Effect of Organic Amendments on the Productivity of Rainfed Lowland Rice in the Kilombero Floodplain of Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Edaphic and Climatic Conditions of the Experimental Sites
2.2. Experimental Design and Treatment Application
2.3. Data Collection and Analyses of Plant Material and Soil
2.4. Statistical Analysis
3. Results
3.1. Nitrogen Accumulation and N2 Fixation by Legumes
3.2. Effect of Organic Amendments on Rice Grain Yield
3.3. Partial N Balances, Soil Attribute Changes and Residual Yield Effects
4. Discussion
4.1. Niches for Organic Amendments
4.2. Direct Benefits of Organic Amendments
4.3. Residual Benefits of Organic Amendments in Kilombero
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations, Statistics Division. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 16 June 2020).
- Diagne, A.; Amovin-Assagba, E.; Futakuchi, K.; Wopereis, M.C.S. Estimation of cultivated area, number of farming households and yield for major rice-growing environments in Africa. In Realizing Africa’s Rice Promise; CAB International: Wallingford, UK, 2013; ISBN 9781845938123. [Google Scholar]
- Seck, P.A.; Tollens, E.; Wopereis, M.C.S.; Diagne, A.; Bamba, I. Rising trends and variability of rice prices: Threats and opportunities for sub-Saharan Africa. Food Policy 2010, 35, 403–411. [Google Scholar] [CrossRef]
- Wenban-Smith, H.; Faße, A.; Grote, U. Food security in Tanzania: The challenge of rapid urbanisation. Food Sec. 2016, 8, 973–984. [Google Scholar] [CrossRef]
- Tanaka, A.; Johnson, J.M.; Senthilkumar, K.; Akakpo, C.; Segda, Z.; Yameogo, L.P.; Bassoro, I.; Lamare, D.M.; Allarangaye, M.D.; Gbakatchetche, H.; et al. On-farm rice yield and its association with biophysical factors in sub-Saharan Africa. Eur. J. Agron 2017, 85, 1–11. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Rodenburg, J.; Dieng, I.; Vandamme, E.; Sillo, F.S.; Johnson, J.M.; Rajaona, A.; Ramarolahy, J.A.; Gasore, R.; Abera, B.B.; et al. Quantifying rice yield gaps and their causes in Eastern and Southern Africa. J. Agron. Crop Sci. 2020, 206, 478–490. [Google Scholar] [CrossRef]
- Kwesiga, J.; Grotelüschen, K.; Neuhoff, D.; Senthilkumar, K.; Döring, T.F.; Becker, M. Site and management effects on grain yield and yield variability of rainfed lowland rice in the Kilombero Floodplain of Tanzania. Agronomy 2019, 9, 632. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, K.; Tesha, B.J.; Mghase, J.; Rodenburg, J. Increasing paddy yields and improving farm management: Results from participatory experiments with good agricultural practices (GAP) in Tanzania. Paddy Water Environ. 2018, 16, 749–766. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.B.; Bevis, L.E.M. The self-reinforcing feedback between low soil fertility and chronic poverty. Nat. Geosci. 2015, 8, 907–912. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Rakotoson, T.; Tanaka, A.; Saito, K. Challenges and opportunities for improving N use efficiency for rice production in sub-Saharan Africa. Plant Prod. Sci. 2019, 22, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Paull, J. The making of an agricultural classic: Farmers of forty centuries or permanent agriculture in China, Korea and Japan, 1911–2011. Agric. Sci. 2011, 2, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Ladha, J.K.; Ali, M. Green manure technology: Potential, usage, and limitations. A case study for lowland rice. Plant Soil 1995, 174, 181–194. [Google Scholar] [CrossRef]
- Xie, Z.; Tu, S.; Shah, F.; Xu, C.; Chen, J.; Han, D.; Liu, G.; Li, H.; Muhammad, I.; Cao, W. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crop. Res. 2016, 188, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Siddique, K.H.M.; Johansen, C.; Turner, N.C.; Jeuffroy, M.H.; Hashem, A.; Sakar, D.; Gan, Y.; Alghamdi, S.S. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 2012, 32, 45–64. [Google Scholar] [CrossRef] [Green Version]
- Das, K.; Biswakarma, N.; Zhiipao, R.; Kumar, A.; Ghasal, P.C.; Pooniya, V. Significance and Management of Green Manures. In Soil Health; Springer Nature: Cham, Switzerland, 2020; ISBN 978-3-030-44363-4. [Google Scholar]
- Ding, W.; Xu, X.; He, P.; Ullah, S.; Zhang, J.; Cui, Z.; Zhou, W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: A meta-analysis. Field Crop. Res. 2018, 227, 11–18. [Google Scholar] [CrossRef]
- Becker, M.; Johnson, D. The role of legume fallows in intensified upland rice-based systems of West Africa. In Resource Management in Rice Systems: Nutrients; Springer: Dordrecht, The Netherlands, 1999; pp. 105–120. ISBN 978-94-010-6133-9. [Google Scholar]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Place, F.; Barrett, C.B.; Freeman, H.A.; Ramisch, J.J.; Vanlauwe, B. Prospects for integrated soil fertility management using organic and inorganic inputs: Evidence from smallholder African agricultural systems. Food Policy 2003, 28, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Asch, F.; Maskey, S.L.; Pande, K.R.; Shah, S.C.; Shrestha, S. Effects of transition season management on soil N dynamics and system N balances in rice–wheat rotations of Nepal. Field Crop. Res. 2007, 103, 98–108. [Google Scholar] [CrossRef]
- Asante, M.; Becker, M.; Angulo, C.; Fosu, M.; Dogbe, W. Seasonal nitrogen dynamics in lowland rice cropping systems in inland valleys of northern Ghana. J. Plant Nutr. Soil Sci. 2017, 180, 87–95. [Google Scholar] [CrossRef]
- Gao, S.J.; Cao, W.D.; Gao, J.S.; Huang, J.; Bai, J.S.; Zeng, N.H.; Chang, D.N.; Shimizu, K. Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China. J. Integr. Agr. 2017, 16, 959–966. [Google Scholar] [CrossRef]
- Patra, A.K.; Abbadie, L.; Clays-Josserand, A.; Degrange, V.; Grayston, S.J.; Guillaumaud, N.; Loiseau, P.; Louault, F.; Mahmood, S.; Nazaret, S.; et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ. Microbiol. 2006, 8, 1005–1016. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Zhang, S.; Xing, Y.; Liang, W. Organic amendment effects on nematode distribution within aggregate fractions in agricultural soils. Soil Ecol. Lett. 2019, 1, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Adamtey, N.; Musyoka, M.W.; Zundel, C.; Cobo, J.G.; Karanja, E.; Fiaboe, K.K.M.; Muriuki, A.; Mucheru-Muna, M.; Vanlauwe, B.; Berset, E. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 2016, 235, 61–79. [Google Scholar] [CrossRef]
- Mafongoya, P.L.; Bationo, A.; Kihara, J.; Waswa, B.S. Appropriate technologies to replenish soil fertility in Southern Africa. Nutr. Cycl. Agroecosyst. 2007, 76, 137–151. [Google Scholar] [CrossRef]
- Ali, M. Evaluation of green manure technology in tropical lowland rice systems. Field Crop. Res. 1999, 61, 61–78. [Google Scholar] [CrossRef]
- Daniel, S.; Gabiri, G.; Kirimi, F.; Glasner, B.; Näschen, K.; Leemhuis, C.; Steinbach, S.; Mtei, K. Spatial distribution of soil hydrological properties in the Kilombero Floodplain, Tanzania. Hydrology 2017, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Chianu, J.N.; Chianu, J.N.; Mairura, F. Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agron. Sustain. Dev. 2012, 32, 545–566. [Google Scholar] [CrossRef]
- Nhamo, N.; Rodenburg, J.; Zenna, N.; Makombe, G.; Luzi-Kihupi, A. Narrowing the rice yield gap in East and Southern Africa: Using and adapting existing technologies. Agric. Syst. 2014, 131, 45–55. [Google Scholar] [CrossRef]
- Gabiri, G.; Burghof, S.; Diekkrüger, B.; Leemhuis, C.; Steinbach, S.; Näschen, K. Modeling spatial soil water dynamics in a tropical floodplain, East Africa. Water 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Näschen, K.; Diekkrüger, B.; Leemhuis, C.; Seregina, L.; van der Linden, R. Impact of climate change on water resources in the Kilombero Catchment in Tanzania. Water 2019, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Burghof, S.; Gabiri, G.; Stumpp, C.; Chesnaux, R.; Reichert, B. Development of a hydrogeological conceptual wetland model in the data-scarce Northeastern region of Kilombero Valley, Tanzania. Hydrogeol. J. 2018, 26, 267–284. [Google Scholar] [CrossRef]
- Ojiem, J.O.; Vanlauwe, B.; Ridder, N.d.; Giller, K.E. Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms. Plant Soil 2007, 292, 119–135. [Google Scholar] [CrossRef]
- Nguluu, S.N.; Probert, M.E.; McCown, R.L.; Myers, R.J.K.; Waring, S.A. Isotopic discrimination associated with symbiotic nitrogen fixation in stylo (Stylosanthes hamata L.) and cowpea (Vigna unguiculata L.). Nutr. Cycl. Agroecosyst. 2002, 62, 11–14. [Google Scholar] [CrossRef]
- Nyemba, R.C.; Dakora, F.D. Evaluating N2 fixation by food grain legumes in farmers’ fields in three agro-ecological zones of Zambia, using 15N natural abundance. Biol. Fert. Soils 2010, 46, 461–470. [Google Scholar] [CrossRef]
- Reddy, K.S.; Kumar, N.; Sharma, A.K.; Acharya, C.L.; Dalal, R.C. Biophysical and sociological impacts of farmyard manure and its potential role in meeting crop nutrient needs: A farmers. Aust. J. Exp. Agric. 2005, 45, 357. [Google Scholar] [CrossRef]
- Dakora, F.D.; Keya, S.O. Contribution of legume nitrogen fixation to sustainable agriculture in sub-Saharan Africa. Soil Biol. Biochem. 1997, 29, 809–817. [Google Scholar] [CrossRef]
- Becker, M. Potential and limitations of green manure technology in lowland rice. J. Agric. Trop. Subtrop. 2001, 102, 91–108. [Google Scholar]
- Mtei, K.M.; Ngome, A.F.; Wambua, S.; Becker, M. Assessment of technology options addressing agricultural production constraints in Western Kenya. Greener J. Agric. Sci. 2013, 3, 222–234. [Google Scholar] [CrossRef]
- Becker, M.; Ladha, J.K. Adaptation of green manure legumes to adverse conditions in rice lowlands. Biol. Fert. Soils 1996, 23, 243–248. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci. Rep. 2019, 9, 11376. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Ali, M.; Ladha, J.K.; Ottow, J.C.G. Agronomic and economic evaluation of Sesbania rostrata L. green manure establishment in irrigated rice. Field Crop. Res. 1995, 40, 135–141. [Google Scholar] [CrossRef]
- Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E. Woody legume fallow productivity, biological N2 -fixation and residual benefits to two successive maize crops in Zimbabwe. Plant Soil 2004, 262, 303–315. [Google Scholar] [CrossRef]
- Ladha, J.K.; Khind, C.S.; Gupta, R.K.; Meelu, O.P.; Pasuquin, E. Long-term effects of organic inputs on yield and soil fertility in the rice–wheat rotation. Soil Sci. Soc. Am. J. 2004, 68, 845–853. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Y.; Cao, J.; Christie, P.; Zhang, F.; Fan, M. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agric. Ecosyst. Environ. 2016, 225, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Bado, B.V.; Lompo, F.; Bationo, A.; Segda, Z.; Sédogo, P.M.; Cescas, M.P. Contributions of cowpea and fallow to soil fertility improvement in the Guinea Savannah of West Africa. In Innovations as Key to the Green Revolution in Africa: Exploring the Scientific Facts; Springer: Dordrecht, The Netherlands, 2011; pp. 859–866. ISBN 978-90-481-2541-8. [Google Scholar]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Ro, S.; Becker, M.; Manske, G. Effect of phosphorus management in rice-mungbean rotations on sandy soils of Cambodia. J. Plant Nutr. Soil Sci. 2016, 179, 481–487. [Google Scholar] [CrossRef]
- Haefele, S.M.; Naklang, K.; Harnpichitvitaya, D.; Jearakongman, S.; Skulkhu, E.; Romyen, P.; Phasopa, S.; Tabtim, S.; Suriya-arunroj, D.; Khunthasuvon, S.; et al. Factors affecting rice yield and fertilizer response in rainfed lowlands of Northeast Thailand. Field Crop. Res. 2006, 98, 39–51. [Google Scholar] [CrossRef]
- Naab, J.B.; Chimphango, S.M.B.; Dakora, F.D. N2 fixation in cowpea plants grown in farmers’ fields in the upper West region of Ghana, measured using 15N natural abundance. Symbiosis 2009, 48, 37–46. [Google Scholar] [CrossRef]
- Sanginga, N. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant Soil 2003, 252, 25–39. [Google Scholar] [CrossRef]
- Zemek, O.; Frossard, E.; Scopel, E.; Oberson, A. The contribution of Stylosanthes guianensis L. to the nitrogen cycle in a low input legume-rice rotation under conservation agriculture. Plant Soil 2018, 425, 553–576. [Google Scholar] [CrossRef]
- Madanzi, T.; Chiduza, C.; Richardson-Kageler, S.J. Effects of planting method and seed size on stand establishment of soybean [Glycine max L. Merrill cv. Solitaire]. Soil Tillage Res. 2010, 106, 171–176. [Google Scholar] [CrossRef]
- Pathak, H.; Li, C.; Wassmann, R.; Ladha, J.K. Simulation of nitrogen balance in rice-wheat systems of the Indo-Gangetic Plains. Soil Sci. Soc. Am. J. 2006, 70, 1612–1622. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, Y.; Tian, Y.; Ceng, K.; Zhao, M.; Zhao, M.; Yin, B. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crop. Res. 2018, 227, 102–109. [Google Scholar] [CrossRef]
- Hong, X.; Ma, C.; Gao, J.; Su, S.; Li, T.; Luo, Z.; Duan, R.; Wang, Y.; Bai, L.; Zeng, X. Effects of different green manure treatments on soil apparent N and P balance under a 34-year double-rice cropping system. J. Soils Sediments 2019, 19, 73–80. [Google Scholar] [CrossRef]
- Becker, M.; Ladha, J.K.; Ottow, J.C.G. Nitrogen losses and lowland rice yield as affected by residue nitrogen release. Soil Sci. Soc. Am. J. 1994, 58, 1660. [Google Scholar] [CrossRef]
- Naher, U.A.; Ahmed, M.N.; Sarkar, M.I.U.; Biswas, J.C.; Panhwar, Q.A. Fertilizer management strategies for sustainable rice production. In Organic Farming: Global Perspectives and Methods; Woodhead Publishing: Oxford, UK, 2019; pp. 251–267. ISBN 9780128132722. [Google Scholar]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Samal, S.K.; Rao, K.K.; Poonia, S.P.; Kumar, R.; Mishra, J.S.; Prakash, V.; Mondal, S.; Dwivedi, S.K.; Bhatt, B.P.; Naik, S.K.; et al. Evaluation of long-term conservation agriculture and crop intensification in rice-wheat rotation of Indo-Gangetic Plains of South Asia: Carbon dynamics and productivity. Eur. J. Agron. 2017, 90, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Ladha, J.K.; Reddy, C.K.; Padre, A.T.; van Kessel, C. Role of nitrogen fertilization in sustaining organic matter in cultivated soils. J. Environ. Qual. 2011, 40, 1756–1766. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bueno, C.S. Effects of residue decomposition on productivity and soil fertility in rice–wheat rotation. Soil Sci. Soc. Am. J. 2004, 68, 854–864. [Google Scholar] [CrossRef]
Soil Characteristics | Fringe | Middle |
---|---|---|
Classification (WRB) | Fluvisol | Fluvisol |
Soil texture | Silt Loam | Silt Loam |
Clay (%) | 14.3 | 26.6 |
Sand (%) | 33.7 | 14.1 |
Silt (%) | 52.0 | 59.3 |
Bulk density (g cm−3) | 1.4 | 1.3 |
pH (H2O) | 6.0 | 5.8 |
Total C (g kg−1) | 16.5 | 14.5 |
Total N (g kg−1) | 0.9 | 0.9 |
Available P (mg kg−1) * | 47.5 | 16.0 |
Available K (mg kg−1) * | 71.4 | 79.2 |
Organic Amendment | 2015 | 2016 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass (Mg dm ha−1) | N Content (%) | N Accum. (kg ha−1) | δ15N (‰) | Nfda (%) | N Fixed (kg ha−1) | Biomass (Mg dm ha−1) | N Content (%) | N Accum. (kg ha−1) | δ15N (‰) | Nfda (%) | N Fixed (kg ha−1) | |||
Fringe | ||||||||||||||
Farmyard manure | 5.0 a | 1.2 | 60 a | ‒ | ‒ | ‒ | 6.7 a | 0.9 | 60 a | ‒ | ‒ | ‒ | ||
Lablab | 1.3 c | 1.6 | 18 b | 4.6 | 23 | 4 c | 1.0 c | 1.3 | 13 b | 4.5 | 51 | 7 c | ||
Stylosanthes | 1.9 bc | 1.9 | 36 b | 4.4 | 25 | 9 b | 5.2 b | 1.4 | 73 a | 5.9 | 39 | 28 b | ||
Cowpea | 2.1 b | 3.6 | 76 a | 3.0 | 39 | 30 a | 2.5 c | 3.1 | 78 a | 3.1 | 59 | 46 a | ||
Middle | ||||||||||||||
Farmyard manure | 5.0 a | 1.2 | 60 b | ‒ | ‒ | ‒ | 6.7 a | 0.9 | 60 b | ‒ | ‒ | ‒ | ||
Lablab | 1.8 c | 1.8 | 18 c | 4.6 | 27 | 5 c | 1.1 c | 1.9 | 21 c | 4.4 | 29 | 6 c | ||
Stylosanthes | 2.5 bc | 2.5 | 63 bc | 4.3 | 29 | 18 b | 3.1 b | 2.0 | 62 b | 4.4 | 28 | 17 b | ||
Cowpea | 3.8 b | 3.4 | 122 a | 4.2 | 29 | 35 a | 3.8 b | 3.2 | 122 | 2.3 | 50 | 61 a |
Treatment | Rice Grain Yield (Mg ha−1) | Panicle Number (m−2) | Filled Grains (%) | 1000 Grain Weight (g) | Grain N Removal (kg ha−1) |
---|---|---|---|---|---|
2016 | |||||
Control | 3.6 c | 103 c | 92.3 d | 30.0 b | 35.7 c |
Farmyard manure | 4.4 b | 146 b | 93.4 bc | 30.6 a | 39.0 b |
Pre-rice GM * | 4.3 b | 167 b | 93.9 b | 30.1 b | 39.6 b |
Post-rice GM * | 4.3 b | 186 a | 92.7 cd | 29.4 b | 35.1 c |
Post-rice GM + FYM # | 6.7 a | 181 a | 94.5 a | 30.8 a | 70.4 a |
Mean | 4.8 | 156 | 93.5 | 30.3 | 44.0 |
2017 | |||||
Control | 4.9 d | 131 b | 82.3 a | 31.2 a | 52.9 d |
Farmyard manure | 6.2 bc | 162 a | 79.8 a | 31 a | 68.4 b |
Pre-rice GM | 6.4 b | 173 a | 76.6 a | 31.1 a | 64.5 b |
Post-rice GM * | 5.7 c | 167 a | 79.4 a | 30.7 a | 59.2 c |
Post-rice GM + FYM | 7.1 a | 174 a | 81.1 a | 30.7 a | 80.0 a |
Mean | 6.1 | 163 | 79.7 | 30.9 | 65.5 |
Source of Variation | Rice Grain Yield (Mg ha−1) | Panicle Number (m−2) | Filled Grains (%) | 1000 Grain Weight (g) | Grain N Removal (kg ha−1) | Total Crop N Uptake (kg ha−1) |
---|---|---|---|---|---|---|
Treatment | *** | ** | ns | ** | ** | ** |
Position | ns | ns | *** | ** | ns | * |
Year | *** | ns | ** | ** | ** | ** |
Year x Treatment | ** | * | *** | ns | ** | ** |
Position x Treatment | ns | ns | ns | *** | ns | ns |
Year x Position | ns | ns | ns | ** | ns | ns |
Treatment x Position x Year | ns | ns | ns | ns | ns | ns |
Treatment | 2016 | 2017 | ||||
---|---|---|---|---|---|---|
N Input (kg ha−1) | N Removal (kg ha−1) | N Balance (kg ha−1) | N Input (kg ha−1) | N Removal (kg ha−1) | N Balance (kg ha−1) | |
Fringe | ||||||
Control | 0.0 | 35.8 b | −35.8 c | 0.0 | 54.8 c | −54.8 d |
Farmyard manure (FYM) | 60.0 | 35.6 b | 24.4 a | 60.0 | 65.7 b | −5.7 b |
Pre-rice green manure (GM) | 4.1 | 38.4 b | −34.3 c | 6.7 | 60.7 b | −54.0 d |
Post-rice GM | 8.9 | 37.0 b | −59.1 b | 28.1 | 54.5 c | −26.4 c |
Post-rice GM + FYM | 89.6 | 68.0 a | 21.6 a | 106.0 | 76.2 a | 29.8 a |
Control | 0.0 | 35.6 c | −35.6 d | 0.0 | 56.0 d | −56.0 d |
Middle | ||||||
Farmyard manure (FYM) | 60.0 | 42.4 b | 17.6 b | 60.0 | 71.1 b | −11.1 b |
Pre-rice green manure (GM) | 4.8 | 40.7 b | −35.9 d | 6.0 | 68.3 bc | −62.3 d |
Post-rice GM | 18.1 | 33.2 c | −15.1 c | 17.0 | 63.8 c | −46.8 c |
Post-rice GM + FYM | 95.4 | 72.8 a | 22.6 a | 121.9 | 83.9 a | 38.0 a |
Position/Treatment | Total Soil Carbon (g kg−1) | Total Soil Nitrogen (g kg−1) | Rice Yield (Mg ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | Final | %Δ | Initial | Final | %Δ | |||||||
Fringe | ||||||||||||
Control | 17.0 | ±1.07 a | 16.6 | ±0.52 b | −2.4 | 0.92 | ±0.07 a | 0.91 | ±0.00 c | −1.1 | 4.4 | ±0.57 c |
Farmyard manure (FYM) | 17.0 | ±1.48 a | 17.6 | ±1.63 b | 3.5 | 0.85 | ±0.07 a | 0.98 | ±0.04 b | 15.3 | 5.2 | ±0.56 bc |
Pre-rice green manure (GM) | 16.0 | ±1.07 a | 18.1 | ±1.18 ab | 13.1 | 0.87 | ±0.05 a | 0.98 | ±0.05 ab | 12.6 | 4.3 | ±0.41 c |
Post-rice green manure | 17.5 | ±2.27 a | 18.7 | ±0.69 a | 6.9 | 0.92 | ±0.09 a | 0.99 | ±0.00 a | 7.6 | 6.3 | ±0.45 a |
Post-rice GM + FYM | 15.1 | ±1.42 a | 19.4 | ±0.94 a | 28.5 | 0.81 | ±0.07 a | 1.12 | ±0.08 a | 38.3 | 6.0 | ±0.61 ab |
Middle | ||||||||||||
Control | 13.7 | ±1.59 a | 13.5 | ±1.09 c | −1.5 | 0.90 | ±0.12 a | 0.86 | ±0.08 c | −4.4 | 3.2 | ±0.26 c |
Farmyard manure (FYM) | 14.8 | ±2.13 a | 15.3 | ±2.56 b | 3.4 | 0.92 | ±0.14 a | 1.01 | ±0.18 b | 9.8 | 4.7 | ±0.74 b |
Pre-rice green manure (GM) | 13.7 | ±3.42 a | 15.5 | ±2.09 ab | 13.1 | 0.89 | ±0.21 a | 1.03 | ±0.13 ab | 15.7 | 4.3 | ±0.23 b |
Post-rice green manure | 16.0 | ±1.00 a | 21.3 | ±3.00 a | 33.1 | 0.97 | ±0.00 a | 1.40 | ±0.20 a | 44.3 | 6.8 | ±0.22 a |
Post-rice GM + FYM | 14.3 | ±1.93 a | 20.8 | ±1.69 a | 45.5 | 0.97 | ±0.15 a | 1.44 | ±0.09 a | 48.5 | 7.2 | ±0.49 a |
Source of variation | ||||||||||||
Treatment | ns | * | ns | * | * | |||||||
Location | ns | ns | ns | ns | ns | |||||||
Location x Treatment | ns | ns | ns | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwesiga, J.; Grotelüschen, K.; Senthilkumar, K.; Neuhoff, D.; Döring, T.F.; Becker, M. Effect of Organic Amendments on the Productivity of Rainfed Lowland Rice in the Kilombero Floodplain of Tanzania. Agronomy 2020, 10, 1280. https://doi.org/10.3390/agronomy10091280
Kwesiga J, Grotelüschen K, Senthilkumar K, Neuhoff D, Döring TF, Becker M. Effect of Organic Amendments on the Productivity of Rainfed Lowland Rice in the Kilombero Floodplain of Tanzania. Agronomy. 2020; 10(9):1280. https://doi.org/10.3390/agronomy10091280
Chicago/Turabian StyleKwesiga, Julius, Kristina Grotelüschen, Kalimuthu Senthilkumar, Daniel Neuhoff, Thomas F. Döring, and Mathias Becker. 2020. "Effect of Organic Amendments on the Productivity of Rainfed Lowland Rice in the Kilombero Floodplain of Tanzania" Agronomy 10, no. 9: 1280. https://doi.org/10.3390/agronomy10091280
APA StyleKwesiga, J., Grotelüschen, K., Senthilkumar, K., Neuhoff, D., Döring, T. F., & Becker, M. (2020). Effect of Organic Amendments on the Productivity of Rainfed Lowland Rice in the Kilombero Floodplain of Tanzania. Agronomy, 10(9), 1280. https://doi.org/10.3390/agronomy10091280