Nematicidal Evaluation and Active Compounds Isolation of Aspergillus japonicus ZW1 against Root-Knot Nematodes Meloidogyne incognita
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nematode Preparation
2.2. Fermentation Filtrate Preparation
2.3. Effect of Fermentation Filtrate on Meloidogyne Incognita Egg Hatching
2.4. Nematicidal Activity of Fermentation Filtrate on Meloidogyne Incognita J2s
2.5. Scanning Electron Microscopy Observations
2.6. Transmission Electron Microscopy Observations
2.7. Greenhouse Experiment
2.8. Effect of Boiling and Storage Time on Nematicidal Activity Stability of Fermentation Filtrate
2.9. Evaluation of the Strain Fermentation Filtrate on The Germination of Crop Seeds
2.10. Isolation and Structural Determination of Aspergillus Japonicus ZW-1 Nematicidal Metabolites
2.11. Statistical Analysis
3. Results
3.1. Effect of Fermentation Filtrates on Hatching of Meloidogyne Incognita Eggs
3.2. Nematicidal Activity of Fermentation Filtrates on Meloidogyne Incognita J2s
3.3. Greenhouse Experiment
3.4. Effect of Boiling and Storage Time on the Nematicidal Activity of Fermentation Filtrate
3.5. Effect of Fermentation Filtrate on Seed Germination
3.6. Structural Confirmation of Nematicidal Substance from 2-WF
3.7. Effect of 1,5-Dimethyl Citrate Hydrochloride Ester on Meloidogyne Incognita J2s
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fanelli, E.; Cotroneo, A.; Carisio, L.; Troccoli, A.; Grosso, S.; Boero, C.; Boero, C.; Capriglia, F.; Luca, F.D. Detection and molecular characterization of the rice root-knot nematode Meloidogyne graminicola in Italy. Eur. J. Plant Pathol. 2017, 149, 467–476. [Google Scholar] [CrossRef]
- Kayani, M.Z.; Mukhtar, T.; Hussain, M.A. Effects of southern root knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop Prot. 2017, 92, 207–212. [Google Scholar] [CrossRef]
- Besnard, G.; Thi-Phan, N.; Ho-Bich, H.; Dereeper, A.; Nguyen, H.T.; Quénéhervé, P.; Aribi, J.; Bellafiore, S. On the close relatedness of two rice-parasitic root-knot nematode species and the recent expansion of Meloidogyne graminicola in Southeast Asia. Genes 2019, 10, 175. [Google Scholar] [CrossRef] [Green Version]
- Bozbuga, R.; Dasgan, H.Y.; Akhoundnejad, Y.; Imren, M.; Günay, O.C.; Toktay, H. Effect of Mi gene and nematode resistance on tomato genotypes using molecular and screening assay. Cytol. Genet. 2020, 54, 154–164. [Google Scholar] [CrossRef]
- Alves, G.C.S.; Ferri, P.H.; Seraphin, J.C.; Fortes, G.A.C.; Rocha, M.R.; Santos, S.C. Principal Response Curves analysis of polyphenol variation in resistant and susceptible cotton after infection by a root-knot nematode (RKN). Physiol. Mol. Plant Pathol. 2016, 96, 19–28. [Google Scholar] [CrossRef]
- Lopes, C.M.L.; Cares, J.E.; Perina, F.J.; Nascimento, G.F.; Mendona, J.S.F.; Moita, A.W.; Castagnone-Sereno, P.; Carneiro, R.M.D.G. Diversity of Meloidogyne incognita populations from cotton and aggressiveness to Gossypium spp. accessions. Plant Pathol. 2019, 68, 816–824. [Google Scholar] [CrossRef]
- Trudgill, D.L.; Blok, V.C. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 2001, 39, 53–77. [Google Scholar] [CrossRef]
- Onkendi, E.M.; Kariuki, G.M.; Marais, M.; Moleleki, L.N. The threat of root-knot nematodes (Meloidogyne spp.) in Africa: A review. Plant Pathol. 2014, 63, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Janati, S.; Houari, A.; Wifaya, A.; Essarioui, A.; Mimouni, A.; Hormatallah, A.; Sbaghi, M.; Dababat, A.A.; Mokrini, F. Occurrence of the root-knot nematode species in vegetable crops in Souss region of Morocco. Plant Pathol. J. 2018, 34, 308–315. [Google Scholar]
- Seid, A.; Fininsa, C.; Mekete, T.; Decraemer, W.; Wesemael, W.M.L. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.)–a century-old battle. Nematology 2015, 17, 995–1009. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, T.; Hussain, M.A.; Kayani, M.Z.; Aslam, M.N. Evaluation of resistance to root-knot nematode (Meloidogyne incognita) in okra cultivars. Crop Prot. 2014, 56, 25–30. [Google Scholar] [CrossRef]
- Patel, B.K.; Patel, H.R. Effect of physical, cultural and chemical methods of management on population dynamics of phytonematodes in bidi tobacco nursery. Tob. Res. 1999, 25, 51–60. [Google Scholar]
- Sikora, R.A. Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu. Rev. Phytopathol. 1992, 30, 245–270. [Google Scholar] [CrossRef]
- Brennan, R.J.B.; Glaze-Corcoran, S.; Wick, R.; Hashemi, M. Biofumigation: An alternative strategy for the control of plant parasitic nematodes. J. Integr. Agric. 2020, 19, 1680–1690. [Google Scholar] [CrossRef]
- Ntalli, N.; Monokrousos, N.; Rumbos, C.; Kontea, D.; Zioga, D.; Argyropoulou, M.D.; Menkissoglu-Spiroudi, U.; Tsiropolos, N.G. Greenhouse biofumigation with Melia azedarch controls Meloidogyne spp. and enhances soil biological activity. J. Pest Sci. 2017, 91, 29–40. [Google Scholar] [CrossRef]
- Stirling, G.R.; Wong, E.; Bhuiyan, S. Pasteuria, a bacterial parasite of plant-parasitic nematodes: Its occurrence in Australian sugarcane soils and its role as a biological control agent in naturally-infested soil. Australas. Plant Pathol. 2017, 46, 563–569. [Google Scholar] [CrossRef]
- Viljoen, J.J.F.; Labuschagne, N.; Fourie, H.; Sikora, R.A. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria. Trop. Plant Pathol. 2019, 44, 284–291. [Google Scholar] [CrossRef]
- Hussain, M.; Zouhar, M.; Rysanek, P. Suppression of Meloidogyne incognita by the entomopathogenic fungus Lecanicillium muscarium. Plant Dis. 2018, 102, 977–982. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Maòasová, M.; Zouhar, M.; Rysanek, P. Comparative virulence assessment of different nematophagous fungi and chemicals against northern root-knot nematodes, Meloidogyne hapla, on carrots. Pak. J. Zool. 2020, 52, 199–206. [Google Scholar] [CrossRef]
- Nimnoi, P.; Pongsilp, N.; Ruanpanun, P. Monitoring the efficiency of Streptomyces galilaeus strain KPS-C004 against root knot disease and the promotion of plant growth in the plant-parasitic nematode infested soils. Biol. Control 2017, 114, 158–166. [Google Scholar] [CrossRef]
- Dong, L.Q.; Zhang, K.Q. Microbial control of plant-parasitic nematodes: A five-party interaction. Plant Soil 2006, 288, 31–45. [Google Scholar] [CrossRef]
- Li, J.; Zou, C.G.; Xu, J.P.; Ji, X.L.; Niu, X.M.; Yang, J.K.; Huang, X.W.; Zhang, K.Q. Molecular mechanisms of nematode-nematophagous microbe interactions: Basis for biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 2015, 53, 67–95. [Google Scholar] [CrossRef]
- Bui, H.X.; Hadi, B.A.R.; Oliva, R.; Schroeder, N.E. Beneficial bacterial volatile compounds for the control of root-knot nematode and bacterial leaf blight on rice. Crop Prot. 2020, 135, 104792. [Google Scholar] [CrossRef]
- Nimnoi, P.; Ruanpanun, P. Suppression of root-knot nematode and plant growth promotion of chili (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. Biol. Control 2020, 145, 104244. [Google Scholar] [CrossRef]
- Hussey, R.S.; Barker, K.R. A comparison of methods of collecting inocula of Meloidogyne ssp. including a new technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Wu, H.Y.; Silva, J.O.; Becker, J.S.; Becker, J.O. Fluazaindolizine mitigates plant-parasitic nematode activity at sublethal dosages. J. Pest Sci. 2020. [Google Scholar] [CrossRef]
- Hahn, M.H.; Mio, L.L.M.D.; Kuhn, O.J.; Duarte, H.D.S.S. Nematophagous mushrooms can be an alternative to control Meloidogyne javanica. Biol. Control 2019, 138, 104024. [Google Scholar] [CrossRef]
- Choi, I.H.; Kim, J.; Shin, S.C.; Park, I.K. Nematicidal activity of monoterpenoids against the pine wood nematode (Bursaphelencus xylophilus). Russ. J. Nematol. 2007, 15, 35–40. [Google Scholar]
- Hajji-Hedfi, L.; Larayedh, A.; Hammas, N.C.; Regaieg, H.; Horrigue-Raouani, N. Biological activities and chemical composition of Pistacia lentiscus in controlling Fusarium wilt and root-knot nematode disease complex on tomato. Eur. J. Plant Pathol. 2019, 155, 281–291. [Google Scholar] [CrossRef]
- Holland, R.J.; Williams, K.L.; Khan, A. Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1999, 1, 131–139. [Google Scholar] [CrossRef]
- Janssen, T.; Karssen, G.; Topalović, O.; Coyne, D.; Bert, W. Integrative taxonomy of root-knot nematodes reveals multiple independent origins of mitotic parthenogenesis. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntalli, N.; Ratajczak, M.; Oplos, C.; Menkissoglu-Spiroudi, U.; Adamski, Z. Acetic acid, 2-undecanone, and (e)-2-decenal ultrastructural malformations on Meloidogyne incognita. J. Nematol. 2016, 48, 248–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Liu, W.; Liu, D.; Lu, C.; Zhang, D.; Wu, H.; Dong, D.; Meng, L. Identification and evaluation of Aspergillus tubingensis as a potential biocontrol agent against grey mould on tomato. J. Gen. Plant Pathol. 2018, 84, 148–159. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Li, J.; Zhang, F.; Wang, J.; Mo, M.; Liu, Y. Biocontrol efficacy of Pseudoxanthomonas japonensis against Meloidogyne incognita and its nematostatic metabolites. FEMS Microbiol. Lett. 2019, 366, fny287. [Google Scholar] [CrossRef] [Green Version]
- Shemshura, O.N.; Bekmakhanova, N.E.; Mazunina, M.N.; Meyer, S.L.F.; Rice, C.P.; Masler, E.P. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus. FEMS Microbiol. Lett. 2016, 363, fnw26. [Google Scholar] [CrossRef] [Green Version]
- Desaeger, J.A.; Watson, T.T. Evaluation of new chemical and biological nematicides for managing Meloidogyne javanica in tomato production and associated double-crops in Florida. Pest Manag. Sci. 2019, 75, 3363–3370. [Google Scholar] [CrossRef]
- Sissell, K. EPA bans carbofuran residues; sued over endosulfan. Chem. Week 2008, 170, 29. [Google Scholar]
- Liang, L.M.; Zou, C.G.; Xu, J.Q.; Zhang, K.Q. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos. Trans. R. Soc. B 2019, 374, 20180317. [Google Scholar] [CrossRef]
- Liu, K.C.; Zeng, F.L.; Ben, A.L.; Han, Z.M. Pathogenicity and repulsion for toxin-producing bacteria of dominant bacteria on the surface of American pine wood nematodes. J. Phytopathol. 2017, 165, 580–588. [Google Scholar] [CrossRef]
- Liu, M.J.; Hwang, B.S.; Zhi, J.C.; Li, W.J.; Park, D.J.; Seo, S.T.; Seo, S.T.; Kim, C.J. Screening, isolation and evaluation of a nematicidal compound from actinomycetes against the pine wood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci. 2019, 75, 1585–1593. [Google Scholar] [CrossRef]
- Ponpandian, L.N.; Rim, S.O.; Shanmugam, G.; Jeon, J.; Park, Y.H.; Lee, S.K.; Bae, H. Phylogenetic characterization of bacterial endophytes from four Pinus species and their nematicidal activity against the pine wood nematode. Sci. Rep. 2019, 9, 12457. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Choi, Y.H.; Shin, T.S.; Kim, T.H.; Shin, K.S.; Park, H.W.; Kim, Y.; Kim, H.; Choi, G.J.; Jang, K.S.; et al. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, N.; Liu, S.M.; Peng, H.; Huang, W.K.; Kong, L.A.; Wu, Y.H.; Chen, Y.P.; Ge, F.Y.; Jian, H.; Peng, D.L. Isolation and characterization of Aspergillus niger NBC001 underlying suppression against Heterodera glycines. Sci. Rep. 2019, 9, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.Y.; Jang, J.Y.; Yu, N.H.; Chi, W.J.; Bae, C.H.; Yeo, J.H.; Park, A.R.; Hur, J.S.; Park, H.W.; Park, J.Y.; et al. Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Pest Manag. Sci. 2018, 74, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Ren, D.; Zhang, S.; Zhang, X.; He, X.; Deng, Z.; Huang, C.; Guo, H. Effect of polyhydroxyl compounds on the thermal stability and structure of laccase. Pol. J. Environ. Stud. 2019, 28, 3253–3259. [Google Scholar] [CrossRef]
- Spiegel, Y.; McClure, M.A. The surface coat of plant-parasitic nematodes: Chemical composition, origin, and biological role—A review. J. Nematol. 1995, 27, 127–134. [Google Scholar]
- Curtis, R.H.C. Plant-nematode interactions: Environmental signals detected by the nematode’s chemosensory organs control changes in the surface cuticle and behaviour. Parasite 2008, 15, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Djian, C.; Pijarowski, L.; Ponchet, M.; Arpin, N.; Favre-Bonvin, J. Acetic acid: A selective nematicidal metabolite from culture filtrates of Paecilomyces Lilacinus (Thom) Samson and Trichoderma Longibrachiatum Rifai. Nematologica 1991, 37, 101–112. [Google Scholar]
- Phiri, A.M.; Pomerai, D.D.; Buttle, D.J.; Behnke, J.M.B. Developing a rapid throughput screen for detection of nematicidal activity of plant cysteine proteinases: The role of Caenorhabditis elegans cystatins. Parasitology 2014, 141, 164–180. [Google Scholar] [CrossRef]
- Jatala, P. Biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 1986, 24, 453–489. [Google Scholar] [CrossRef]
- Khan, B.; Yan, W.; Wei, S.; Wang, Z.Y.; Zhao, S.S.; Cao, L.L.; Rajput, N.A.; Ye, Y.H. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5. FEMS Microbiol. Lett. 2019, 366, fnz169. [Google Scholar] [CrossRef] [PubMed]
Treatments | Plant Height (cm) | Fresh Root Weight (g) | Root Galls per Plant | Egg Number per Plant |
---|---|---|---|---|
50% Fermentation Broth | 26.6 ± 0.6 a | 0.6 ± 0.3 a | 8.2 ± 1.7 c | 3488.9 ± 155.6 d |
20% Fermentation Broth | 26.5 ± 0.6 a | 0.9 ± 0.2 a | 16.8 ± 1.4 b | 6020.0 ± 214.9 c |
Czapek Medium Control | 26.9 ± 0.5 a | 0.7 ± 0.1 a | 38.4 ± 4.3 a | 11413.3 ± 338.9 b |
Tap Water Control | 26.4 ± 0.6 a | 0.8 ± 0.2 a | 40.8 ± 3.8 a | 12480.0 ± 200.4 a |
Treatment with 10% 2-WF | Incubation Time (h) | |||
---|---|---|---|---|
6 | 12 | 24 | 48 | |
Untreated | 44.9 ± 5.6 a | 91.2 ± 3.3 a | 91.9 ± 3.4 a | 99.2 ± 0.8 a |
Boiled | 40.5 ± 4.7 a | 93.6 ± 2.4 a | 96.6 ± 2.0 a | 99.0 ± 1.0 a |
Sterilized Water | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.1 ± 0.1 b |
Treatments with 10% 2-WF | Storage Time | Incubation Time (h) | |||
---|---|---|---|---|---|
6 | 12 | 24 | 48 | ||
4 °C | 1-week | 58.9 ± 5.3 a | 99.4 ± 0.6 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a |
2-week | 58.3 ± 2.2 a | 98.8 ± 0.7 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | |
3-week | 60.8 ± 2.2 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | |
25 °C | 1-week | 62.1 ± 1.8 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a |
2-week | 55.6 ± 3.3 a | 99.0 ± 0.6 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | |
3-week | 58.4 ± 4.4 a | 98.7 ± 0.8 a | 99.6 ± 0.4 a | 100.0 ± 0.0 a | |
Sterilized Water | – | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 1.4 ± 0.8 b |
Seeds | Treatments | Incubation Time (d) | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Wheat | 20% | 64.6 ± 4.5 a | 78.1 ± 1.8 ab | 78.1 ± 1.8 ab | 78.1 ± 1.8 ab | 78.1 ± 1.8 ab | – |
10% | 63.5 ± 5.5 a | 85.4 ± 3.8 a | 85.4 ± 3.8 a | 85.4 ± 3.8 a | 85.4 ± 3.8 a | – | |
Sterilized Water | 60.4 ± 4.6 a | 72.5 ± 1.3 b | 73.5 ± 0.9 b | 73.5 ± 0.9 b | 73.5 ± 0.9 b | – | |
Corn | 20% | 10.4 ± 1.0 a | 83.3 ± 1.0 a | 88.5 ± 2.8 a | 88.5 ± 2.8 a | 88.5 ± 2.8 a | – |
10% | 11.5 ± 4.5 a | 81.3 ± 6.5 a | 90.6 ± 4.8 a | 90.6 ± 4.8 a | 90.6 ± 4.8 a | – | |
Sterilized Water | 9.4 ± 4.8 a | 78.1 ± 4.8 a | 89.6 ± 2.1 a | 89.6 ± 2.1 a | 89.6 ± 2.1 a | – | |
Rice | 20% | 3.0 ± 1.8 a | 94.0 ± 1.8 a | 97.0 ± 1.8 a | 97.0 ± 1.8 a | 97.0 ± 1.8 a | – |
10% | 4.0 ± 2.7 a | 96.0 ± 4.0 a | 97.0 ± 3.0 a | 97.0 ± 3.0 a | 97.0 ± 3.0 a | – | |
Sterilized Water | 1.0 ± 1.0 a | 90.9 ± 3.0 a | 93.9 ± 1.8 a | 93.9 ± 1.7 a | 93.9 ± 1.8 a | – | |
Tomato | 20% | 0.0 | 48.1 ± 2.9 a | 73.1 ± 3.2 a | 81.8 ± 3.3 a | 87.5 ± 1.8 a | 87.5 ± 1.8 a |
10% | 0.0 | 51.6 ± 2.7 a | 69.5 ± 3.6 a | 79.5 ± 4.6 a | 89.3 ± 3.3 a | 91.3 ± 3.2 a | |
Sterilized Water | 0.0 | 46.6 ± 8.2 a | 72.8 ± 4.2 a | 85.0 ± 4.3 a | 90.0 ± 2.5 a | 91.0 ± 1.6 a | |
Soybean | 20% | 33.3 ± 2.8 ab | 90.6 ± 4.8 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | – |
10% | 26.0 ± 5.2 b | 86.5 ± 1.0 a | 96.8 ± 1.8 a | 99.0 ± 1.0 a | 99.0 ± 1.0 a | – | |
Sterilized Water | 41.8 ± 3.8 a | 90.6 ± 3.6 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | – | |
Cowpea | 20% | 56.3 ± 3.6 a | 99.0 ± 1.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | – |
10% | 64.3 ± 7.3 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 100.0 ± 0.0 a | – | |
Sterilized Water | 65.6 ± 3.6 a | 99.0 ± 1.0 a | 99.0 ± 1.0 a | 99.0 ± 1.0 a | 99.0 ± 1.0 a | – | |
Cucumber | 20% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | – |
10% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | – | |
Sterilized Water | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | – | |
Cabbage | 20% | 65.1 ± 4.6 b | 72.1 ± 6.9 b | 72.1 ± 6.9 b | 72.1 ± 6.9 b | 72.1 ± 6.9 b | – |
10% | 89.0 ± 1.2 a | 95.1 ± 1.8 a | 96.1 ± 2.5 a | 96.1 ± 2.5 a | 96.1 ± 2.5 a | – | |
Sterilized Water | 77.9 ± 4.0 a | 95.0 ± 3.7 a | 95.0 ± 3.7 a | 95.0 ± 3.7 a | 95.0 ± 3.7 a | – |
Concentrations mg/mL | Incubation Time (h) | |||
---|---|---|---|---|
6 | 12 | 24 | 48 | |
1.25 | 63.4 ± 0.9 a | 72.9 ± 0.5 a | 78.8 ± 0.6 a | 91.7 ± 0.5 a |
1.00 | 39.9 ± 0.7 b | 44.4 ± 0.6 b | 47.1 ± 0.4 b | 57.7 ± 0.5 b |
0.75 | 23.3 ± 0.8 c | 31.4 ± 0.3 c | 34.1 ± 0.7 c | 36.9 ± 0.7 c |
0.50 | 2.0 ± 0.3 d | 4.8 ± 0.1 d | 7.9 ± 0.2 d | 20.8 ± 0.7 d |
0.25 | 0.0 ± 0.0 e | 0.0 ± 0.0 e | 1.6 ± 0.1 e | 3.3 ± 0.1 e |
Sterilized Water | 0.0 ± 0.0 e | 0.0 ± 0.0 e | 0.0 ± 0.0 f | 0.0 ± 0.0 f |
Exposure Time (h) | Slope (±SE) | Correlation Coefficient | LC50 (95%CI) | LC90 (95%CI) |
---|---|---|---|---|
6 | 4.8790(±0.2118) | 0.9881 | 1.0373 (0.9112–1.1808) | 1.5283 (1.2756–1.8312) |
12 | 5.1225(±0.2843) | 0.9800 | 0.9646 (0.8229–1.1308) | 1.4059 (1.1282–1.7520) |
24 | 5.1099(±0.1618) | 0.9760 | 0.9397 (0.7922–1.1145) | 1.9421 (1.4234–2.6498) |
48 | 5.4928(±0.2180) | 0.9596 | 0.7614 (0.6261–0.9260) | 1.5469 (1.0971–2.1811) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Wang, D.; Li, B.; Maqsood, A.; Wu, H. Nematicidal Evaluation and Active Compounds Isolation of Aspergillus japonicus ZW1 against Root-Knot Nematodes Meloidogyne incognita. Agronomy 2020, 10, 1222. https://doi.org/10.3390/agronomy10091222
He Q, Wang D, Li B, Maqsood A, Wu H. Nematicidal Evaluation and Active Compounds Isolation of Aspergillus japonicus ZW1 against Root-Knot Nematodes Meloidogyne incognita. Agronomy. 2020; 10(9):1222. https://doi.org/10.3390/agronomy10091222
Chicago/Turabian StyleHe, Qiong, Dongya Wang, Bingxue Li, Ambreen Maqsood, and Haiyan Wu. 2020. "Nematicidal Evaluation and Active Compounds Isolation of Aspergillus japonicus ZW1 against Root-Knot Nematodes Meloidogyne incognita" Agronomy 10, no. 9: 1222. https://doi.org/10.3390/agronomy10091222
APA StyleHe, Q., Wang, D., Li, B., Maqsood, A., & Wu, H. (2020). Nematicidal Evaluation and Active Compounds Isolation of Aspergillus japonicus ZW1 against Root-Knot Nematodes Meloidogyne incognita. Agronomy, 10(9), 1222. https://doi.org/10.3390/agronomy10091222