Impact of New Micro Carbon Technology Based Fertilizers on Growth, Nutrient Efficiency and Root Cell Morphology of Capsicum annuum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Micro Carbon Technology (MCT®) Fertilizers
2.2. Chemical Characterization of Fertilizers
2.3. Nutritional Efficacy and Biostimulant Effects of MCT® Fertilizers
2.3.1. Biostimulant Effect of MCT® Fertilizers on Same Age Pepper Plants
2.3.2. Biostimulant Effect of MCT® Fertilizers on Different Age Pepper Plants
2.4. Crop Analysis
2.4.1. Plant Growth Analysis
2.4.2. Root Microscopic Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization of MCT® Fertilizers
3.2. Nutritional Efficacy and Biostimulant Effect of MCT® Fertilizers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ansari, R.A.; Mahmood, I. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci. Hortic. 2017, 226, 1–9. [Google Scholar] [CrossRef]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Majumdar, K.; Jat, M.L.; Saharawat, Y.S.; Pradhan, S.; Kuri, B.R. Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem. Energy 2017, 119, 245–256. [Google Scholar] [CrossRef]
- Michelsen-Correa, S.; Harrison, R.; Dietzen, C. Enhanced efficiency fertilizers (EEFs) do not increase nitrogen retention in Pacific Northwest Douglas-fir forest soils four weeks post-fertilization. For. Ecol. Manag. 2018, 427, 317–324. [Google Scholar] [CrossRef]
- Laursen, K.H.; Mihailova, A.; Kelly, S.D.; Epov, V.N.; Bérail, S.; Schjoerring, J.K.; Donard, O.F.X.; Larsen, E.H.; Pedentchouk, N.; Marca-bell, A.D.; et al. Is it really organic?—Multi-isotopic analysis as a tool to discriminate between organic and conventional plants. Food Chem. 2013, 141, 2812–2820. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- López-Salazar, R.; González-Cervantes, G.; Vázquez-Alvarado, R.E.; Olivares-Sáenz, E.; Vidales-Contreras, J.A.; Carranza de la Rosa, R.; Ortega-Escobar, M. Humic and fulvic acid extraction method and characterization by infrared spectrophotometry. Rev. Mex. Cienc. Agrícolas 2010, 5, 1397–1407. [Google Scholar]
- Martínez, C.X.; Bravo, I.; Martin, F.J. Molecular composition of humic acids evaluated by pyrolysis-gas chromatography-mass spectrometry and thermally assisted hydrolysis and methylation in high Colombian Andean soils. Rev. Colomb. Quím. 2013, 42, 31–46. [Google Scholar]
- Dores-Silva, P.R.; Landgraf, M.D.; Rezende, M.O.O. Humification process in different kinds of organic residue by composting and vermicomposting: Have microbioreactors really accelerated the process? Environ. Sci. Pollut. Res. 2018, 25, 17490–17498. [Google Scholar] [CrossRef]
- Quintero, J.; Bonilla, L.J. Obtención de ácidos húmicos por oxidación de carbón con permanganato de potasio y su efecto sobre la disponibilidad de fósforo proveniente de roca fosfórica. Rev. Col. Quím. 1991, 20, 9–14. [Google Scholar]
- Hu, J.; Wu, J.; Qu, X.; Li, J. Effects of Organic Wastes on Structural Characterizations of Humic Acid in Semiarid Soil under Plastic Mulched Drip Irrigation. Chemosphere 2018, 200, 313–321. [Google Scholar] [CrossRef]
- Lotfi, R.; Kalaji, H.M.; Valizadeh, G.R.; Khalilvand Behrozyar, E.; Hemati, A.; Gharavi-Kochebagh, P.; Ghassemi, A. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica 2018, 56, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Conselvan, G.B.; Fuentes, D.; Merchant, A.; Peggion, C.; Francioso, O.; Carletti, P. Effects of humic substances and indole-3-acetic acid on Arabidopsis sugar and amino acid metabolic profile. Plant Soil 2018, 426, 17–32. [Google Scholar] [CrossRef]
- Kobierski, M.; Kondratowicz-Maciejewska, K.; Banach-Szott, M.; Wojewódzki, P.; Peñas Castejón, J.M. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. J. Soils Sediments 2018, 18, 2777–2789. [Google Scholar] [CrossRef] [Green Version]
- Tavarini, S.; Passera, B.; Martini, A.; Avio, L.; Sbrana, C.; Giovannetti, M.; Angelini, L.G. Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in Stevia rebaudiana Bert. Ind. Crops Prod. 2018, 111, 899–907. [Google Scholar] [CrossRef]
- Tahiri, A.; Richel, A.; Destain, J.; Druart, P.; Thonart, P.; Ongena, M. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions. Anal. Bioanal. Chem. 2016, 408, 1917–1928. [Google Scholar] [CrossRef]
- Pavlovich, L.B.; Strakhov, V.M. Effect of Humic Fertilizers from Brown Coal on the Mineral Composition of Vegetable Crops. Solid Fuel Chem. 2018, 52, 206–210. [Google Scholar] [CrossRef]
- Cooper, C.; Packer, N.; Williams, K. Amino Acid Analysis Protocols; Cooper, C., Ed.; Humana Press: Totowa, NJ, USA, 2001; Volume 159, ISBN 0896036561. [Google Scholar]
- Farrés-Cebrián, M.; Seró, R.; Saurina, J.; Núñez, O. HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations 2016, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Cadahía, C.; Eymar, E. Fertirrigación: Cultivos Hortícolas y Ornamentales; Mundi-Prensa: Madrid, Spain, 2000; ISBN 8484762475. [Google Scholar]
- Vallejo, J.M.; Heredia, F.; Blazquez, R.; Cadahía, C.; Gamboa, A.; Guardiola, J.L.; Lachica, M.; Lopez, J.; Pozuelo, J.M.; Arroyo, C. Métodos Oficiales de Análisis, Métodos de Análisis de Productos Orgánicos Fetilizantes; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1994; ISBN 847479532X.
- Kalaji, H.M.; Dąbrowski, P.; Cetner, M.D.; Samborska, I.A.; Łukasik, I.; Brestic, M.; Zivcak, M.; Tomasz, H.; Mojski, J.; Kociel, H.; et al. A comparison between different chlorophyll content meters under nutrient deficiency conditions. J. Plant Nutr. 2017, 40, 1024–1034. [Google Scholar] [CrossRef]
- Conselvan, G.B.; Pizzeghello, D.; Francioso, O.; Di Foggia, M.; Nardi, S.; Carletti, P. Biostimulant activity of humic substances extracted from leonardites. Plant Soil 2017, 420, 119–134. [Google Scholar] [CrossRef]
- Nasir, S.; Sarfaraz, T.B.; Verheyen, T.V.; Chaffee, A.L. Structural elucidation of humic acids extracted from Pakistani lignite using spectroscopic and thermal degradative techniques. Fuel Process. Technol. 2011, 92, 983–991. [Google Scholar] [CrossRef]
- Fujitake, N.; Kusumoto, A.; Yanagi, Y.; Suzuki, T.; Otsuka, H. Properties of soil humic substances in fractions obtained by sequential extraction with pyrophosphate solutions at different pHs. Soil Sci. Plant Nutr. 2003, 49, 347–353. [Google Scholar] [CrossRef]
- Devadason, I.P.; Anjaneyulu, A.S.R.; Mendirtta, S.K.; Murthy, T.R.K. Quality and shelf life of buffalo meat blocks processed in retort pouches. J. Food Sci. Technol. 2014, 51, 3991–3997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, S.; Khoshgoftarmanesh, A.H.; Hadadzadeh, H.; Jafari, M. Synthesis of Iron-Amino Acid Chelates and Evaluation of Their Efficacy as Iron Source and Growth Stimulator for Tomato in Nutrient Solution Culture. J. Plant Growth Regul. 2012, 31, 498–508. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; et al. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Ali, S.; Zandi, P.; Mehmood, A.; Ullah, S.; Ikram, M.; Ismail; Shahid, M.A.; Babar, A. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan J. Bot. 2020, 52, 355–363. [Google Scholar] [CrossRef]
- Di Sotto, A.; Vecchiato, M.; Abete, L.; Toniolo, C.; Maria, A.; Mannina, L.; Locatelli, M.; Nicoletti, M.; Di, S. Capsicum annuum L. var. Cornetto di Pontecorvo PDO: Polyphenolic profile and in vitro biological activities. J. Funct. Foods 2018, 40, 679–691. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress-a review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Karakurt, Y.; Unlu, H.; Unlu, H.; Padem, H. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric. Scand. 2009, 59, 233–237. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Guilayn, F.; Benbrahim, M.; Rouez, M.; Crest, M.; Patureau, D.; Jimenez, J. Humic-like substances extracted from different digestates: First trials of lettuce biostimulation in hydroponic culture. Waste Manag. 2020, 104, 239–245. [Google Scholar] [CrossRef]
- Qin, K.; Leskovar, D.I. Lignite-derived humic substances modulate pepper and soil-biota growth under water deficit stress. J. Plant Nutr. Soil Sci. 2018, 181, 655–663. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Edwards, C.A.; Lee, S.; Byrne, R. Effects of humic acids from vermicomposts on plant growth. Eur. J. Soil Biol. 2006, 42, 65–69. [Google Scholar] [CrossRef]
- Karakurt, Y.; Ozdamar-Unlu, H.; Unlu, H.; Tonguc, M. Antioxidant compounds and activity in cucumber fruit in response to foliar and soil humic acid application. Eur. J. Hortic. Sci. 2015, 80, 76–80. [Google Scholar] [CrossRef]
- Olk, D.C.; Dinnes, D.L.; Rene Scoresby, J.; Callaway, C.R.; Darlington, J.W. Humic products in agriculture: Potential benefits and research challenges—A review. J. Soils Sediments 2018, 18, 2881–2891. [Google Scholar] [CrossRef]
- Vujinović, T.; Zanin, L.; Venuti, S.; Contin, M.; Ceccon, P.; Tomasi, N.; Pinton, R.; Cesco, S.; De Nobili, M. Biostimulant Action of Dissolved Humic Substances From a Conventionally and an Organically Managed Soil on Nitrate Acquisition in Maize Plants. Front. Plant Sci. 2019, 10, 1652. [Google Scholar] [CrossRef]
- Szczepanek, M.; Siwik-Ziomek, A. P and K accumulation by rapeseed as affected by biostimulant under different NPK and S fertilization doses. Agronomy 2019, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Zanin, L.; Tomasi, N.; Cesco, S.; Varanini, Z.; Pinton, R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front. Plant Sci. 2019, 10, 675. [Google Scholar] [CrossRef] [Green Version]
- Dinçsoy, M.; Sönmez, F. The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties. J. Plant Nutr. 2019, 42, 2757–2772. [Google Scholar] [CrossRef]
- Francesca, S.; Arena, C.; Hay Mele, B.; Schettini, C.; Ambrosino, P.; Barone, A.; Rigano, M.M. The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (phaseolus vulgaris l.). Agronomy 2020, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- Svietlova, N.; Sytar, O.; Volkogon, M. Remodeling of the composition of the membrane’s lipids of buckwheat plants (Fagopyrum esculentum Moench.) under conditions of phosphorous deficiency and seed bacterization with phosphate solubilizing microorganisms. J. Cent. Eur. Agric. 2017, 18, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Palumbo, G.; Schiavon, M.; Nardi, S.; Ertani, A.; Celano, G.; Colombo, C.M. Biostimulant Potential of Humic Acids Extracted From an Amendment Obtained via Combination of Olive Mill Wastewaters (OMW) and a Pre-treated Organic Material Derived From Municipal Solid Waste (MSW). Front. Plant Sci. 2018, 9, 1028. [Google Scholar] [CrossRef]
- Bento, L.R.; Melo, C.A.; Ferreira, O.P.; Moreira, A.B.; Mounier, S.; Piccolo, A.; Spaccini, R.; Bisinoti, M.C. Humic extracts of hydrochar and Amazonian Dark Earth: Molecular characteristics and effects on maize seed germination. Sci. Total Environ. 2020, 708, 135000. [Google Scholar] [CrossRef]
- Wang, Y.; Janz, B.; Engedal, T.; de Neergaard, A. Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize. Agric. Water Manag. 2017, 179, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Zhang, W.; Du, T.; Kang, S.; Davies, W.J. Responses of Water Accumulation and Solute Metabolism in Tomato Fruit to Water Scarcity and Implications for Main Fruit Quality Variables. J. Exp. Bot. 2020, 71, 1249–1264. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. F. Crop. Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Olaetxea, M.; Mora, V.; Bacaicoa, E.; Garnica, M.; Fuentes, M.; Casanova, E.; Zamarreño, A.M.; Iriarte, J.C.; Etayo, D.; Ederra, I.; et al. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids. Plant Physiol. 2015, 169, 2587–2596. [Google Scholar] [CrossRef]
Product | %C | %H | %N | %S |
---|---|---|---|---|
TX | 22.21 ± 0.04 | 6.22 ± 0.08 | 24.7 ± 0.3 | 0.06 ± 0.00 |
TN | 6.7 ± 0.8 | 4.3 ± 0.1 | 28 ± 1 | 0.01 ± 0.01 |
TP | 0.05 ± 0.03 | 4.6 ± 0.2 | 0.063 ± 0.006 | 0.015 ± 0.007 |
TK | 6.5 ± 0.3 | 2.0 ± 0.2 | 0.2 ± 0.1 | 0.01 ± 0.00 |
TC | 0.40 ± 0.07 | 2.9 ± 0.1 | 13.5 ± 0.3 | 0.027 ± 0.006 |
TM | 1.0 ± 0.6 | 5.5 ± 0.4 | 0.6 ± 0.2 | 9 ± 3 |
TS | 21.8 ± 0.3 | 4.9 ± 0.3 | 2.92 ± 0.06 | 2.46 ± 0.02 |
TX | TN | TP | TK | TC | TM | TS | |
---|---|---|---|---|---|---|---|
Fe | 730 | 21.3 | 2.46 | 8.12 | 74.8 | 1949 | 28,649 |
Mn | 269 | 8.02 | 0.09 | 0.58 | 22.8 | 872 | 17,523 |
Zn | 288 | 8.46 | 0.98 | 82.2 | 109 | 2914 | 52,493 |
Cu | 0.47 | 0.10 | 0.90 | 0.71 | 1.49 | 911 | 15,162 |
B | 54.2 | 2.55 | 73.0 | N.D. | N.D. | 648 | 8671 |
Mo | 0.14 | 0.02 | 0.90 | 1.21 | 2.12 | 44.7 | 536 |
Ni | 0.30 | 0.06 | 0.07 | N.D. | 0.25 | 2.70 | 67.3 |
Si | 11.6 | 0.29 | N.D. | 76.1 | 72.4 | 4.54 | 10.0 |
Co | 0.12 | 0.01 | 0.01 | 0.05 | 0.37 | 65.4 | 914 |
CF | HF | HFX | |
---|---|---|---|
NBI | 48 ± 8 a | 34 ± 9 b | 51 ± 10 a |
Chl | 46 ± 6 a | 45 ± 12 a | 49 ± 5 a |
Flav | 1 ± 0.3 b | 1.3 ± 0.3 a | 1 ± 0.2 b |
Anth | 0.08 ± 0.04 a | 0.09 ± 0.03 a | 0.08 ± 0.04 a |
CF | HF | HFX | |
---|---|---|---|
N (g/Kg) | 57.4 ± 0.3 b | 36 ± 5 c | 72 ± 2 a |
P (g/Kg) | 1.10 ± 0.04 b | 1.13 ± 0.03 b | 1.3 ± 0.1 a |
S (g/Kg) | 1.4 ± 0.3 a | 1.31 ± 0.04 a | 1.5 ± 0.2 a |
K (g/Kg) | 59 ± 3 a | 53 ± 4 a | 53 ± 2 a |
Ca (g/Kg) | 28 ± 2 ab | 32 ± 5 a | 22 ± 2 b |
Mg (g/Kg) | 8.5 ± 0.8 b | 11.1 ± 0.8 a | 5.9 ± 0.4 c |
Fe (mg/Kg) | 84 ± 7 a | 62 ± 5 b | 74 ± 4 a |
Mn (mg/Kg) | 147 ± 26 c | 462 ± 102 a | 291 ± 26 b |
Zn (mg/Kg) | 183 ± 38 b | 229 ± 27 ab | 255 ± 24 a |
Cu (mg/Kg) | 17 ± 2 b | 19 ± 4 b | 24 ± 2 a |
B (mg/Kg) | 101 ± 12 b | 225 ± 46 a | 209 ± 13 a |
Mo (mg/Kg) | 1.3 ± 0.3 b | 2.4 ± 0.1 a | 1.6 ± 0.2 b |
Ni (mg/Kg) | 0.28 ± 0.06 b | 0.52 ± 0.05 a | 0.34 ± 0.03 b |
Si (mg/Kg) | 69 ± 9 c | 166 ± 3 a | 120 ± 9 b |
Co (mg/Kg) | 0.16 ± 0.06 c | 12.8 ± 0.4 a | 4.2 ± 0.3 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antón-Herrero, R.; García-Delgado, C.; Mayans, B.; Camacho-Arévalo, R.; Eymar, E. Impact of New Micro Carbon Technology Based Fertilizers on Growth, Nutrient Efficiency and Root Cell Morphology of Capsicum annuum L. Agronomy 2020, 10, 1165. https://doi.org/10.3390/agronomy10081165
Antón-Herrero R, García-Delgado C, Mayans B, Camacho-Arévalo R, Eymar E. Impact of New Micro Carbon Technology Based Fertilizers on Growth, Nutrient Efficiency and Root Cell Morphology of Capsicum annuum L. Agronomy. 2020; 10(8):1165. https://doi.org/10.3390/agronomy10081165
Chicago/Turabian StyleAntón-Herrero, Rafael, Carlos García-Delgado, Begoña Mayans, Raquel Camacho-Arévalo, and Enrique Eymar. 2020. "Impact of New Micro Carbon Technology Based Fertilizers on Growth, Nutrient Efficiency and Root Cell Morphology of Capsicum annuum L." Agronomy 10, no. 8: 1165. https://doi.org/10.3390/agronomy10081165
APA StyleAntón-Herrero, R., García-Delgado, C., Mayans, B., Camacho-Arévalo, R., & Eymar, E. (2020). Impact of New Micro Carbon Technology Based Fertilizers on Growth, Nutrient Efficiency and Root Cell Morphology of Capsicum annuum L. Agronomy, 10(8), 1165. https://doi.org/10.3390/agronomy10081165