Cover Crop for a Sustainable Viticulture: Effects on Soil Properties and Table Grape Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Soil Sampling and Characterization
2.3. Yield and Grape Qualitative Parameters
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Chemical and Microbiological Properties
3.2. Yield and Grape Qualitative Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Organisation of Vine and Wine (OIV). 2019 Statistical Report on World Vitiviniculture. 2019, p. 23. Available online: http://oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 21 August 2020).
- United States Department of Agriculture, Foreign Agricultural Service (USDA). Fresh Apples, Grapes, and Pears: World Markets and Trade. Available online: https://apps.fas.usda.gov/psdonline/circulars/fruit.pdf (accessed on 24 July 2020).
- Wiesmeier, M.; Urbanski, L.; Hobley, E.U.; Lang, B.; Von Lützow, M.; Marín-Spiotta, E.; Van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Doetterl, S.; Berhe, A.A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Science Rev. 2016, 154, 102–122. [Google Scholar] [CrossRef]
- Guzmán, G.; Cabezas, J.M.; Sánchez-Cuesta, R.; Lora, Á.; Bauer, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Gómez, J. A field evaluation of the impact of temporary cover crops on soil properties and vegetation communities in southern Spain vineyards. Agric. Ecosyst. Environ. 2019, 272, 135–145. [Google Scholar] [CrossRef]
- Brunori, E.; Farina, R.; Biasi, R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agric. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Eldridge, D.; Marques, M. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Guerra, B.; Steenwerth, K.L. Influence of Floor Management Technique on Grapevine Growth, Disease Pressure, and Juice and Wine Composition: A Review. Am. J. Enol. Vitic. 2011, 63, 149–164. [Google Scholar] [CrossRef]
- Roldan, A.; Salinas-García, J.; Alguacil, M.; Diaz, E.; Caravaca, F. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma 2005, 129, 178–185. [Google Scholar] [CrossRef]
- Mijangos, I.; Perez, R.; Albizu, I.; Garbisu, C. Effects of fertilization and tillage on soil biological parameters. Enzym. Microb. Technol. 2006, 40, 100–106. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, S.B.; Bohra, J.S. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation. Soil Tillage Res. 2014, 136, 51–60. [Google Scholar] [CrossRef]
- de Andrade Barbosa, M.; de Sousa Ferraz, R.L.; Coutinho, E.L.M.; Coutinho Neto, A.M.; da Silva, M.S.; Fernandes, C.; Rigobelo, E.C. Multivariate analysis and modeling of soil quality indicators in long-term management systems. Sci. Total. Environ. 2019, 657, 457–465. [Google Scholar] [CrossRef]
- Virto, I.; Imaz, M.J.; Fernandez-Ugalde, O.; Urrutia, I.; Enrique, A.; Bescansa, P. Soil quality evaluation following the implementation of permanent cover crops in semi-arid vineyards. Organic matter, physical and biological soil properties. Span. J. Agric. Res. 2012, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- Peregrina, F.; Pérez-Álvarez, E.; García-Escudero, E. Soil microbiological properties and its stratification ratios for soil quality assessment under different cover crop management systems in a semiarid vineyard. J. Plant Nutr. Soil Sci. 2014, 177, 548–559. [Google Scholar] [CrossRef]
- Okur, N.; Kayikcioglu, H.; Ates, F.; Yagmur, B. A comparison of soil quality and yield parameters under organic and conventional vineyard systems in Mediterranean conditions (West Turkey). Boil. Agric. Hortic. 2015, 32, 73–84. [Google Scholar] [CrossRef]
- Indorante, S.J.; Hammer, R.D.; Koenig, P.G.; Follmer, L.R. Particle-Size Analysis by a Modified Pipette Procedure. Soil Sci. Soc. Am. J. 1990, 54, 560–563. [Google Scholar] [CrossRef]
- ISO 10693. Soil Quality—Determination of Carbonate Content—Volumetric Method; International Organization for Standardization: Genève, Switzerland, 1995. [Google Scholar]
- Sparks, D.L. Methods of soil analysis: Chemical methods, Part 3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Vance, E.; Brookes, P.; Jenkinson, D. An extraction method for measuring soil microbial biomass C. Soil Boil. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M. Factors affecting glucosidase and galactosidase activities in soils. Soil Boil. Biochem. 1990, 22, 891–897. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M. Phosphatases in soils. Soil Boil. Biochem. 1977, 9, 167–172. [Google Scholar] [CrossRef]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; Jason, R., Ed.; SAS Institute Inc.: Cary, NC, USA, 2006. [Google Scholar]
- Tarricone, L.; DeBiase, G.; Masi, G.; Gentilesco, G.; Montemurro, F. Cover Crops Affect Performance of Organic Scarlotta Seedless Table Grapes Under Plastic Film Covering in Southern Italy. Agronomy 2020, 10, 550. [Google Scholar] [CrossRef] [Green Version]
- Fourie, J. Soil Management in the Breede River Valley Wine Grape Region, South Africa. 4. Organic Matter and Macro-nutrient Content of a Medium-textured Soil. South Afr. J. Enol. Vitic. 2016, 33, 105–114. [Google Scholar] [CrossRef]
- Fourie, J.; Agenbag, G.; Louw, P. Cover Crop Management in a Sauvignon Blanc/Ramsey Vineyard in the Semi-Arid Olifants River Valley, South Africa. 3. Effect of Different Cover Crops and Cover Crop Management Practices on the Organic Matter and Macro-Nutrient Contents of a Sandy Soil. South Afr. J. Enol. Vitic. 2016, 28, 92–100. [Google Scholar] [CrossRef]
- Dalal, R.C. Soil microbial biomass—what do the numbers really mean? Aust. J. Exp. Agric. 1998, 38, 649–665. [Google Scholar] [CrossRef]
- Riches, D.; Porter, I.; Oliver, D.; Bramley, R.; Rawnsley, B.; Edwards, J.; White, R. Review: Soil biological properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 2013, 19, 311–323. [Google Scholar] [CrossRef]
- Gunapala, N.; Scow, K.M. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Boil. Biochem. 1998, 30, 805–816. [Google Scholar] [CrossRef]
- Torres, R.L.; Lloreda, M.D.L.F.; Gonzalez, P.J.; Garcia-Gutierrez, J.R.L.; Trujillo, P.B. Effect of soil management strategies on the characteristics of the grapevine root system in irrigated vineyards under semi-arid conditions. Aust. J. Grape Wine Res. 2018, 24, 439–449. [Google Scholar] [CrossRef]
- Torres-Sánchez, R.; Ferrara, G.; Soto, F.; López, J.A.; Sanchez, F.; Mazzeo, A.; Pérez-Pastor, A.; Domingo, R. Effects of soil and climate in a table grape vineyard with cover crops. Irrigation management using sensors networks. Ciência e Técnica Vitivinícola 2017, 32, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Giacometti, C.; Demyan, M.S.; Cavani, L.; Marzadori, C.; Ciavatta, C.; Kandeler, E. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Appl. Soil Ecol. 2013, 64, 32–48. [Google Scholar] [CrossRef]
- Jian, S.; Li, J.; Chen, J.; Wang, G.; Mayes, M.A.; Dzantor, K.E.; Hui, D.; Luo, Y. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Boil. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Burns, R. Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Boil. Biochem. 1982, 14, 423–427. [Google Scholar] [CrossRef]
- Tarantino, A.; Mazzeo, A.; Lopriore, G.; Disciglio, G.; Gagliardi, A.; Nuzzo, V.; Ferrara, G. Nutrients in clusters and leaves of Italian table grapes are affected by the use of cover crops in the vineyard. J. Berry Res. 2020, 10, 157–173. [Google Scholar] [CrossRef]
- Carsoulle, J. L’enherbement permanent du vignoble. Influence sur la production viticole et son environment. Phytoma 1995, 478, 38–41. [Google Scholar]
- Morlat, R.; Jacquet, A. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Vitic. 2003, 54, 1–17. [Google Scholar]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Baumgartner, K.; Steenwerth, K.L.; Veilleux, L. Cover-Crop Systems Affect Weed Communities in a California Vineyard. Weed Sci. 2008, 56, 596–605. [Google Scholar] [CrossRef]
- Giese, G.; Velasco-Cruz, C.; Roberts, L.; Heitman, J.; Wolf, T.K. Complete vineyard floor cover crops favorably limit grapevine vegetative growth. Sci. Hortic. 2014, 170, 256–266. [Google Scholar] [CrossRef]
- Sweet, R.M.; Schreiner, R.P. Alleyway cover crops have little influence on Pinot noir grapevines (Vitis vinifera L.) in two western Oregon vineyards. Am. J. Enol. Vitic. 2010, 61, 240–252. [Google Scholar]
- Xi, Z.-M.; Tao, Y.-S.; Zhang, L.; Li, H. Impact of cover crops in vineyard on the aroma compounds of Vitis vinifera L. cv Cabernet Sauvignon wine. Food Chem. 2011, 127, 516–522. [Google Scholar] [CrossRef]
- Ferrara, G.; Malerba, A.D.; Matarrese, A.M.S.; Mondelli, D.; Mazzeo, A. Nitrogen Distribution in Annual Growth of ‘Italia’ Table Grape Vines. Front. Plant Sci. 2018, 9, 871. [Google Scholar] [CrossRef] [Green Version]
Treatment | Texture | Sand | Silt | Clay | pH (H2O) | pH (CaCl2) 1 | EC 2 | Total CaCO3 | Active CaCO3 | Olsen Phosphorus |
---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (dS m−1) | (g kg−1) | (mg kg−1) | |||||||
Conventional tillage | Silt loam | 343 ± 77 | 573 ± 76 | 84 ± 1 | 8.2 ± 0.3 | 7.7 ± 0.2 | 0.18 ± 0.01 | 498 ± 127 | 104 ± 8 | 12 ± 2 |
Cover crop | Silt loam | 292 ± 91 | 630 ± 29 | 78 ± 4 | 8.3 ± 0.1 | 7.7 ± 0.02 | 0.18 ± 0.02 | 602 ± 16 | 91 ± 4 | 15 ± 4 |
Organic Carbon | Total Nitrogen | |
---|---|---|
(g kg−1) | (g kg−1) | |
Treatment | ||
Conventional tillage | 2.86 b | 0.41 b |
Cover crop | 6.76 a | 0.79 a |
Year | ||
2012 | 4.15 b | 0.58 |
2013 | 5.82 a | 0.61 |
2014 | 4.47 b | 0.61 |
Significance 1 | ||
Treatment (T) | 0.0145 * | 0.0010 ** |
Year (Y) | 0.0016 ** | 0.2511 ns |
T × Y | 0.0338 * | 0.1674 ns |
Microbial Biomass C | BGLU Activity | APME Activity | |
---|---|---|---|
(µg g−1) | (µg PNP g−1 soil min−1) | ||
Treatment | |||
Conventional tillage | 114.45 b | 7.45 b | 25.82 b |
Cover crop | 242.17 a | 14.56 a | 41.93 a |
Year | |||
2012 | 148.35 b | 10.02 b | 26.72 b |
2013 | 225.70 a | 7.29 c | 38.51 a |
2014 | 160.89 b | 15.70 a | 36.40 a |
Stage | |||
Flowering | 111.36 c | 9.96 b | 32.69 |
Fruit growth | 163.91 b | 10.88 ab | 34.64 |
Ripening | 259.67 a | 12.17 a | 34.29 |
Significance 1 | |||
Treatment (T) | 0.0033 ** | 0.0162 * | 0.0039 ** |
Year (Y) | <0.0001 *** | <0.0001 *** | <0.0001 *** |
Stage (S) | <0.0001 *** | 0.0203 * | 0.2404 ns |
T × Y | <0.0001 *** | 0.1852 ns | <0.0001 *** |
T × S | 0.0393 * | 0.0406 * | 0.0690 ns |
Y × S | <0.0001 *** | 0.0001 *** | 0.0015 ** |
T × Y × S | 0.0845 ns | 0.0886 ns | 0.0036 ** |
Yield 1 | CW | BW | TSS | pH | TA | F | DF | C* | L* | h° | |
---|---|---|---|---|---|---|---|---|---|---|---|
(kg) | (kg) | (g) | (°Brix) | (g L−1) | (N) 2 | (N) | (unitless) | ||||
Treatment | |||||||||||
Conventional tillage | 27.62 | 1.08 | 11.26 a | 16.99 | 3.57 | 4.79 | 2.53 | 8.4 | 9.24 a | 43.99 a | 110.44 |
Cover crop | 25.68 | 0.99 | 10.36 b | 17.32 | 3.47 | 4.92 | 2.35 | 7.9 | 8.69 b | 41.72 b | 111.32 |
Year | |||||||||||
2012 | 25.38 b | 0.97 b | 9.75 b | 18.10 a | 3.30 b | 5.39 a | 2.73 a | 7.7 b | 8.83 | 43.04 a | 107.49 b |
2013 | 29.82 a | 1.17 a | 10.99 a | 17.25 b | 3.66 a | 4.26 c | 2.71 a | 8.1 b | 9.27 | 41.99 b | 111.30 a |
2014 | 24.75 b | 0.96 b | 11.69 a | 16.12 c | 3.60 a | 4.92 b | 1.87 b | 8.6 a | 8.80 | 43.54 a | 113.86 a |
Significance 3 | |||||||||||
Treatment (T) | 0.2558 ns | 0.2057ns | 0.0222 * | 0.3143 ns | 0.0818 ns | 0.2263 ns | 0.2544 ns | 0.2035 ns | 0.0291 * | 0.0117 * | 0.4046 ns |
Year (Y) | 0.0142 * | 0.0076 ** | 0.0009 *** | 0.0006 *** | 0.0002 *** | 0.0006 *** | 0.0371 * | 0.0043 ** | 0.2313 ns | 0.0227 * | 0.0028 ** |
T × Y | 0.0058 ** | 0.0010 *** | 0.0067 ** | 0.0442 * | 0.0993 ns | 0.7361 ns | 0.0742 ns | 0.0265 * | 0.1653 ns | 0.0425 * | 0.0897 ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gattullo, C.E.; Mezzapesa, G.N.; Stellacci, A.M.; Ferrara, G.; Occhiogrosso, G.; Petrelli, G.; Castellini, M.; Spagnuolo, M. Cover Crop for a Sustainable Viticulture: Effects on Soil Properties and Table Grape Production. Agronomy 2020, 10, 1334. https://doi.org/10.3390/agronomy10091334
Gattullo CE, Mezzapesa GN, Stellacci AM, Ferrara G, Occhiogrosso G, Petrelli G, Castellini M, Spagnuolo M. Cover Crop for a Sustainable Viticulture: Effects on Soil Properties and Table Grape Production. Agronomy. 2020; 10(9):1334. https://doi.org/10.3390/agronomy10091334
Chicago/Turabian StyleGattullo, Concetta Eliana, Giuseppe Natale Mezzapesa, Anna Maria Stellacci, Giuseppe Ferrara, Giuliana Occhiogrosso, Giuseppe Petrelli, Mirko Castellini, and Matteo Spagnuolo. 2020. "Cover Crop for a Sustainable Viticulture: Effects on Soil Properties and Table Grape Production" Agronomy 10, no. 9: 1334. https://doi.org/10.3390/agronomy10091334
APA StyleGattullo, C. E., Mezzapesa, G. N., Stellacci, A. M., Ferrara, G., Occhiogrosso, G., Petrelli, G., Castellini, M., & Spagnuolo, M. (2020). Cover Crop for a Sustainable Viticulture: Effects on Soil Properties and Table Grape Production. Agronomy, 10(9), 1334. https://doi.org/10.3390/agronomy10091334