Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites
Abstract
:1. Introduction
- Phytostabilization or phytoimmobilization: involves physical and chemical immobilization of metal contaminants by their sorption onto roots and fixation with different soil amendments. This technique includes the stabilization of soil particles, preventing bulk erosion and airborne transport to other environmental compartments.
- Phytoextraction: plants extract metallic and organic compounds from soil to plant tissues.
- Phytotransformation: non-microbial-mediated degradation of organic pollutants (phytodegradation) or contaminant volatilization through transpiration (phytovolatilization).
- Phytostimulation or rhizodegradation: plants mineralize organic pollutants through enhanced microflora activity in the rhizosoil.
- Phytofiltration: use of plant roots for reclamation of surface and groundwater and wastewater.
2. Environmental Characterization
3. Phytoremediation for Reducing or Eliminating Risks for the Environment and Human Health
- Tolerance to high PTE concentrations.
- PTE accumulation in easily harvestable organs.
- Fast-growing biomass.
- High biomass accumulation.
- High root growth.
- Easy cropping management.
- Genetically stable attributes.
- Biomass useful for energy production or green chemistry.
- Not appreciated by grazing animals.
Species | References |
---|---|
Lignocellulosic polyannual crop | |
Miscanthus sinensis A. (slivergrass) | [35,36,37] |
Phalaris arundinacea L. (canary reed grass) | [36] |
Arundo donax L. (giant reed) | [21] |
Phragmites australis (Cav.) Trin. ex Steud. (common reed) | [57] |
Panicum virgatum L. (switchgrass) | [38] |
Microthermal grasses | |
Lolium perenne L. | [58,59] |
Poa pratensis L. | [58] |
Festuca spp. | [60] |
Agrostis spp. Phleum pratense L. Bromus inermis Leiss. Elymus spp. | [61] |
Macrothermal grasses | |
Paspalum spp. Cynodon dactylon L. (Bermuda grass) | [62] |
Piptatherum iliaceum L. (smilo grass) | [63,64] |
4. Agronomic Management for Improving Efficiency of Phytoextraction or Phytostabilization
5. Monitoring Phytoremediation
6. Using Biomass in a Circular Economy Perspective
7. Conclusions
- (1)
- Phytoextraction for remediating the soil by gradually reducing the bioavailable fraction of PTEs that will be accumulated in harvestable biomass.
- (2)
- Phytostabilization for interrupting the exposure pathways of contaminants, thus making the site safe by reducing their mobility towards air and groundwater.
- (3)
- Rhizodegradation for stimulating the biodegradation of organic contaminants by soil microflora.
- (4)
- Environmental restoration for recovering ecosystem services such as biodiversity, groundwater protection, C storage in soil, and landscape quality.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pogrzeba, M.; Krzyżak, J.; Rusinowski, S.; McCalmont, J.; Jensen, E. Energy Crop at Heavy Metal-Contaminated Arable Land as an Alternative for Food and Feed Production: Biomass Quantity and Quality. In Plant Metallomics and Functional Omics A System-Wide Perspective; Gaurav, S., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 1–21. [Google Scholar] [CrossRef]
- Van Liedekerke, M.; Prokop, G.; Rabl-Berger, S.; Kibblewhite, M.; Louwagie, G. Progress in the Management of Contaminated Sites in Europe; European Commission, Joint Research Centre: Ispra, Italy; Publications Office of the European Union: Luxembourg, 2014; p. 72. [Google Scholar] [CrossRef]
- Carlon, C.; D’Alessandro, M.; Swartjes, F. Derivation Methods of Soil Screening Values in Europe. A Review and Evaluation of National Procedures towards Harmonization; Carlon, C., Ed.; European Commission, Joint Research Centre: Ispra, Italy, 2007; 306p. [Google Scholar]
- Agrelli, D.; Caporale, A.G.; Adamo, P. Assessment of bioavailability and speciation of heavy metal(loid)s and hydrocarbons for risk-based soil remediation. Agronomy 2020. under review. [Google Scholar]
- Rocco, C.; Agrelli, D.; Tafuro, M.; Caporale, A.G.; Adamo, P. Assessing the bioavailability of potentially toxic elements in soil: A proposed approach. Ital. J. Agron. 2018, 13, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, J. Measuring bioavailability: From a scientific approach to standard methods. J. Environ. Qual. 2015, 36, 1420–1428. [Google Scholar] [CrossRef]
- Adamo, P.; Zampella, M. Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMs) in polluted soils. In Environmental Geochemistry, Site Characterization, Data Analysis and Case Histories; De Vivo, B., Belkin, H.E., Lima, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 153–194. [Google Scholar] [CrossRef]
- Harmsen, J.; Naidu, R. Bioavailability as a tool in site management. J. Hazard. Mater. 2013, 261, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Gil-Diaz, M.; Gonzalez, A.; Alonso, J.; Lobo, M.C. Evaluation of the stability of a nanoremediation strategy using barley plants. J. Environ. Manag. 2016, 165, 150–158. [Google Scholar] [CrossRef] [PubMed]
- EC (European Commission). Impact Assessment of the Thematic Strategy on Soil Protection; Commission Staff Working Document; EC (European Commission): Brussels, Belgium, 2006; SEC (2006)620 22.9.2006. [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; et al. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Safe. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Visconti, D.; Álvarez-Robles, M.J.; Fiorentino, N.; Fagnano, M.; Clemente, R. Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere 2020, 260, 127661. [Google Scholar] [CrossRef]
- Langella, G.; Agrillo, A.; Basile, A.; De Mascellis, R.; Manna, P.; Moretti, P.; Mileti, F.A.; Terribile, F.; Vingiani, S. Geography of soil contamination for characterization and precision remediation of potentially contaminated sites. Ital. J. Agron. 2018, 13, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Caporale, A.G.; Adamo, P.; Capozzi, F.; Langella, G.; Terribile, F.; Vingiani, S. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Sci. Total Environ. 2018, 643, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Visconti, D.; Fiorentino, N.; Stinca, A.; Di Mola, I.; Fagnano, M. Use of the native vascular flora for risk assessment and management of an industrial contaminated soil. Ital. J. Agron. 2018, 13, 23–33. [Google Scholar]
- Duri, L.G.; Fiorentino, N.; Cozzolino, E.; Ottaiano, L.; Agrelli, D.; Fagnano, M. Bioassays for evaluation of sanitary risks from food crops cultivated in potentially contaminated sites. Ital. J. Agron. 2018, 13, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Duri, L.G.; Visconti, D.; Fiorentino, N.; Adamo, P.; Fagnano, M.; Caporale, A.G. Health Risk Assessment in Agricultural Soil Potentially Contaminated by Geogenic Thallium: Influence of Plant Species on Metal Mobility in Soil-Plant System. Agronomy 2020, 10, 890. [Google Scholar] [CrossRef]
- Fiorentino, N.; Mori, M.; Cenvinzo, V.; Duri, L.G.; Gioia, L.; Visconti, D.; Fagnano, M. Assisted phytoremediation for restoring soil fertility in contaminated and degraded land. Ital. J. Agron. 2018, 13, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, N.; Fagnano, M.; Adamo, P.; Impagliazzo, A.; Mori, M.; Pepe, O.; Ventorino, V.; Zoina, A. Assisted phytoextraction of heavy metals: Compost and Trichoderma effects on giant reed uptake and soil quality. Ital. J. Agron. 2013, 8, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Alkorta, I.; Hernandez-Allica, J.; Becerril, J.M.; Amezaga, I.; Albizu, I.; Garbisu, C. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev. Environ. Health 2004, 3, 71–90. [Google Scholar] [CrossRef]
- Visconti, D.; Fiorentino, N.; Caporale, A.G.; Stinca, A.; Adamo, P.; Motti, R.; Fagnano, M. Analysis of native vegetation for detailed characterization of a soil contaminated by tannery waste. Environ. Pollut. 2019, 252, 1599–1608. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Naidu, C.V.; Carter, D.R.; Rahmani, M.; Spriggs, T.A.; Lin, C.; Alker, G.R.; Isebrands, J.G.; Segrest, S.A. Short-rotation woody crops and phytoremediation, Opportunities for agroforestry? Agrofor. Syst. 2004, 61, 51–63. [Google Scholar] [CrossRef]
- Pulford, I.D.; Watson, C. Phytoremediation of heavy metal-contaminated land by trees—A review. Environ. Int. 2003, 29, 529–540. [Google Scholar] [CrossRef]
- Capuana, M. Heavy metals and woody plants—Biotechnologies for phytoremediation. iFor. Biogeosci. For. 2011, 4, 7–15. [Google Scholar] [CrossRef]
- Unterbrunner, R.; Puschenreiter, M.; Sommer, P.; Wieshammer, G.; Tlustos, P.; Zupan, M.; Wenzel, W.W. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ. Pollut. 2007, 148, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.; Pulford, I.D.; Riddell-Black, D. Screening of willow species for resistance to heavy metals, comparison of performance in a hydroponics system and field trials. Int. J. Phytoremed. 2003, 5, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Laureysens, I.; Blust, R.; De Temmerman, L.; Lemmens, C.; Ceulemans, R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Seasonal variation in leaf, wood and bark concentrations. Environ. Pollut. 2004, 131, 485–494. [Google Scholar] [CrossRef] [PubMed]
- French, C.J.; Dickinson, N.M.; Putwain, P.D. Woody biomass phytoremediation of contaminated brownfield land. Environ. Pollut. 2006, 141, 387–395. [Google Scholar] [CrossRef]
- Wang, Y.; Greger, M. Clonal differences in mercury tolerance, accumulation, and distribution in willow. J. Environ. Qual. 2004, 33, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Granel, T.; Robinson, B.H.; Mills, T.M.; Clothier, B.E.; Green, S.R.; Fung, L. Cadmium accumulation by willow clones used for conservation, stock fodder and phytoremediation. Aust. J. Soil Res. 2002, 40, 1331–1337. [Google Scholar] [CrossRef]
- Cardone, M.; Mazzoncini, M.; Menini, S.; Rocco, V.; Senatore, A.; Seggiani, M.; Vitolo, S. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: Agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy 2003, 25, 623–636. [Google Scholar] [CrossRef]
- Fagnano, M.; Impagliazzo, A.; Mori, M.; Fiorentino, N. Agronomic and Environmental Impacts of Giant Reed (Arundo donax L.): Results from a Long-Term Field Experiment in Hilly Areas Subject to Soil Erosion. Bioenergy Res. 2015, 8, 415–422. [Google Scholar] [CrossRef]
- Nsanganwimana, F.; Pourrut, B.; Mench, M.; Douay, F. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manag. 2014, 143, 123–134. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Kolodziej, B.; Bielinska, E.J. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ. Sci. Pollut. Res. 2016, 23, 9505–9517. [Google Scholar] [CrossRef] [PubMed]
- Pogrzeba, M.; Rusinowski, S.; Sitko, K.; Krzyżak, J.; Skalska, A.; Małkowski, E.; Ciszek, D.; Werle, S.; Mc Calmont, J.P.; Mos, M.; et al. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environ. Pollut. 2017, 225, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Pogrzeba, M.; Rusinowski, S.; Krzyżak, J. Macroelements and heavy metals content in Panicum virgatum cultivated on contaminated soil under different fertilization. Int. J. Agric. For. 2017, 63, 69–76. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Roy, M.; Zaman, S.; Mitra, A. Phytoremediation potential of castor oil plant (Ricinus communis) grown on fly ash amended soil towards lead bioaccumulation. Innov. Food Sci. Emerg. Technol. 2019, 6, 156–160. [Google Scholar]
- Luo, J.; Qi, S.; Peng, L.; Wang, J. Phytoremediation efficiency of Cd by Eucalyptus globulus transplanted from polluted and unpolluted sites. Int. J. Phytoremed. 2016, 18, 308–314. [Google Scholar] [CrossRef]
- Arriagada, C.; Pereira, G.; García-Romera, I.; Ocampo, J.A. Improved zinc tolerance in Eucalyptus globulus inoculated with Glomus deserticola and Trametes versicolor or Coriolopsis rigida. Soil Biol. Biochem. 2010, 42, 118–124. [Google Scholar] [CrossRef]
- Lewandowski, I.; Schmidt, U.; Londo, M.; Faaij, A. The economic value of the phytoremediation function—Assessed by the example of cadmium remediation by willow (Salix ssp). Agric. Sys. 2006, 89, 68–89. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, B.; Boléo, S.; Sidella, S.; Costa, J.; Duarte, M.P.; Mendes, B.; Cosentino, S.L.; Fernando, A.L. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. BioEnergy Res. 2015, 8, 1500–1511. [Google Scholar] [CrossRef]
- Clemente, R.; Walker, D.J.; Bernal, M.P. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): The effect of soil amendments. Environ. Pollut. 2005, 138, 46–58. [Google Scholar] [CrossRef]
- Marchiol, L.; Sacco, P.; Assolari, S.; Zerbi, G. Reclamation of polluted soil: Phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut. 2004, 158, 345–356. [Google Scholar] [CrossRef]
- Pardo, T.; Martínez-Fernández, D.; Clemente, R.; Bernal, M.P.; Walker, D.J. The use of olive-mill waste compost to promote the plant vegetation cover in a trace element-contaminated soil. Environ. Sci. Pollut. Res. 2014, 21, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Grison, C.M.; Jackson, S.; Merlot, S.; Dobson, A.; Grison, C. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int. J. Syst. Evol. Microbiol. 2015, 65, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Sujkowska-Rybkowska, M.; Wazny, R. Metal resistant rhizobia and ultrastructure of Anthyllis vulneraria nodules from zinc and lead contaminated tailing in Poland. Int. J. Phytoremed. 2018, 20, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Sujkowska-Rybkowska, M.; Kasowska, D.; Gediga, K.; Banasiewicz, J.; Stępkowski, T. Lotus corniculatus-rhizobia symbiosis under Ni, Co and Cr stress on ultramafic soil. Plant Soil 2020, 451, 459–484. [Google Scholar] [CrossRef]
- Ruiz Olivares, A.; Carrillo-González, R.; González-Chávez, M.C.; Soto Hernández, R.M. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J. Environ. Manag. 2013, 114, 316–323. [Google Scholar] [CrossRef]
- Fiorentino, N.; Ventorino, V.; Rocco, C.; Cenvinzo, V.; Agrelli, D.; Gioia, L.; Di Mola, I.; Adamo, P.; Fagnano, M. Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil. Sci. Total Environ. 2017, 575, 1375–1383. [Google Scholar] [CrossRef]
- Schnoor, J.L. Phytostabilization of metals using hybrid poplar trees. In Phytoremediation of Toxic Metals, Using Plants to Clean Up the Environment; Raskin, I., Ensley, B.D., Eds.; John Wiley: New York, NY, USA, 2000; pp. 133–150. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation technology: Hyperaccumulation metals in plants. Water Air Soil Pollut. 2017, 184, 105–126. [Google Scholar] [CrossRef]
- Kumar, V.; Shahi, S.K.; Singh, S. Bioremediation: An eco-sustainable approach for restoration of contaminated sites. In Microbial Bioprospecting for Sustainable Development; Singh, J., Sharma, D., Kumar, G., Sharma, N.R., Eds.; Springer: Singapore, 2018; pp. 115–136. [Google Scholar] [CrossRef]
- Shim, H.; Chauhan, S.; Ryoo, D.; Bowers, K.; Thomas, S.M.; Canada, K.A.; Burken, J.L.; Wood, T.K. Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl. Environ. Microbiol. 2000, 66, 4673–4678. [Google Scholar] [CrossRef] [Green Version]
- Abhilash, P.C.; Powell, J.R.; Singh, H.B.; Singh, B.K. Plant microbe interactions: Novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol. 2012, 30, 416–420. [Google Scholar] [CrossRef]
- De Giudici, G.; Pusceddu, C.; Medas, D.; Meneghini, C.; Gianoncelli, A.; Rimondi, V.; Podda, F.; Cidu, R.; Lattanzi, P.; Wanty, R.B.; et al. The role of natural biogeochemical barriers in limiting metal loading to a stream affected by mine drainage. Appl. Geochem. 2017, 76, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Padmavathiamma, P.; Li, L. Effect of Amendments on phytoavailability and fractionation of copper and zinc in a contaminated soil. Int. J. Phytoremed. 2010, 12, 697–715. [Google Scholar] [CrossRef] [PubMed]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Cuske, M.; Karczewska, A.; Gałka, B.; Dradrach, A. Some adverse effects of soil amendment with organic materials—The case of soils polluted by copper industry phytostabilized with red fescue. Int. J. Phytoremed. 2016, 18, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.H.; Zhang, Z.Q. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Shu, W.S.; Ye, Z.H.; Lan, C.Y.; Zhang, Z.Q.; Wong, M.H. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ. Pollut. 2002, 120, 445–453. [Google Scholar] [CrossRef]
- Garcıa, G.; Faz, A.; Cunha, M. Performance of Piptatherum miliaceum (Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int. Biodeterior. Biodegrad. 2004, 54, 245–250. [Google Scholar] [CrossRef]
- Arco-Lázaro, E.; Martínez-Fernández, D.; Bernal, M.P.; Clemente, R. Response of Piptatherum miliaceum to co-culture with a legume species for the phytostabilisation of trace elements contaminated soils. J. Soils Sediments 2017, 17, 1349–1357. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-a review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 2016, 227, 1–18. [Google Scholar] [CrossRef]
- Venegas, A.; Rigol, A.; Vidal, M. Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 2015, 119, 190–198. [Google Scholar] [CrossRef]
- Halim, M.; Conte, P.; Piccolo, A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 2003, 52, 265–275. [Google Scholar] [CrossRef]
- Todeschini, V.; Franchin, C.; Castiglione, S.; Burlando, B.; Biondi, S.; Torrigiani, P. Responses of two registered poplar clones to copper, after inoculation, or not, with arbuscular mycorrhizal fungi. Caryologia 2007, 60, 146–155. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaldorf, M.; Kuhn, A.J.; Schröder, W.R.; Hildebrandt, U.; Bothe, H. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J. Plant Physiol. 1999, 154, 718–728. [Google Scholar] [CrossRef]
- Christie, P.; Li, X.; Chen, B. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 2004, 261, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, N.; Li, X.; Long, J.; Sui, X.; Wu, Y.; Li, J.; Wang, J.; Zhong, H.; Sun, G.Y. Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L. in cadmium contaminated soil. Front. Plant Sci. 2018, 9, 1156. [Google Scholar] [CrossRef] [Green Version]
- González-Chávez, M.D.C.A.; Carrillo-González, R.; Cuellar-Sánchez, A.; Delgado-Alvarado, A.; Suárez-Espinosa, J.; Ríos-Leal, E.; Solís-Domínguez, F.A.; Maldonado-Mendoza, I.E. Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead-acid battery recycling site. Sci. Total Environ. 2019, 650, 3134–3144. [Google Scholar] [CrossRef]
- Zafar, S.; Aqil, F.; Ahmad, Q. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour. Technol. 2007, 98, 2557–2561. [Google Scholar] [CrossRef]
- Ahamed, A.; Vermette, P. Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem. Eng. J. 2008, 40, 399–407. [Google Scholar] [CrossRef]
- Bareen, F.E.; Shafiq, M.; Jamil, S. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. J. Hazard. Mater. 2012, 237–238, 186–193. [Google Scholar] [CrossRef]
- Newman, L.A.; Reynolds, C.M. Bacteria and phytoremediation, new uses for endophytic bacteria in plants. Trends Biotechnol. 2005, 23, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Moore, F.P.; Barac, T.; Borremans, B.; Oeyen, L.; Vangronsveld, J.; van der Lelie, D.; Campbell, C.D.; Moore, E.R.B. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site, the characterisation of isolates with potential to enhance phytoremediation. Syst. Appl. Microbiol. 2006, 29, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Mastretta, C.; Taghavi, S.; van der Lelie, D.; Mengoni, A.; Galardi, F.; Gonnelli, C.; Barac, T.; Boulet, J.; Weyens, N.; Vangronsveld, J. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int. J. Phytoremed. 2009, 11, 251–267. [Google Scholar] [CrossRef]
- Rajkumar, M.; Ae, N.; Freitas, H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 2009, 77, 153–160. [Google Scholar] [CrossRef]
- Palladino, M.; Nasta, P.; Capolupo, A.; Romano, N. Monitoring and modelling the role of phytoremediation to mitigate nonpoint source cadmium pollution and groundwater contamination at field scale. Ital. J. Agron. 2018, 13, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Dang, X.; Yu, Y.; Li, Y.; Liu, Y.; Wang, J. Effects of tillage methods on soil carbon and wind erosion. Land Degrad. Dev. 2016, 27, 583–591. [Google Scholar] [CrossRef]
- Mendez, M.J.; Funk, R.; Buschiazzo, D.E. Efficiency of Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers to collect PM10, PM2.5 and PM1. Aeolian Res. 2016, 21, 37–44. [Google Scholar] [CrossRef]
- Vigil, M.; Marey-Pérez, M.F.; Martinez Huerta, G.; Álvarez Cabal, V. Is phytoremediation without biomass valorization sustainable?—Comparative LCA of landfilling vs. anaerobic co-digestion. Sci. Total Environ. 2015, 505, 844–850. [Google Scholar] [CrossRef]
- Gomes, H.I. Phytoremediation for bioenergy: Challenges and opportunities. Environ. Technol. Rev. 2012, 1, 59–66. [Google Scholar] [CrossRef]
- Chalot, M.; Blaudez, D.; Rogaume, Y.; Provent, A.S.; Pascua, C. Fate of Trace Elements during the combustion of phytoremediation wood. Environ. Sci. Technol. 2012, 46, 13361–13369. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Xiao, H.; Guo, X.; Urbanovich, O.; Nagorskaya, L.; Li, X. A review on control factors of pyrolysis technology for plants containing heavy metals. Ecotoxicol. Environ. Saf. 2020, 191, 110181. [Google Scholar] [CrossRef] [PubMed]
- Czernik, S.; Bridgwater, A.V. Overview of applications of biomass fast pyrolysis oil. Energy Fuel 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Sims, R.E.; Mabee, W.; Saddler, J.N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 2010, 101, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Kung, C.C.; Zhang, N. Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation. Energy 2015, 90, 1532–1544. [Google Scholar] [CrossRef]
- Fiorentino, N.; Sánchez-Monedero, M.A.; Lehmann, J.; Enders, A.; Fagnano, M.; Cayuela, M.L. Interactive priming of soil N transformations from combining biochar and urea inputs: A 15N isotope tracer study. Soil Biol. Biochem. 2019, 131, 166–175. [Google Scholar] [CrossRef]
- Abbas, Q.; Liu, G.J.; Yousaf, B.; Ali, M.U.; Ullah, H.; Munir, M.A.M.; Liu, R.J. Contrasting effects of operating conditions and biomass particle size on bulk characteristics and surface chemistry of rice husk derived-biochars. J. Anal. Appl. Pyrolysis 2018, 134, 281–292. [Google Scholar] [CrossRef]
- Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H. Biomass pyrolysis/gasification for product gas production: The overall investigation of parametric effects. Energy Convers. Manag. 2003, 44, 1875–1884. [Google Scholar] [CrossRef]
- Grottola, C.M.; Giudicianni, P.; Pindozzi, S.; Stanzione, F.; Faugno, S.; Fagnano, M.; Fiorentino, N.; Ragucci, R. Steam assisted slow pyrolysis of contaminated biomasses: Effect of plant parts and process temperature on heavy metals fate. Waste Manag. 2019, 85, 232–241. [Google Scholar] [CrossRef]
- Appels, L.; Lauwers, J.; Degrève, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Parawira, W.; Read, J.S.; Mattiasson, B.; Björnsson, L. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 2008, 32, 44–50. [Google Scholar] [CrossRef]
- Mudhoo, A.; Kumar, S. Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int. J. Environ. Sci. Technol. 2013, 10, 1383–1398. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Yip, K.; Kong, Z.; Li, C.-Z.; Liu, D.; Yu, Y.; Gao, X. Removal and Recycling of Inherent Inorganic Nutrient Species in Mallee Biomass and Derived Biochars by Water Leaching. Ind. Eng. Chem. Res. 2011, 50, 12143–12151. [Google Scholar] [CrossRef]
- Yu, C.; Zheng, Y.; Cheng, Y.-S.; Jenkins, B.M.; Zhang, R.; Vander Gheynst, J.S. Solid–liquid extraction of alkali metals and organic compounds by leaching of food industry residues. Bioresour. Technol. 2010, 101, 4331–4336. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.C.; Alonso, P.S. Market opportunities in sustainable phytoremediation. In Phytomanagement of Polluted Sites; Pandey, V.C., Bauddh, K., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 51–82. [Google Scholar] [CrossRef]
- Licht, L.A.; Isebrands, J.G. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 2005, 28, 203–218. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fagnano, M.; Visconti, D.; Fiorentino, N. Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites. Agronomy 2020, 10, 1335. https://doi.org/10.3390/agronomy10091335
Fagnano M, Visconti D, Fiorentino N. Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites. Agronomy. 2020; 10(9):1335. https://doi.org/10.3390/agronomy10091335
Chicago/Turabian StyleFagnano, Massimo, Donato Visconti, and Nunzio Fiorentino. 2020. "Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites" Agronomy 10, no. 9: 1335. https://doi.org/10.3390/agronomy10091335
APA StyleFagnano, M., Visconti, D., & Fiorentino, N. (2020). Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites. Agronomy, 10(9), 1335. https://doi.org/10.3390/agronomy10091335