Soil Microbial Community Changes in a Field Treatment with Chlorotoluron, Flufenacet and Diflufenican and Two Organic Amendments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soil and Organic Amendments
2.3. Field Experiment
2.4. Statistical Analysis
3. Results and Discussion
3.1. Herbicide Residues in Unamended and Amended Soils
3.2. Soil Dehydrogenase Activity (DHA)
3.3. Soil Microbial Community
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Analysis of Herbicides
Appendix B. Soil Biochemical Properties and PLFA Analysis
References
- Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Boil. 2012, 49, 22–30. [Google Scholar] [CrossRef]
- Thiour-Mauprivez, C.; Martin-Laurent, F.; Calvayrac, C.; Barthelmebs, L. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? Sci. Total. Environ. 2019, 684, 314–325. [Google Scholar] [CrossRef]
- Pampulha, M.E.; Oliveira, A. Impact of an Herbicide Combination of Bromoxynil and Prosulfuron on Soil Microorganisms. Curr. Microbiol. 2006, 53, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.; Kumar, G.; Rene, E.R. Developments in biochar application for pesticide remediation: Current knowledge and future research directions. J. Environ. Manag. 2019, 232, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-C. Effect of pesticides on soil microbial community. J. Environ. Sci. Health Part B 2010, 45, 348–359. [Google Scholar] [CrossRef]
- Rodríguez-Morgado, B.; Gómez, I.; Parrado, J.; Tejada, M. Behaviour of oxyfluorfen in soils amended with edaphic biostimulants/biofertilizers obtained from sewage sludge and chicken feathers. Effects on soil biological properties. Environ. Sci. Pollut. Res. 2014, 21, 11027–11035. [Google Scholar] [CrossRef]
- Kucharski, J.; Tomkiel, M.; Baćmaga, M.; Borowik, A.; Wyszkowska, J. Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG herbicide. J. Environ. Sci. Health Part B 2016, 51, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Paredes, C.; Bustamante, M.A.; Moral, R.; Moreno-Caselles, J. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 2012, 173, 152–161. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review. Toxics 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galán-Pérez, J.A.; Peña, A. Conditioning of a Calcaric Soil with Biosolid and Compost Under Laboratory Conditions: Exploration of Soil Property Evolution. Pedosphere 2019, 29, 266–272. [Google Scholar] [CrossRef]
- Rodríguez-Liébana, J.A.; ElGouzi, S.; Mingorance, M.D.; Castillo, A.; Peña, A. Irrigation of a Mediterranean soil under field conditions with urban wastewater: Effect on pesticide behaviour. Agric. Ecosyst. Environ. 2014, 185, 176–185. [Google Scholar] [CrossRef]
- Pérez-Piqueres, A.; Edel-Hermann, V.; Alabouvette, C.; Steinberg, C. Response of soil microbial communities to compost amendments. Soil Boil. Biochem. 2006, 38, 460–470. [Google Scholar] [CrossRef]
- García-Delgado, C.; Barba-Vicente, V.; Marín-Benito, J.M.; Igual, J.M.; Sánchez-Martín, M.; Rodríguez-Cruz, M.S. Simultaneous application of two herbicides and green compost in a field experiment: Implications on soil microbial community. Appl. Soil Ecol. 2018, 127, 30–40. [Google Scholar] [CrossRef]
- Álvarez-Martín, A.; Hilton, S.; Bending, G.D.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Changes in activity and structure of the soil microbial community after application of azoxystrobin or pirimicarb and an organic amendment to an agricultural soil. Appl. Soil Ecol. 2016, 106, 47–57. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Barba, V.; Ordax, J.; Andrades, M.; Sánchez-Martín, M.; Rodríguez-Cruz, M.S. Application of green compost as amendment in an agricultural soil: Effect on the behaviour of triasulfuron and prosulfocarb under field conditions. J. Environ. Manag. 2018, 207, 180–191. [Google Scholar] [CrossRef]
- Cabrera, A.; Cox, L.; Spokas, K.A.; Hermosín, M.D.C.; Cornejo, J.; Koskinen, W. Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Sci. Total. Environ. 2014, 470, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Schloter, M.; Dilly, O.; Munch, J. Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 2003, 98, 255–262. [Google Scholar] [CrossRef]
- Tejada, M. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate+diflufenican herbicides. Chemosphere 2009, 76, 365–373. [Google Scholar] [CrossRef]
- García-Delgado, C.; Barba-Vicente, V.; Marín-Benito, J.M.; Igual, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Influence of different agricultural management practices on soil microbial community over dissipation time of two herbicides. Sci. Total. Environ. 2019, 646, 1478–1488. [Google Scholar] [CrossRef]
- Lewis, K.; Green, A. The Pesticide Properties DataBase. Chem. Int. 2011, 33. [Google Scholar] [CrossRef] [Green Version]
- Marín-Benito, J.M.; Carpio, M.J.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Previous degradation study of two herbicides to simulate their fate in a sandy loam soil: Effect of the temperature and the organic amendments. Sci. Total. Environ. 2019, 653, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Saleh, O.; Pagel, H.; Enowashu, E.; Devers, M.; Martin-Laurent, F.; Streck, T.; Kandeler, E.; Poll, C. Evidence for the importance of litter as a co-substrate for MCPA dissipation in an agricultural soil. Environ. Sci. Pollut. Res. 2015, 23, 4164–4175. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Lee, X.; Gao, W.; Chen, Y.; Pan, W.; Tang, Y. Effect of biochar on the bioavailability of difenoconazole and microbial community composition in a pesticide-contaminated soil. Appl. Soil Ecol. 2017, 121, 185–192. [Google Scholar] [CrossRef]
- Juan, E.P.; Marín-Benito, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Dissipation of herbicides after repeated application in soils amended with green compost and sewage sludge. J. Environ. Manag. 2018, 223, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cruz, M.S.; Pose-Juan, E.; Marín-Benito, J.M.; Igual, J.M.; Sánchez-Martín, M.J. Pethoxamid dissipation and microbial activity and structure in an agricultural soil: Effect of herbicide rate and organic residues. Appl. Soil Ecol. 2019, 140, 135–143. [Google Scholar] [CrossRef]
- Baćmaga, M.; Borowik, A.; Kucharski, J.; Tomkiel, M.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ. Sci. Pollut. Res. 2014, 22, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Tomkiel, M.; Baćmaga, M.; Borowik, A.; Kucharski, J.; Wyszkowska, J. Effect of a mixture of flufenacet and isoxaflutole on population numbers of soil-dwelling microorganisms, enzymatic activity of soil, and maize yield. J. Environ. Sci. Health Part B 2019, 54, 832–842. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Sparks, D.L. Methods of Soil Analysis, Part 3-Chemical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Marín-Benito, J.M.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Dissipation of Fungicides in a Vineyard Soil Amended with Different Spent Mushroom Substrates. J. Agric. Food Chem. 2012, 60, 6936–6945. [Google Scholar] [CrossRef]
- Worrall, F.; Fernández-Pérez, M.; Johnson, A.C.; Flores-Cesperedes, F.; González-Pradas, E. Limitations on the role of incorporated organic matter in reducing pesticide leaching. J. Contam. Hydrol. 2001, 49, 241–262. [Google Scholar] [CrossRef]
- Frostegård, A.; Bååth, E.; Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Boil. Biochem. 1993, 25, 723–730. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis, Part 2-Microbiological and Biochemical Properties; Weaver, R.W., Angl, J.S., Bottomley, P.S., Eds.; Soil Science Society of America (SSSA): Madison, WI, USA, 1994; pp. 903–947. [Google Scholar]
- Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Boil. Fertil. Soils 1999, 29, 111–129. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Carpio, M.J.; Rodríguez-Cruz, M.S.; García-Delgado, C.; Sánchez-Martín, M.J.; Marín-Benito, J.M. Mobility monitoring of two herbicides in amended soils: A field study for modeling applications. J. Environ. Manag. 2020, 260, 110161. [Google Scholar] [CrossRef]
- Svendsen, S.B.; Carvalho, P.N.; Bollmann, U.E.; Ellegaard-Jensen, L.; Albers, C.N.; Strobel, B.W.; Jacobsen, C.S.; Bester, K. A comparison of the fate of diflufenican in agricultural sandy soil and gravel used in urban areas. Sci. Total. Environ. 2020, 715, 136803. [Google Scholar] [CrossRef]
- Bending, G.; Lincoln, S.D.; Edmondson, R.N. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ. Pollut. 2006, 139, 279–287. [Google Scholar] [CrossRef]
- Moreno, J.L.; Bastida, F.; Sánchez-Monedero, M.A.; Hernandez, T.; Garcia, C. Response of Soil Microbial Community to a High Dose of Fresh Olive Mill Wastewater. Pedosphere 2013, 23, 281–289. [Google Scholar] [CrossRef]
- Bai, Z.; Xu, H.-J.; He, H.-B.; Zheng, L.-C.; Zhang, X.-D. Alterations of microbial populations and composition in the rhizosphere and bulk soil as affected by residual acetochlor. Environ. Sci. Pollut. Res. 2012, 20, 369–379. [Google Scholar] [CrossRef]
- Wu, X.; Xu, J.; Dong, F.; Liu, X.; Zheng, Y. Responses of soil microbial community to different concentration of fomesafen. J. Hazard. Mater. 2014, 273, 155–164. [Google Scholar] [CrossRef]
- Cycoń, M.; Wójcik, M.; Borymski, S.; Piotrowska-Seget, Z. A broad-spectrum analysis of the effects of teflubenzuron exposure on the biochemical activities and microbial community structure of soil. J. Environ. Manag. 2012, 108, 27–35. [Google Scholar] [CrossRef]
- Jorge-Mardomingo, I.; Soler-Rovira, P.; Casermeiro, M.Á.; De La Cruz, M.T.; Polo, A. Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments. Geoderma 2013, 206, 40–48. [Google Scholar] [CrossRef]
- Álvarez-Martín, A.; Rodríguez-Cruz, M.S.; Andrades, M.S.; Sánchez-Martín, M.J. Application of a biosorbent to soil: A potential method for controlling water pollution by pesticides. Environ. Sci. Pollut. Res. 2016, 23, 9192–9203. [Google Scholar] [CrossRef] [PubMed]
- Marinozzi, M.; Coppola, L.; Monaci, E.; Karpouzas, D.G.; Papadopoulou, E.; Menkissoglu-Spiroudi, U.; Vischetti, C. The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. Environ. Sci. Pollut. Res. 2012, 20, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Petrić, I.; Karpouzas, D.G.; Bru, D.; Udiković-Kolić, N.; Kandeler, E.; Djuric, S.; Martin-Laurent, F. Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron. Environ. Sci. Pollut. Res. 2015, 23, 4320–4333. [Google Scholar] [CrossRef]
- Kalia, A.; Gosal, S.K. Effect of pesticide application on soil microorganisms. Arch. Agron. Soil Sci. 2011, 57, 569–596. [Google Scholar] [CrossRef]
Common Name and Chemical Structure | IUPAC Name | WS a (mg L−1) | Log Kow b | Koc c (mL g−1) | DT50 d (days) | GUS Index e |
---|---|---|---|---|---|---|
Chlorotoluron | 3-(3-chloro-p-tolyl)-1,1-dimethylurea | 74 | 2.5 | 196 | 34.0 | 3.02 |
Flufenacet | 4′-fluoro-N-isopropyl-2-[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yloxy]acetanilide | 51 | 3.5 | 401 | 39.0 | 2.02 |
Diflufenican | 2′,4′-difluoro-2-(α,α,α-trifluoro-m-tolyloxy) nicotinanilide | 0.05 | 4.2 | 5504 | 315 | 1.29 |
Characteristic | SMS | GC | S | S + SMS | S + GC |
---|---|---|---|---|---|
pH | 7.9 | 7.2 | 6.34 | 7.11 | 6.99 |
OM (%) a | 59.4 | 46.0 | 1.33 | 4.36 | 2.81 |
DOC (%) b | 0.8 | 0.7 | 0.008 | 0.023 | 0.018 |
N (%) | 2.3 | 1.1 | 0.05 | 0.24 | 0.14 |
C/N | 15.2 | 24.3 | 14.5 | 10.7 | 12.0 |
Herbicide/Soil | Residual Herbicide (µg Herbicide g−1 Dry Soil) ± SD a | ||||
---|---|---|---|---|---|
0 Days | 45 Days | 145 Days | 229 Days | 339 Days | |
Chlorotoluron | |||||
S | 11.6 ± 1.05ab | 7.53 ± 0.46c | 2.53 ± 0.20de | 1.44 ± 0.20ef | 1.82 ± 0.17ef |
S + SMS | 13.1 ± 0.77a | 11.0 ± 0.28b | 3.39 ± 0.16d | 1.12 ± 0.02ef | 0.78 ± 0.21f |
S + GC | 11.8 ± 1.20ab | 9.14 ± 1.18c | 2.36 ± 0.17def | 1.34 ± 0.06ef | 1.04 ± 0.03ef |
Flufenacet | |||||
S | 4.11 ± 0.10ab | 3.46 ± 0.12bc | 1.68 ± 0.19de | 0.82 ± 0.08ef | 0.29 ± 0.06f |
S + SMS | 5.08 ± 1.05a | 4.47 ± 0.30ab | 2.70 ± 0.42cd | 1.03 ± 0.11ef | 0.40 ± 0.02f |
S + GC | 4.44 ± 0.50ab | 3.94 ± 0.56ab | 2.51 ± 0.29cd | 0.82 ± 0.30ef | 0.12 ± 0.03f |
Diflufenican | |||||
S | 2.24 ± 0.27ab | 1.72 ± 0.53b | 1.62 ± 0.24b | 1.30 ± 0.18b | 1.43 ± 0.31b |
S + SMS | 2.81 ± 0.64a | 2.03 ± 0.22ab | 2.26 ± 0.53ab | 2.00 ± 0.34ab | 1.95 ± 0.17ab |
S + GC | 2.27 ± 0.31ab | 1.45 ± 0.26b | 1.58 ± 0.07b | 1.48 ± 0.14b | 1.53 ± 0.21b |
Variable | F-Value | p-Value |
---|---|---|
S | ||
Herbicide | 7.112 | 0.0050 |
Time | 13.23 | 0.0001 |
H × T | −1.517 | 0.9356 |
S + SMS | ||
Herbicide | 0.792 | 0.3802 |
Time | 36.07 | 0.0001 |
H × T | 0.449 | 0.0019 |
S + GC | ||
Herbicide | 1.012 | 0.3193 |
Time | 25.41 | 0.0001 |
H × T | 0.394 | 0.0014 |
Global | ||
Herbicide | 6.373 | 0.0039 |
Time | 31.63 | 0.0001 |
STr | 5.777 | 0.0010 |
H × T | −2.051 | 0.3472 |
H × STr | 1.279 | 0.0215 |
T × STr | 0.717 | 0.0452 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpio, M.J.; García-Delgado, C.; Marín-Benito, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Soil Microbial Community Changes in a Field Treatment with Chlorotoluron, Flufenacet and Diflufenican and Two Organic Amendments. Agronomy 2020, 10, 1166. https://doi.org/10.3390/agronomy10081166
Carpio MJ, García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. Soil Microbial Community Changes in a Field Treatment with Chlorotoluron, Flufenacet and Diflufenican and Two Organic Amendments. Agronomy. 2020; 10(8):1166. https://doi.org/10.3390/agronomy10081166
Chicago/Turabian StyleCarpio, María José, Carlos García-Delgado, Jesús María Marín-Benito, María Jesús Sánchez-Martín, and María Sonia Rodríguez-Cruz. 2020. "Soil Microbial Community Changes in a Field Treatment with Chlorotoluron, Flufenacet and Diflufenican and Two Organic Amendments" Agronomy 10, no. 8: 1166. https://doi.org/10.3390/agronomy10081166
APA StyleCarpio, M. J., García-Delgado, C., Marín-Benito, J. M., Sánchez-Martín, M. J., & Rodríguez-Cruz, M. S. (2020). Soil Microbial Community Changes in a Field Treatment with Chlorotoluron, Flufenacet and Diflufenican and Two Organic Amendments. Agronomy, 10(8), 1166. https://doi.org/10.3390/agronomy10081166