succeeding maize in alkaline calcareous soils. Pak. J. Bot. 2014, 46, 1755–1761. [Google Scholar]
- Liu, C.; Cooper, R.J.; Bowman, D.C. Humic acid application affects photosynthesis, root development, and nutrient content of creeping bentgrass. HortScience 1998, 33, 1023–1025. [Google Scholar] [CrossRef] [Green Version]
- Malik, K.A.; Azam, F. Effect of humic acid on wheat (Triticum aestivum L.) seedling growth. Env. Exp Bot. 1985, 25, 245–252. [Google Scholar] [CrossRef]
Properties | Concentration |
---|---|
Soil | |
Sand (%) | 25.00 |
Silt (%) | 65.23 |
Clay (%) | 7.00 |
Textural class | Silt loam |
pH (1:5) | 7.9 |
EC (1:5) dS m−1 | 0.20 |
Organic matter content (%) | 0.72 |
AB DTPA extractable P (mg kg−1) | 4.0 |
AB DTPA extractable K (mg kg−1) | 110 |
Lime contents (%) | 14.04 |
Humic acid | |
Organic C (%) | 50.4–60.3 |
Total N (%) | 3.0–5.5 |
AB DTPA Extractable P (mg kg−1) | 50.0–52.5 |
Zn (mg kg−1) | 05.5–07.3 |
Mn (mg kg−1) | 12.2–15.5 |
pH (1:5) | 5.5–6.0 |
Phosphorus (kg P2O5 ha−1) | Humic Acid (kg ha−1) | Plant Height (cm) | Spike Length (cm) | Grains Spike−1 | 1000-Grain Weight (g) | Grain Yield (kg ha−1) | Straw Yield (kg ha−1) | Biological Yield (kg ha−1) | Harvest Index (%) | Plant P Concentration (g kg−1) | P Uptake (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 78 ± 0.13 e | 9.91 ± 0.10 c | 51 ± 0.73 d | 36.65 ± 0.23 e | 1835 ± 33 e | 2658 ± 28 d | 4493 ± 214 e | 41 ± 0.60 ab | 2.5 ± 0.04 d | 11.54 ± 0.33 e | |
45 | 81 ± 0.03 d | 10.20 ± 0.18 b | 53 ± 0.50 c | 39.95 ± 0.32 d | 2237 ± 64 d | 3480 ± 109 c | 5717 ± 242 d | 39 ± 1.21 b | 2.9 ± 0.10 c | 17.02 ± 0.67 d | |
67.5 | 83 ± 0.06 c | 10.34 ± 0.01 b | 56 ± 0.17 b | 42.00 ± 0.45 c | 2500 ± 36 c | 3864 ± 23 b | 6364 ± 229 c | 39 ± 0.23 b | 3.1 ± 0.06 bc | 19.91 ± 0.44 c | |
90 | 88 ± 0.26 a | 10.67 ± 0.09 a | 58 ± 0.44 a | 44.87 ± 0.67 b | 2947 ± 18 a | 3927 ± 97 b | 6874 ± 369 b | 43 ± 0.71 a | 3.1 ± 0.07 b | 21.41 ± 0.71 b | |
112.5 | 87 ± 0.03 b | 10.77 ± 0.07 a | 58 ± 0.33 a | 46.05 ± 0.20 a | 2678 ± 13 b | 4549 ± 53 a | 7227 ± 267 a | 36 ± 0.32 c | 3.3 ± 0.09 a | 24.30 ± 0.84 a | |
LSD (p ≤ 0.05) | 0.63 | 0.28 | 1.33 | 0.81 | 95.597 | 180.96 | 154.39 | 2.033 | 0.1421 | 1.157 | |
0 | 82 ± 0.07 b | 10.27 ± 0.08 b | 54 ± 0.41 b | 41.20 ± 0.40 b | 2338 ± 37 b | 3609 ± 46 | 5947 ± 1053 b | 39 ± 0.68 | 2.9 ± 0.04 b | 17.71 ± 0.34 b | |
5 | 84 ± 0.05 a | 10.48 ± 0.12 a | 56 ± 0.18 a | 42.61 ± 0.29 a | 2540 ± 25 a | 3782 ± 81 | 6322 ± 1106 a | 40 ± 0.63 | 3.1 ± 0.07 a | 19.97 ± 0.62 a | |
LSD (p ≤ 0.05) | 0.40 | 0.18 | 0.84 | 0.51 | 60.461 | ns | 97.644 | ns | 0.0898 | 0.733 | |
0 | 0 | 77 ± 0.23 h | 9.75 ± 0.05 | 51 ± 0.88 | 35.73 ± 0.26 | 1807 ± 43 f | 2534 ± 90 | 4341 ± 65 h | 42 ± 1.37 | 2.5 ± 0.03 | 11.11 ± 0.24 |
5 | 78 ± 0.23 g | 10.06 ± 0.17 | 52 ± 0.58 | 37.57 ± 0.23 | 1862 ± 23 f | 2782 ± 54 | 4644 ± 77 g | 40 ± 0.18 | 2.5 ± 0.05 | 11.98 ± 0.45 | |
45 | 0 | 80 ± 0.23 f | 10.04 ± 0.27 | 52 ± 1.00 | 39.40 ± 0.40 | 2168 ± 57 e | 3377 ± 114 | 5545 ± 80 f | 39 ± 1.35 | 2.9 ± 0.03 | 16.19 ± 0.15 |
5 | 81 ± 0.24 e | 10.36 ± 0.23 | 54 ± 1.02 | 40.50 ± 0.40 | 2306 ± 70 d | 3582 ± 122 | 5888 ± 141 e | 39 ± 1.11 | 3.0 ± 0.17 | 17.86 ± 1.20 | |
67.5 | 0 | 81 ± 0.23 e | 10.31 ± 0.10 | 55 ± 0.33 | 41.40 ± 0.67 | 2439 ± 74 cd | 3763 ± 84 | 6202 ± 20 d | 39 ± 1.25 | 2.9 ± 0.04 | 18.66 ± 0.20 |
5 | 85 ± 0.35 d | 10.37 ± 0.10 | 58 ± 0.33 | 42.60 ± 0.36 | 2561 ± 26 c | 3965 ± 125 | 6526 ± 121 c | 39 ± 0.84 | 3.2 ± 0.09 | 21.16 ± 0.72 | |
90 | 0 | 86 ± 0.44 c | 10.44 ± 0.11 | 56 ± 0.58 | 43.83 ± 0.49 | 2731 ± 35 b | 3882 ± 35 | 6613 ± 61 c | 41 ± 0.29 | 2.9 ± 0.05 | 19.49 ± 0.53 |
5 | 89 ± 0.15 a | 10.89 ± 0.10 | 60 ± 0.33 | 45.90 ± 0.86 | 3163 ± 69 a | 3972 ± 174 | 7135 ± 109 b | 44 ± 1.63 | 3.3 ± 0.09 | 23.33 ± 0.89 | |
112.5 | 0 | 85 ± 0.31 d | 10.83 ± 0.06 | 58 ± 0.02 | 45.63 ± 0.33 | 2547 ± 30 c | 4490 ± 22 | 7037 ± 38 b | 36 ± 0.28 | 3.2 ± 0.13 | 23.10 ± 1.03 |
5 | 88 ± 0.37 b | 10.71 ± 0.14 | 58 ± 0.67 | 46.47 ± 0.45 | 2808 ± 29 b | 4607 ± 90 | 7415 ± 62 a | 38 ± 0.71 | 3.4 ± 0.06 | 25.50 ± 0.72 | |
LSD (p ≤ 0.05) | 0.89 | ns | ns | ns | 135 | ns | 218 | ns | ns | ns |
P Levels (kg P2O5 ha−1) | Humic Acid Levels (kg ha−1) | OM (%) | Extractable P (mg kg−1) | WSP (mg kg−1) | Extractable K (mg kg−1) |
---|---|---|---|---|---|
0 | 0.83 ± 0.02 c | 5.05 ± 0. 06 e | 0.139 ± 0.01 e | 86 ± 0.58 e | |
45 | 1.00 ± 0.01 b | 5.93 ± 0.07 d | 0.155 ± 0.02 d | 97 ± 0.88 d | |
67.5 | 1.04 ± 0.05 b | 6.88 ± 0.15 c | 0.185 ± 0.01 c | 107 ± 1.01 c | |
90 | 1.13 ± 0.02 a | 7.78 ± 0.12 b | 0.206 ± 0.01 b | 121 ± 0.51 b | |
112.5 | 1.16 ± 0.04 a | 8.68 ± 0.10 a | 0.232 ± 0.01 a | 134 ± 0.84 a | |
LSD (p ≤ 0.05) | 0.063 | 0.121 | 0.016 | 2.461 | |
0 | 0.95 ± 0.02 b | 6.12 ± 0.12 b | 0.165 ± 0.01 b | 102 ± 0.19 b | |
5 | 1.11 ± 0.03 a | 7.61 ± 0.08 a | 0.201 ± 0.02 a | 116 ± 1.01 a | |
LSD (p ≤ 0.05) | 0.040 | 0.076 | 0.015 | 1.556 | |
0 | 0 | 0.83 ± 0.03 f | 4.20 ± 0.06 j | 0.135 ± 0.01 f | 81 ± 1.45 h |
5 | 0.82 ± 0.02 f | 5.90 ± 0.06 h | 0.144 ± 0.01 ef | 91 ± 1.47 g | |
45 | 0 | 0.89 ± 0.04 ef | 5.07 ± 0.09 i | 0.144 ± 0.01 ef | 90 ± 0.88 g |
5 | 1.11 ± 0.03 cd | 6.80 ± 0.07 f | 0.165 ± 0.02 de | 103 ± 0.91 e | |
67.5 | 0 | 0.93 ± 0.06 e | 6.05 ± 0.21 g | 0.171 ± 0.01 d | 98 ± 1.01 f |
5 | 1.15 ± 0.04 bc | 7.67 ± 0.09 d | 0.198 ± 0.01 c | 116 ± 1.73 c | |
90 | 0 | 1.04 ± 0.01 d | 7.10 ± 0.15 e | 0.180 ± 0.02 cd | 112 ± 1.45 d |
5 | 1.22 ± 0.04 ab | 8.47 ± 0.12 b | 0.233 ± 0.01 b | 130 ± 0.89 b | |
112.5 | 0 | 1.08 ± 0.03 cd | 8.13 ± 0.12 c | 0.198 ± 0.01 c | 127 ± 1.20 b |
5 | 1.24 ± 0.04 a | 9.23 ± 0.09 a | 0.266 ± 0.03 a | 141 ± 0.58 a | |
LSD (p ≤ 0.05) | 0.0886 | 0.171 | 0.222 | 3.480 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izhar Shafi, M.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafar-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy 2020, 10, 1224. https://doi.org/10.3390/agronomy10091224
Izhar Shafi M, Adnan M, Fahad S, Wahid F, Khan A, Yue Z, Danish S, Zafar-ul-Hye M, Brtnicky M, Datta R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy. 2020; 10(9):1224. https://doi.org/10.3390/agronomy10091224
Chicago/Turabian StyleIzhar Shafi, Muhammad, Muhammad Adnan, Shah Fahad, Fazli Wahid, Ahsan Khan, Zhen Yue, Subhan Danish, Muhammad Zafar-ul-Hye, Martin Brtnicky, and Rahul Datta. 2020. "Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil" Agronomy 10, no. 9: 1224. https://doi.org/10.3390/agronomy10091224
APA StyleIzhar Shafi, M., Adnan, M., Fahad, S., Wahid, F., Khan, A., Yue, Z., Danish, S., Zafar-ul-Hye, M., Brtnicky, M., & Datta, R. (2020). Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy, 10(9), 1224. https://doi.org/10.3390/agronomy10091224