Interactions between the Hyperaccumulator Noccaea caerulescens and Brassica juncea or Lupinus albus for Phytoextraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Characteristics
2.2. Plant Species
2.3. Experimental Design
2.4. Analytical Procedures
2.5. Statistical Analysis
3. Results and Discussion
3.1. Experiment 1: Noccaea caerulescens and Brassica juncea
3.1.1. Plant Growth and Metal Accumulation
3.1.2. Soil Properties
3.1.3. Correlations
3.2. Experiment 2: Noccaea caerulescens and Lupinus albus
3.2.1. Plant Growth and Metal Accumulation
3.2.2. Soil Properties
3.2.3. Correlations and Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oldeman, L.R.; Hakkeling, R.T.A.; Sombroek, W.G. World Map on Status of Human-Induced Soil Degradation; An Explanatory Note; UNEP/ISRIC: Nairobi, Kenya, 1990; 26p. [Google Scholar]
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; FAO: Rome, Italy, 2018; 142p. [Google Scholar]
- Saxena, G.; Purchase, D.; Mulla, S.I.; Saratale, G.D.; Bharagava, R.N. Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev. Environ. Contam. Toxicol. 2020, 249, 71–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristaldi, A.; Copat, C.; Conti, G.O.; Zuccarello, P.; Grasso, A.; Ferrante, M. Phytoremediation. In The Handbook of Environmental Remediation: Classic and Modern Techniques; Royal Society of Chemistry: London, UK, 2020; pp. 268–298. [Google Scholar]
- Srivastava, N. Phytoremediation of Toxic Metals/Metalloids and Pollutants by Brassicaceae Plants. In The Plant Family Brassicaceae; Springer: Singapore, 2020; pp. 409–435. [Google Scholar]
- Assunção, A.G.L.; Bookum, W.M.; Nelissen, H.J.M.; Vooijs, R.; Schat, H.; Ernst, W.H.O. Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol. 2003, 159, 411–419. [Google Scholar] [CrossRef]
- Gonneau, C.; Noret, N.; Godé, C.; Frérot, H.; Sirguey, C.; Sterckeman, T.; Pauwels, M. Demographic history of the trace metal hyperaccumulator Noccaea caerulescens (J. Presl and C. Presl) F. K. Mey. in Western Europe. Mol. Ecol. 2016, 26, 904–922. [Google Scholar] [CrossRef] [PubMed]
- Kozhevnikova, A.D.; Seregin, I.V.; Aarts, M.G.; Schat, H. Intra-specific variation in zinc, cadmium and nickel hypertolerance and hyperaccumulation capacities in Noccaea caerulescens. Plant Soil 2020, 1–20. [Google Scholar] [CrossRef]
- Saison, C.; Schwartz, C.; Morel, J.-L. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd–Zn/Ca–Mg interactions. Int. J. Phytorem. 2004, 6, 49–61. [Google Scholar] [CrossRef]
- Shen, Z.G.; Zhao, F.J.; McGrath, S.P. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ. 1997, 20, 898–906. [Google Scholar] [CrossRef] [Green Version]
- Mari, S.; Gendre, D.; Pianelli, K.; Ouerdane, L.; Lobinski, R.; Briat, J.F.; Lebrun, M.; Czernic, P. Root-to-shoot long-distance circulation of nicotianamine and nicotianamine–nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 2006, 57, 4111–4122. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.J.M.; Reeves, R.D.; Hajar, A.S.M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol. 1994, 127, 61–68. [Google Scholar] [CrossRef]
- Walker, D.J.; Bernal, M.P. The effects of copper and lead on growth and zinc accumulation of Thlaspi caerulescens J. and C. Presl: Implications for phytoremediation of contaminated soils. Water Air Soil Pollut. 2004, 151, 361–372. [Google Scholar] [CrossRef]
- Kidd, P.; Barceló, J.; Bernal, M.P.; Navari-Izzo, F.; Poschenrieder, C.; Shilev, S.; Clemente, R.; Monterroso, C. Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environ. Exp. Bot. 2009, 67, 243–259. [Google Scholar] [CrossRef]
- Del Rio, M.; Font, R.; Fernandez-Martinez, J.; Domínguez, J.; De Haro, A. Field trials of Brassica carinata and Brassica juncea in polluted soils of the Guadiamar river area. Fres. Environ. Bull. 2000, 9, 328–332. [Google Scholar]
- Minglin, L.; Yuxiu, Z.; Tuanyao, C. Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 2005, 363, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Bassegio, C.; Campagnolo, M.A.; Schwantes, D.; Gonçalves Junior, A.C.; Manfrin, J.; Schiller, A.D.P.; Bassegio, D. Growth and accumulation of Pb by roots and shoots of Brassica juncea L. Int. J. Phytoremediation 2020, 22, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.W.; Dong, Y.Y.; Feng, L.Y.; Deng, Z.L.; Xu, Q.; Tao, Q.; Wang, C.Q.; Chen, Y.E.; Yuan, M.; Yuan, S. Selenium enhances cadmium accumulation capability in two mustard family species—Brassica napus and B. juncea. Plants 2020, 9, 904. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Pilon-Smits, E.A.; Tarun, A.S.; Weber, S.U.; Jouanin, L.; Terry, N. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 1999, 121, 1169–1177. [Google Scholar] [CrossRef] [Green Version]
- Clemente, R.; Walker, D.J.; Bernal, M.P. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environ. Poll. 2005, 138, 46–58. [Google Scholar] [CrossRef]
- Kutrowska, A.; Małecka, A.; Piechalak, A.; Masiakowski, W.; Hanć, A.; Barałkiewicz, D.; Andrzejewskac, B.; Zbierskac, J.; Tomaszewska, B. Effects of binary metal combinations on zinc, copper, cadmium and lead uptake and distribution in Brassica juncea. J. Trace El. Med. Biol. 2017, 44, 32–39. [Google Scholar] [CrossRef]
- Mourato, M.P.; Moreira, I.N.; Leitão, I.; Pinto, F.R.; Sales, J.R.; Martins, L.L. Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Alcalá, I.; Clemente, R.; Bernal, M.P. Metal availability and chemical properties in the rhizosphere of Lupinus albus L. growing in a high-metal calcareous soil. Water Air Soil Poll. 2009, 201, 283–293. [Google Scholar] [CrossRef]
- Fresno, T.; Peñalosa, J.M.; Santner, J.; Puschenreiter, M.; Prohaska, T.; Moreno-Jiménez, E. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots. Environ. Poll. 2016, 216, 215–222. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Walker, D.J.; Bernal, M.P. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Ecotox. Environ. Saf. 2010, 73, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alcalá, I.; Clemente, R.; Bernal, M.P. Efficiency of a phytoimmobilisation strategy for heavy metal contaminated soils using white lupin. J. Geochem. Explor. 2012, 123, 95–100. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Hernández, L.E.; Esteban, E.; Walker, D.J.; Bernal, M.P. Responses of Noccaea caerulescens and Lupinus albus in trace elements-contaminated soils. Plant Physiol. Biochem. 2013, 66, 47–55. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Motesharezadeh, B.; Hosseini, H.M.; Alikhani, H.; Zolfaghari, A.A. Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotox. Environ. Saf. 2018, 147, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.T.; Liu, X.M.; Meng, Q.Q.; Long, X.X.; Schwartz, C.; Morel, J.L. Co-crop hyperaccumulator and low-accumulating plants for treating heavy metal contaminated soil and sludge. In Fifth International Conference on Environmental Geochemistry in the Tropics; Institute Soil Science, Chinese Academy of Science: Nanjing, China, 2004; p. 71. [Google Scholar]
- Wiche, O.; Székely, B.; Kummer, N.A.; Moschner, C.; Heilmeier, H. Effects of intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) on the mobility of target elements for phytoremediation and phytomining in soil solution. Int. J. Phytorem. 2016, 18, 900–907. [Google Scholar] [CrossRef]
- Gove, B.; Hutchinson, J.J.; Young, S.D.; Craigon, J.; McGrath, S.P. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens. Int. J. Phytorem. 2002, 4, 267–281. [Google Scholar] [CrossRef]
- Council of the European Communities. Council directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official J. Eur. Commun. 1986, L181, 6–12. Available online: http://data.europa.eu/eli/dir/1986/278/oj (accessed on 6 July 2020).
- Gisbert, C.; Clemente, R.; Navarro-Aviñó, J.; Baixauli, C.; Ginér, A.; Serrano, R.; Walker, D.J.; Bernal, M.P. Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ. Exp. Bot. 2006, 56, 19–27. [Google Scholar] [CrossRef]
- U.S. EPA. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils, Revision 1; U.S. Environmental Protection Agency: Washington, DC, USA, 2007.
- McGrath, S.P.; Cegarra, J. Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. J. Soil Sci. 1992, 43, 313–321. [Google Scholar] [CrossRef]
- Yanai, J.; Zhao, F.J.; McGrath, S.P.; Kosaki, T. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ. Poll. 2006, 139, 167–175. [Google Scholar] [CrossRef]
- Broadhurst, C.L.; Chaney, R.L.; Davis, A.P.; Cox, A.; Kumar, K.; Reeves, R.D.; Green, C.E. Growth and cadmium phytoextraction by Swiss chard, maize, rice, Noccaea caerulescens, and Alyssum murale in pH adjusted biosolids amended soils. Int. J. Phytorem. 2015, 17, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Feigl, G.; Kumar, D.; Lehotai, N.; Pető, A.; Molnár, Á.; Rácz, É.; Ördög, A.; Erdei, L.; Kolbert, Z.; Laskay, G. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage. Acta Biol. Hung. 2015, 66, 205–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Elsevier Science: San Diego, CA, USA, 1995; 672p. [Google Scholar]
- Kabata-Pendias, A. Trace Element in Soil and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001; 413p. [Google Scholar]
- Molitor, M.; Dechamps, C.; Gruber, W.; Meerts, P. Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: Ecological niche and genetic variation in mineral element composition. New Phytol. 2005, 165, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, S.P.; Shen, Z.G.; Zhao, F.J. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 1997, 188, 153–159. [Google Scholar] [CrossRef]
- Ali, S.Y.; Chaudhury, S. EDTA-Enhanced phytoextraction by Tagetes sp. and effect on bioconcentration and translocation of heavy metals. Environ. Process. 2016, 3, 735–746. [Google Scholar] [CrossRef]
- Dessureault-Rompré, J.; Luster, J.; Schulin, R.; Tercier-Waeber, M.L.; Nowack, B. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Environ. Poll. 2010, 158, 1955–1962. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Brooks, R.R. Terrestrial higher plants which hyperaccumulate metallic elements- review of their distribution, ecology and phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
- Clemens, S. How metal hyperaccumulating plants can advance Zn biofortification. Plant Soil 2017, 411, 111–120. [Google Scholar] [CrossRef]
- Whiting, S.N.; Leake, J.R.; Mcgrath, S.P.; Baker, A.J.M. Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction. Plant Soil 2001, 237, 147–156. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Bernal, M.P.; de la Fuente, C.; Gondar, D.; Clemente, R. Changes in the heavy metal solubility of two contaminated soils after heavy metals phytoextraction with Noccaea caerulescens. Ecol. Eng. 2016, 89, 56–63. [Google Scholar] [CrossRef]
- Kim, K.R.; Owens, G.; Kwon, S.L. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study. J. Environ. Sci. 2010, 22, 98–105. [Google Scholar] [CrossRef]
- Bernal, M.P.; McGrath, S.P.; Miller, A.J.; Baker, A.J.M. Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus L. Plant Soil 1994, 164, 251–259. [Google Scholar] [CrossRef]
- Lasat, M.M.; Kochian, L.V. Physiology of Zn hyperaccumulation in Thlaspi caerulescens. In Phytoremediation of Contaminated Soil and Water; Terry, N., Bañuelos, G., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2000; pp. 159–169. [Google Scholar]
- Puschenreiter, M.; Wieczorek, S.; Horak, O.; Wenzel, W.W. Chemical changes in the rhizosphere of metal hyperaccumulator and excluder Thlaspi species. J. Plant Nut. Soil Sci. 2003, 166, 579–584. [Google Scholar] [CrossRef]
- Hammer, D.; Keller, C. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J. Environ. Qual. 2002, 31, 1561–1569. [Google Scholar] [CrossRef]
- Fornes, F.; García-de-la-Fuente, R.; Belda, R.M.; Abad, M. ‘Alperujo’ compost amendment of contaminated calcareous and acidic soils: Effects on growth and trace element uptake by five Brassica species. Bioresour. Technol. 2009, 100, 3982–3990. [Google Scholar] [CrossRef]
- Zornoza, P.; Vázquez, S.; Esteban, E.; Fernández-Pascual, M.; Carpena, R. Cadmium-stress in nodulated white lupin: Strategies to avoid toxicity. Plant Physiol. Biochem. 2002, 40, 1003–1009. [Google Scholar] [CrossRef]
- Kerley, S.J. Changes in root morphology of white lupin (Lupinus albus L.) and its adaptation to soils with heterogeneous alkaline/acid profiles. Plant Soil 2000, 218, 197–205. [Google Scholar] [CrossRef]
- Wu, L.; Kobayashi, Y.; Wasaki, J.; Koyama, H. Organic acid excretion from roots: A plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Sci. Plant Nutr. 2018, 64, 697–704. [Google Scholar] [CrossRef]
- Ryan, P.R.; Delhaize, E.; Jones, D.L. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 527–560. [Google Scholar] [CrossRef]
- Robinson, B.H.; Leblanc, M.; Petit, D.; Brooks, R.R.; Kirkman, J.H.; Gregg, P.E. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 1998, 203, 47–56. [Google Scholar] [CrossRef]
- Puschenreiter, M.; Schnepf, A.; Millán, I.M.; Fitz, W.J.; Horak, O.; Klepp, J.; Schrefl, T.; Lombi, E.; Wenzel, W.W. Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil 2005, 271, 205–218. [Google Scholar] [CrossRef]
Soil 1 | Soil 2 | |
---|---|---|
pH | 5.02 ± 0.05 | 6.00 ± 0.04 |
EC (dS m−1) | 2.33 ± 0.00 | 1.90 ± 0.01 |
CaCO3 (%) | <0.5 | <0.5 |
CEC (cmolc kg−1) | 16.0 ± 0.5 | 16.0 ± 0.5 |
OM (%) | 1.93 ± 0.09 | 3.35 ± 0.12 |
TOC (g kg−1) | 11.1 ± 0.50 | 19.5 ± 0.12 |
Total-N (g kg−1) | 1.16 ± 0.10 | 3.63 ± 0.02 |
Fe (g kg−1) | 40.5 ± 0.02 | 46.2 ± 0.03 |
Mn (µg g−1) | 1024 ± 0.05 | 1377 ± 44.6 |
Cu (µg g−1) 1 | 196 ± 4.81 | 207 ± 11.2 |
Zn (µg g−1) 1 | 549 ± 16.0 | 781 ± 41.9 |
Cd (µg g−1) 1 | 2.00 ± 0.00 | 1.37 ± 0.00 |
Pb (µg g−1) 1 | 311 ± 1.04 | 473 ± 29.4 |
Soils | Plants (n° of Plants per Pot) | |
---|---|---|
Experiment 1 | ||
D1-Nc | D1: Soil 1 at pH 5.5 | N. caerulescens (6) |
D1-Bj | B. juncea (2) | |
D1-cocultivation | N. caerulescens (6) + B. juncea (2) | |
D2-Nc | D2: Soil 1 at pH 6.4 | N. caerulescens (6) |
D2-Bj | B. juncea (2) | |
D2-cocultivation | N. caerulescens (6) + B. juncea (2) | |
Experiment 2 | ||
S1-Nc | S1: Soil 1 at pH 5.0 | N. caerulescens (5) |
S1-La | L. albus (1) | |
S1-co-cultivation | N. caerulescens (5) + L. albus (1) | |
S2-Nc | S2: Soil 2 at pH 6.1 | N. caerulescens (5) |
S2-La | L. albus (1) | |
S2-cocultivation | N. caerulescens (5) + L. albus (1) |
Soils | Fe | Cu | Mn | Zn | Cd | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bj | Nc | Bj | Nc | Bj | Nc | Bj | Nc | Bj | Nc | ||
D1 | Individual | 137 ± 37 | 76.9 ± 2.2 b | 18.3 ± 7.5 | 5.66 ± 0.04 ab | 61.4 ± 36.7 a | 11.9 ± 4.3 ab | 3600 ± 575 a | 6025 ± 1205 ab | 6.22 ± 0.74 | 1.09 ± 0.67 b |
Cocultivation | - | 88.4 ± 7.8 b | - | 4.91 ± 0.85 ab | - | 20.3 ± 1.7 a | - | 6814 ± 808 a | - | 2.06 ± 1.01 ab | |
D2 | Individual | 47.7 ± 3.5 | 251 ± 120 a | 10.7 ± 0.7 | 14.9 ± 6.7 a | 16.5 ± 0.3 b | 22.8 ± 3.4 a | 220 ± 48 b | 6367 ± 1536 ab | 0.45 ± 0.45 | 23.1 ± 10.2 a |
Cocultivation | 98.5 ± 37.7 | 133 ± 5 ab | 7.28 ± 1.26 | 1.00 ± 0.57 b | 16.0 ± 2.5 b | 4.08 ± 1.82 b | 210 ± 53 b | 2303 ± 319 b | bdl | 3.66 ± 1.52 ab | |
ANOVA | Cultivation | ns | ns | ns | ** | ns | ns | ns | ns | - | ns |
Soil | ns | ** | ns | ns | * | ns | *** | ns | * | * | |
CxS | - | ns | - | * | - | ** | - | * | - | ns |
pH | Dry Weight | Cu CaCl2 | Mn CaCl2 | Zn CaCl2 | Cd CaCl2 | |
---|---|---|---|---|---|---|
B. juncea | ||||||
pH | - | 0.867 *** | −0.947 *** | −0.921 *** | −0.966 *** | −0.581 * |
Dry weight | 0.867 *** | - | −0.912 ** | −0.931 *** | −0.923 *** | ns |
Cdplant | −0.968 *** | −0.825 ** | 0.982 ** | 0.920 ** | 0.974 *** | ns |
Feplant | ns | −0.783 ** | ns | ns | ns | ns |
Znplant | −0.939 ** | −0.919 *** | 0.932 * | 0.958 *** | 0.957 *** | ns |
N. caerulescens | ||||||
pH | - | −0.675 * | −0.992 *** | −0.921 *** | −0.997 *** | −0.831 ** |
Dry weight | −0.675 * | - | 0.794 * | 0.768 ** | 0.730 ** | 0.860 *** |
Cdplant | 0.561 * | ns | −0.726 * | −0.763 * | ns | ns |
Feplant | ns | ns | −0.869 ** | −0.908 *** | ns | −0.839 ** |
Cuplant | ns | ns | 0.802 * | 0.834 ** | ns | 0.819 ** |
Mnplant | ns | ns | 0.787 * | ns | ns | ns |
Znplant | ns | ns | 0.854 ** | 0.737 * | ns | 0.730 * |
Soils | Fe | Cu | Mn | Zn | Cd | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
La | Nc | La | Nc | La | Nc | La | Nc | La | Nc | ||
S1 | Individual | 57.0 ± 5.3 | 70.0 ± 10.8 b | 6.29 ± 0.58 | 8.10 ± 1.42 | 480 ± 44 | 502 ± 47 a | 437 ± 18 b | 5713 ± 491 ab | 0.50 ± 0.06 | 4.54 ± 0.45 ab |
Cocultivation | 70.3 ± 14.7 | 170 ± 38 ab | 8.54 ± 0.74 | 8.58 ± 0.77 | 707 ± 46 | 543 ± 19 a | 636 ± 71 a | 7387 ± 472 a | 0.63 ± 0.04 | 5.49 ± 0.15 a | |
S2 | Individual | 148 ± 51 | 162 ± 28 ab | 7.29 ± 0.51 | 7.96 ± 1.28 | 624 ± 119 | 281 ± 58 b | 222 ± 22 c | 1998 ± 310 c | 0.14 ± 0.08 | 3.23 ± 0.31 b |
Cocultivation | 84.8 ± 15.0 | 472 ± 196 a | 8.49 ± 0.73 | 7.89 ± 1.31 | 783 ± 179 | 172 ± 43 b | 197 ± 13 c | 4161 ± 633 b | 0.69 ± 0.52 | 4.97 ± 0.49 a | |
ANOVA | Cultivation | ns | * | * | ns | ns | ns | ns | ** | ns | ** |
Soil | ns | * | ns | ns | ns | *** | *** | *** | ns | * | |
CxS | ns | ns | ns | ns | ns | ns | * | ns | ns | ns |
pH | Cu CaCl2 | Mn CaCl2 | Zn CaCl2 | Cd CaCl2 | |
---|---|---|---|---|---|
L. albus | |||||
pH | −0.905 *** | −0.751 *** | −0.804 *** | −0.924 *** | |
Dry weight | 0.776 ** | −0.802 *** | ns | −0.726 ** | −0.748 ** |
Feplant | 0.570 * | ns | ns | ns | ns |
Znplant | −0.705 ** | 0.796 *** | ns | 0.726 ** | 0.787 ** |
N. caerulescens | |||||
pH | −0.854 *** | −0.715 *** | −0.707 *** | −0.806 *** | |
Feplant | 0.679 ** | −0.543 * | ns | −0.515 * | ns |
Mnplant | −0743 ** | 0.822 *** | 0.763 ** | 0.787 *** | ns |
Znplant | −0.711 ** | 0.741 ** | ns | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Alcalá, I.; Clemente, R.; Bernal, M.P. Interactions between the Hyperaccumulator Noccaea caerulescens and Brassica juncea or Lupinus albus for Phytoextraction. Agronomy 2020, 10, 1367. https://doi.org/10.3390/agronomy10091367
Martínez-Alcalá I, Clemente R, Bernal MP. Interactions between the Hyperaccumulator Noccaea caerulescens and Brassica juncea or Lupinus albus for Phytoextraction. Agronomy. 2020; 10(9):1367. https://doi.org/10.3390/agronomy10091367
Chicago/Turabian StyleMartínez-Alcalá, Isabel, Rafael Clemente, and María Pilar Bernal. 2020. "Interactions between the Hyperaccumulator Noccaea caerulescens and Brassica juncea or Lupinus albus for Phytoextraction" Agronomy 10, no. 9: 1367. https://doi.org/10.3390/agronomy10091367
APA StyleMartínez-Alcalá, I., Clemente, R., & Bernal, M. P. (2020). Interactions between the Hyperaccumulator Noccaea caerulescens and Brassica juncea or Lupinus albus for Phytoextraction. Agronomy, 10(9), 1367. https://doi.org/10.3390/agronomy10091367