Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Amendment Description
2.2. Experimental Design, Compost and Biostimulants Application
- (i)
- 3 doses of compost from urban wastes: C0 = non-fertilized control vs. C1 = 0.7% vs. C2 = 1.4%;
- (ii)
- 3 levels of commercial biostimulants: a non-inoculated control (B0) vs. BP vs. BT.
2.3. Plant Sampling and Analysis
2.4. Soil Sampling and Analysis
2.5. Quantification of nifH and amoA Genes
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Mineral Nitrogen and PTE Promptly Bioavailable Concentrations
3.2. Bacterial Functional Genes Analysis
3.3. Plants Biomass, Nutrient Status and PTE Concentrations
3.4. Correlations between Plant and Soil Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moameri, M.; Khalaki, M.A. Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Environ. Sci. Pollut. Res. 2017, 26, 24315–24322. [Google Scholar] [CrossRef]
- González–Chávez, M.; Carrillo-González, R.; Sánchez, A.C.; Delgado-Alvarado, A.; Suárez-Espinosa, J.; Ríos-Leal, E.; Solís-Domínguez, F.A.; Maldonado-Mendoza, I.E. Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead-acid battery recycling site. Sci. Total. Environ. 2019, 650, 3134–3144. [Google Scholar] [CrossRef] [PubMed]
- Smaniotto, A.; Antunes, A.; Filho, I.D.N.; Venquiaruto, L.D.; De Oliveira, D.; Mossi, A.; Di Luccio, M.; Treichel, H.; Dallago, R. Qualitative lead extraction from recycled lead–acid batteries slag. J. Hazard. Mater. 2009, 172, 1677–1680. [Google Scholar] [CrossRef] [PubMed]
- Haefliger, P.; Mathieu-Nolf, M.; Lociciro, S.; Ndiaye, C.; Coly, M.; Diouf, A.; Faye, A.L.; Sow, A.; Tempowski, J.; Pronczuk, J.; et al. Mass Lead Intoxication from Informal Used Lead-Acid Battery Recycling in Dakar, Senegal. Environ. Heal. Perspect. 2009, 117, 1535–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Kuijp, T.J.; Huang, L.; Cherry, C. Health hazards of China’s lead-acid battery industry: A review of its market drivers, production processes, and health impacts. Environ. Heal. 2013, 12, 61. [Google Scholar] [CrossRef] [Green Version]
- Visconti, D.; Fiorentino, N.; Stinca, A.; Di Mola, I.; Fagnano, M. Use of the native vascular flora for risk assessment and management of an industrial contaminated soil. Ital. J. Agron. 2018, 13, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Agency for Toxic Substances & Disease Registry, 2019. Priority List of Hazardous Substances. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 20 July 2020).
- Counter, S.A.; Vahter, M.; Laurell, G.; Buchanan, L.H.; Ortega, F.; Skerfving, S. High lead exposure and auditory sensory-neural function in Andean children. Environ. Heal. Perspect. 1997, 105, 522–526. [Google Scholar] [CrossRef]
- Tong, S.; Von Schirnding, Y.E.; Prapamontol, T. Environmental lead exposure: A public health problem of global dimensions. Bull. World Heal. Organ. 2000, 78, 1068–1077. [Google Scholar]
- Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P.B. Neurotoxic effects and biomarkers of lead exposure: A review. Rev. Environ. Heal. 2009, 24, 15–45. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Z.; Liu, M.; Huang, Y.; Fan, R.; Su, Y.; Hu, G.; Peng, X.; Peng, X. Lead exposure assessment from study near a lead-acid battery factory in China. Sci. Total. Environ. 2012, 429, 191–198. [Google Scholar] [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Ventorino, V.; Chiurazzi, M.; Aponte, M.; Pepe, O.; Moschetti, G. Genetic Diversity of a Natural Population of Rhizobium leguminosarum bv. viciae Nodulating Plants of Vicia faba in the Vesuvian Area. Curr. Microbiol. 2007, 55, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Pepe, O.; Ventorino, V.; Blaiotta, G. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application. Waste Manag. 2013, 33, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Ventorino, V.; Parillo, R.; Testa, A.; Viscardi, S.; Espresso, F.; Pepe, O. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control. J. Environ. Manag. 2016, 166, 168–177. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Li, X.; Li, X.; Wang, J.; Zhang, H. Changes of microbial population and N-cycling function genes with depth in three Chinese paddy soils. PLoS ONE 2017, 12, e0189506. [Google Scholar] [CrossRef]
- Levy-Booth, D.J.; Prescott, C.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Boil. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Francis, C.A.; Beman, J.M.; Kuypers, M.M.M. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 2007, 1, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; dos Santos, C.A.; Alves, P.R.L.; de Paula, A.M.; Nakatani, A.S.; Pereira, J.D.; Nogueira, M.A. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, N.; Mori, M.; Cenvinzo, V.; Duri, L.G.; Gioia, L.; Visconti, D.; Fagnano, M. Assisted phytoremediation for restoring soil fertility in contaminated and degraded land. Ital. J. Agron. 2018, 13, 34–44. [Google Scholar] [CrossRef]
- De Araújo, J.D.C.T.; Nascimento, C.W.A. Phytoextraction of Lead from Soil from a Battery Recycling Site: The Use of Citric Acid and NTA. Water, Air, Soil Pollut. 2009, 211, 113–120. [Google Scholar] [CrossRef]
- Pérez-López, R.; García, B.M.; Abreu, M.M.; Nieto, J.M.; Córdoba, F. Erica andevalensis and Erica australis growing in the same extreme environments: Phytostabilization potential of mining areas. Geoderma 2014, 194–203. [Google Scholar] [CrossRef]
- Radziemska, M.; Vaverková, M.D.; Baryła, A. Phytostabilization—Management Strategy for Stabilizing Trace Elements in Contaminated Soils. Int. J. Environ. Res. Public Heal. 2017, 14, 958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visconti, D.; Fiorentino, N.; Caporale, A.G.; Stinca, A.; Adamo, P.; Motti, R.; Fagnano, M. Analysis of native vegetation for detailed characterization of a soil contaminated by tannery waste. Environ. Pollut. 2019, 252, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Gil-Loaiza, J.; White, S.A.; Root, R.A.; Solís-Dominguez, F.A.; Hammond, C.M.; Chorover, J.; Maier, R.M. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Sci. Total. Environ. 2016, 565, 451–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radziemska, M. Aided Phytostabilization of Copper Contaminated Soils with L. Perenne and Mineral Sorbents as Soil Amendments. Civ. Environ. Eng. Rep. 2017, 26, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Atabayeva, S. Heavy Metals Accumulation Ability of Wild Grass Species from Industrial Areas of Kazakhstan; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; Volume 3, pp. 157–208. [Google Scholar]
- Visconti, D.; Álvarez-Robles, M.J.; Fiorentino, N.; Fagnano, M.; Clemente, R. Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere 2020, 260, 127661. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Abadi, V.A.J.M.; Da Silva, J.A.T. Potential of arbuscular mycorrhizae and tall fescue in remediation of soils polluted with zinc. Chem. Ecol. 2020, 36, 122–137. [Google Scholar] [CrossRef]
- Beddows, A.R. Dactylis glomerata L. J. Ecol. 1959, 47, 223. [Google Scholar] [CrossRef]
- Gibson, D.J.; Newman, J.A. Festuca arundinacea Schreber (F. elatior L. ssp. arundinacea (Schreber) Hackel). J. Ecol. 2001, 89, 304–324. [Google Scholar] [CrossRef]
- Flora of China. eFloras.org Home Page. Available online: http://www.efloras.org/flora_page.aspx?flora_id=2 (accessed on 17 August 2020).
- Beddows, A.R. Lolium Perenne L. J. Ecol. 1967, 55, 567. [Google Scholar] [CrossRef]
- Chiu, K.; Ye, Z.; Wong, M. Growth of and on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresour. Technol. 2006, 97, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Mahoney, M.; Sprenger, M. A comparison of the efficacy and ecosystem impact of residual-based and topsoil-based amendments for restoring historic mine tailings in the Tri-State mining district. Sci. Total. Environ. 2014, 485, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Min, H.-G.; Lee, S.-H.; Kim, J.-G. A Comparative Study on Poaceae and Leguminosae Forage Crops for Aided Phytostabilization in Trace-Element-Contaminated Soil. Agron. 2018, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Lebrun, M.; De Zio, E.; Miard, F.; Scippa, G.S.; Renzone, G.; Scaloni, A.; Bourgerie, S.; Morabito, D.; Trupiano, D. Amending an As/Pb contaminated soil with biochar, compost and iron grit: Effect on Salix viminalis growth, root proteome profiles and metal(loid) accumulation indexes. Chemosphere 2020, 244, 125397. [Google Scholar] [CrossRef]
- Alluvione, F.; Fiorentino, N.; Bertora, C.; Zavattaro, L.; Fagnano, M.; Chiarandà, F.Q.; Grignani, C. Short-term crop and soil response to C-friendly strategies in two contrasting environments. Eur. J. Agron. 2013, 45, 114–123. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Fagnano, M.; Adamo, P.; Zampella, M.; Fiorentino, N. Environmental and agronomic impact of fertilization with composted organic fraction from municipal solid waste: A case study in the region of Naples, Italy. Agric. Ecosyst. Environ. 2011, 141, 100–107. [Google Scholar] [CrossRef]
- Clemente, R.; Pardo, T.; Madejón, P.; Madejón, E.; Bernal, M.P. Food byproducts as amendments in trace elements contaminated soils. Food Res. Int. 2015, 73, 176–189. [Google Scholar] [CrossRef]
- Fiorentino, N.; Fagnano, M.; Impagliazzo, A.; Mori, M.; Ventorino, V.; Zoina, A.; Adamo, P.; Pepe, O. Assisted phytoextraction of heavy metals: Compost and Trichoderma effects on giant reed (Arundo donax L.) uptake and soil N-cycle microflora. Ital. J. Agron. 2013, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-H.; Wu, H.-X.; Huang, L.; Liu, C.-J. From Homogeneous to Heterogeneous: A Simple Approach to Prepare Polymer Brush Modified Surfaces for Anti-Adhesion of Bacteria. Colloid Interface Sci. Commun. 2018, 23, 21–28. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wang, X.; Yang, X.; Cui, Z. Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum. Chemosphere 2019, 224, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.-H.; Zhou, Z.; Gao, Y.-Q.; Yuan, X.-T.; Ai, Y.-J.; Zhang, J.-Y.; Zuo, W.-Z.; Taylor, A.A.; Nan, S.-Q.; Li, F.-P. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. Int. J. Phytoremediation 2017, 19, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Upadhyaya, H.; Panda, S.K.; Bhattacharjee, M.K.; Dutta, S. Role of arbuscular mycorrhiza in heavy metal tolerance in plants: Prospects for phytoremidiation. J. Phytol. 2010, 2, 16–27. [Google Scholar]
- Italian Legislative Decree 152. Environmental Regulations. Decree n. 152, April 3, 2006. (Norme in Materia Ambientale. Decreto n. 152, 3 Aprile 2006). Available online: https://www.gazzettaufficiale.it/dettaglio/codici/materiaAmbientale (accessed on 21 July 2020).
- BBodSchV. Bodenschutz- und Altlastenverordnung (Federal Soil Protection and Contaminated Sites Ordinance); 12 July 1999; Germany. Available online: https://www.gesetze-im-internet.de/bbodschv/BBodSchV.pdf (accessed on 20 July 2020).
- ASP. Act No. 220/2004 Coll. on the Protection and Use of the Agricultural Soil; The National Council of the Slovak Republic: Bratislava, Slovakia, 2004.
- Carlon, C. Derivation Methods of Soil Screening Values in Europe. A Review and Evaluation of National Procedures towards Harmonization, EUR 22805-EN; European Commission, Joint Research Centre, ISPRA: Rome, Italy, 2007; p. 306. [Google Scholar]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Anal. Bioanal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- European Union Regulation No. 1275 of 6 December 2013 Amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as Regards Maximum Levels for Arsenic, Cadmium, Lead, Nitrites, Volatile Mustard Oil and Harmful Botanical Impurities Text with EEA Relevance. Available online: https://op.europa.eu/en/publication-detail/-/publication/79e4ba4c-5f1d-11e3-ab0f-01aa75ed71a1/language-en (accessed on 1 September 2020).
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- DIN 19730. Bodenbeschaffenheit-Extraktion von Spurenelementen mit Ammoniumnitratlösung; Beuth Verlag: Berlin, Germany, 1997. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- ISO 12914. Soil Quality—Microwave-Assisted Extraction of the Aqua Regia Soluble Fraction for the Determination of Elements; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Romano, I.; Ventorino, V.; Pepe, O. Effectiveness of Plant Beneficial Microbes: Overview of the Methodological Approaches for the Assessment of Root Colonization and Persistence. Front. Plant Sci. 2020, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Rösch, C.; Mergel, A.; Bothe, H. Biodiversity of Denitrifying and Dinitrogen-Fixing Bacteria in an Acid Forest Soil. Appl. Environ. Microbiol. 2002, 68, 3818–3829. [Google Scholar] [CrossRef] [Green Version]
- Rotthauwe, J.H.; Witzel, K.P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammo- nia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, N.; Ventorino, V.; Bertora, C.; Pepe, O.; Giancarlo, M.; Grignani, C.; Fagnano, M. Changes in soil mineral N content and abundances of bacterial communities involved in N reactions under laboratory conditions as predictors of soil N availability to maize under field conditions. Boil. Fertil. Soils 2016, 52, 523–537. [Google Scholar] [CrossRef]
- Kant, S. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. Semin. Cell Dev. Boil. 2018, 74, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Visconti, D.; Fiorentino, N.; Cozzolino, E.; Woo, S.; Fagnano, M.; Rouphael, Y. Can Trichoderma-Based Biostimulants Optimize N Use Efficiency and Stimulate Growth of Leafy Vegetables in Greenhouse Intensive Cropping Systems? Agronomy 2020, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Materechera, S.A.; Salagae, A.M. Use of partially decomposed cattle and chicken compost amendment with wood ash in two South Africa arable soils with contrasting texture, effect on nutrient uptake, early growth, and dry matter yield of maize. Commun. Soil Sci. Plant Anal. 2002, 33, 179–201. [Google Scholar] [CrossRef]
- Cambardella, C.; Richard, T.L.; Russell, A. Compost mineralization in soil as a function of composting process conditions. Eur. J. Soil Boil. 2003, 39, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Binh, N.T.; Shima, K. Nitrogen Mineralization in Soil Amended with Compost and Urea as Affected by Plant Residues Supplements with Controlled C/N Ratios. J. Adv. Agric. Technol. 2018, 5, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Duri, L.G.; Fiorentino, N.; Cozzolino, E.; Ottaiano, L.; Agrelli, D.; Fagnano, M. Bioassays for evaluation of sanitary risks from food crops cultivated in potentially contaminated sites. Ital. J. Agron. 2018, 13, 45–52. [Google Scholar]
- Duri, L.G.; Visconti, D.; Fiorentino, N.; Adamo, P.; Fagnano, M.; Caporale, A.G. Health Risk Assessment in Agricultural Soil Potentially Contaminated by Geogenic Thallium: Influence of Plant Species on Metal Mobility in Soil-Plant System. Agron. 2020, 10, 890. [Google Scholar] [CrossRef]
- Göhre, V.; Paszkowski, U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 2006, 223, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Janoušková, M.; Pavlíková, D. Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant Soil 2010, 332, 511–520. [Google Scholar] [CrossRef]
- Alguacil, M.; Torrecillas, E.; Caravaca, F.; Fernandez, D.; Azcón, R.; Roldan, A. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Boil. Biochem. 2011, 43, 1498–1508. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Shi, Z.; Tong, R.; Adams, C.A.; Shi, X. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants—A soil microcosm experiment. Chemosphere 2016, 147, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, J.; Yue, F.; Yan, X.; Wang, F.; Bloszies, S.; Wang, Y. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 2018, 194, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Singh, P.C.; Mishra, A.; Chauhan, P.S.; Dwivedi, S.; Bais, R.T.; Tripathi, R.D. Trichoderma: A potential bioremediator for environmental clean up. Clean Technol. Environ. Policy 2013, 15, 541–550. [Google Scholar] [CrossRef]
- Mohsenzadeh, F.; Shahrokhi, F. Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. J. Environ. Heal. Sci. Eng. 2014, 12, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoor, M.; Gul, I.; Kallerhoff, J.; Arshad, M. Fungi-assisted phytoextraction of lead: Tolerance, plant growth–promoting activities and phytoavailability. Environ. Sci. Pollut. Res. 2019, 26, 23788–23797. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Hodge, A.; Jones, D. Sporulation of arbuscular mycorrhizal fungi in organic-rich patches following host excision. Appl. Soil Ecol. 2010, 46, 247–250. [Google Scholar] [CrossRef]
- Bukovská, P.; Gryndler, M.; Gryndlerová, H.; Püschel, D.; Jansa, J. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers. Front. Microbiol. 2016, 7, 711. [Google Scholar] [CrossRef]
- Nuccio, E.E.; Herman, D.J.; Weber, P.K.; Firestone, M.K.; Pett-Ridge, J.; Hodge, A. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ. Microbiol. 2013, 15, 1870–1881. [Google Scholar] [CrossRef]
- Bukovska, P.; Bonkowski, M.; Konvalinkovã¡, T.; Beskid, O.; Hujslová, M.; Püschel, D.; Řezáčová, V.; Gutiérrez-Núñez, M.S.; Gryndler, M.; Jansa, J. Utilization of organic nitrogen by arbuscular mycorrhizal fungi—Is there a specific role for protists and ammonia oxidizers? Mycorrhiza 2018, 28, 269–283. [Google Scholar] [CrossRef]
- Zhang, F.; Huo, Y.; Cobb, A.B.; Luo, G.; Zhou, J.; Yang, G.; Wilson, G.W.T.; Zhang, Y. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass. Front. Microbiol. 2018, 9, 848. [Google Scholar] [CrossRef]
- Zhang, F.; Huo, Y.; Xu, X.; Hu, J.; Sun, X.; Xiao, Y.; Zhang, Y. Trichoderma improves the growth of Leymus chinensis. Boil. Fertil. Soils 2018, 54, 685–696. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. How Plant Root Exudates Shape the Nitrogen Cycle. Trends Plant Sci. 2017, 22, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Luo, N.; Liu, C.; Zeng, G.; Li, Z.; Huang, B.; Zhu, Y. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Köhler, J.; Caravaca, F.; Azcón, R.; Diaz, G.; Roldan, A. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci. Total. Environ. 2015, 514, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.M.; Mazen, M.B.-E.-D.; Nafady, N.A.; Monsef, O.A. Bioavailability of cadmium and nickel to Daucus carota L. and Corchorus olitorius L. treated by compost and microorganisms. Soil Environ. 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Vinci, G.; Cozzolino, V.; Mazzei, P.; Monda, H.; Spaccini, R.; Piccolo, A. An alternative to mineral phosphorus fertilizers: The combined effects of Trichoderma harzianum and compost on Zea mays, as revealed by 1H NMR and GC-MS metabolomics. PLoS ONE 2018, 13, e0209664. [Google Scholar] [CrossRef] [Green Version]
- Bali, A.S.; Sidhu, G.P.S.; Kumar, V. Root exudates ameliorate cadmium tolerance in plants: A review. Environ. Chem. Lett. 2020, 18, 1243–1275. [Google Scholar] [CrossRef]
- Hartley, W.; Dickinson, N.M.; Riby, P.; Lepp, N.W. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ. Pollut. 2009, 157, 2654–2662. [Google Scholar] [CrossRef]
- Ciadamidaro, L.; Puschenreiter, M.; Santner, J.; Wenzel, W.W.; Madejón, P.; Madejón, E. Assessment of trace element phytoavailability in compost amended soils using different methodologies. J. Soil. Sedim. 2015, 17, 1251–1261. [Google Scholar] [CrossRef] [Green Version]
- Beesley, L.; Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 2011, 43, 188–196. [Google Scholar] [CrossRef]
- Álvarez-Rogel, J.; Gómez, M.D.C.T.; Conesa, H.M.; Parraga-Aguado, I.; González-Alcaraz, M.N. Biochar from sewage sludge and pruning trees reduced porewater Cd, Pb and Zn concentrations in acidic, but not basic, mine soils under hydric conditions. J. Environ. Manag. 2018, 223, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Haynes, R.J.; Naidu, R.; Belyaeva, O.; Kim, K.-R.; Lamb, D.T.; Bolan, N. Natural Attenuation of Zn, Cu, Pb and Cd in Three Biosolids-Amended Soils of Contrasting pH Measured Using Rhizon Pore Water Samplers. Water Air Soil Pollut. 2011, 221, 351–363. [Google Scholar] [CrossRef]
- Rocco, C.; Seshadri, B.; Adamo, P.; Bolan, N.; Mbene, K.; Naidu, R. Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils. Environ. Sci. Pollut. Res. 2018, 25, 25896–25905. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci. Total. Environ. 2017, 601, 1591–1605. [Google Scholar] [CrossRef]
- Ventorino, V.; Pascale, A.; Fagnano, M.; Adamo, P.; Faraco, V.; Rocco, C.; Fiorentino, N.; Pepe, O. Soil tillage and compost amendment promote bioremediation and biofertility of polluted area. J. Clean. Prod. 2019, 239, 118087. [Google Scholar] [CrossRef]
- Artursson, V.; Finlay, R.D.; Jansson, J.K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 2006, 8, 1–10. [Google Scholar] [CrossRef]
- El Sharkawi, H.; Yamamoto, S.; Honna, T. Rice yield nutrient uptake as affected by cyanobacteria soil amendments—A pot experiment. J. Plant Nutr. Soil Sci. 2006, 169, 809–815. [Google Scholar] [CrossRef]
- Ventorino, V.; De Marco, A.; Pepe, O.; De Santo, A.V.; Moschetti, G. Impact of Innovative Agricultural Practices of Carbon Sequestration on Soil Microbial Community. In Carbon Sequestration in Agricultural Soils; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2011; pp. 145–177. [Google Scholar]
- Gupta, R.; Bisaria, V.S.; Sharma, S. Response of rhizospheric bacterial communities of Cajanus cajan to application of bioinoculants and chemical fertilizers: A comparative study. Eur. J. Soil Boil. 2016, 75, 107–114. [Google Scholar] [CrossRef]
- Nelson, K.N.; Neilson, J.W.; Root, R.A.; Chorover, J.; Maier, R.M. Abundance and Activity of 16S rRNA, AmoA and NifH Bacterial Genes during Assisted Phytostabilization of Mine Tailings. Int. J. Phytoremediat. 2015, 17, 493–502. [Google Scholar] [CrossRef]
- Verhamme, D.T.; I Prosser, J.; Nicol, G.W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 2011, 5, 1067–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, K.; Van Nostrand, J.D.; Vangronsveld, J.; Witters, N.; Janssen, J.; Kumpiene, J.; Siebielec, G.; Galazka, R.; Giagnoni, L.; Arenella, M.; et al. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil. Chemosphere 2015, 138, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Buyer, J.S.; Teasdale, J.R.; Roberts, D.P.; Zasada, I.A.; Maul, J.E. Factors affecting soil microbial community structure in tomato cropping systems. Soil Boil. Biochem. 2010, 42, 831–841. [Google Scholar] [CrossRef]
- Boureima, S.; Diouf, M.; Diop, T.A.; Diatta, M.; Leye, E.M.; Ndiaye, F.; Seck, D. Effects of arbuscular mycorrhizal inoculation on the growth and the development of sesame (Sesamum indicum L.). Afr. J. Agric. Res. 2008, 3, 234–238. [Google Scholar]
- Talbi, Z.; Chliyeh, M.; Mouria, B.; El Asri, A.; Ait Aguil, F.; Touhami, A.O.; Benkirane, R.; Douira, A. Effect of double inoculation with endomycorrhizae and Trichoderma harzianum on the growth of carob plants. IJAPBC 2016, 5, 44–58. [Google Scholar]
- Hashem, A.; Tabassum, B.; Fathi Abd Allah, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Pelletier, S.; Dionne, J. Inoculation rate of arbuscular-mycorrhizal fungi Glomus intraradices and Glomus etunicatum affects establishment of landscape turf with no irrigation or fertilizer inputs. Crop. Sci. 2004, 44, 335–338. [Google Scholar] [CrossRef]
- Nikbakht, A.; Pessarakli, M.; Daneshvar-Hakimi-Maibodi, N.; Kafi, M. Perennial Ryegrass Growth Responses to Mycorrhizal Infection and Humic Acid Treatments. Agron. J. 2014, 106, 585–595. [Google Scholar] [CrossRef]
- Harman, G.E. Overview of Mechanisms and Uses ofTrichodermaspp. Phytopathol. 2006, 96, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Al-Bataina, B.B.; Young, T.M.; Ranieri, E. Effects of compost age on the release of nutrients. Int. Soil Water Conserv. Res. 2016, 4, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Azcón, R. Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. J. Soil Sci. Plant Nutr. 2010, 10, 354–372. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Gu, S.; Xin, Y.; Bello, A.; Sun, W.; Xu, X. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil. Front. Microbiol. 2018, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, S.; Mullen, G.J.; Courtney, R. Metal uptake in lolium perenne established on spent mushroom compost amended lead-zinc tailings. Land Degrad. Dev. 2009, 20, 277–282. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments. Bioresour. Technol. 2010, 101, 5667–5676. [Google Scholar] [CrossRef]
- Kacprzak, M.; Grobelak, A.; Grosser, A.; Prasad, M.N.V. Efficacy of Biosolids in Assisted Phytostabilization of Metalliferous Acidic Sandy Soils with Five Grass Species. Int. J. Phytoremediat. 2013, 16, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Özbaş, E.E.; Özcan, H.K.; Ongen, A. Efficiency of MSW compost for reducing uptake of heavy metals by plant. Environ. Prot. Eng. 2016, 42, 4. [Google Scholar] [CrossRef]
- Riedell, W.E. Mineral-nutrient synergism and dilution responses to nitrogen fertilizer in field-grown maize. J. Plant Nutr. Soil Sci. 2010, 173, 869–874. [Google Scholar] [CrossRef]
- Clemente, R.; Walker, D.J.; Bernal, M.P. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environ. Pollut. 2005, 138, 46–58. [Google Scholar] [CrossRef]
- Wang, J.; Ni, L.; Song, Y.; Rhodes, G.; Li, J.; Huang, Q.; Shen, Q. Dynamic Response of Ammonia-Oxidizers to Four Fertilization Regimes across a Wheat-Rice Rotation System. Front. Microbiol. 2017, 8, 630. [Google Scholar] [CrossRef] [Green Version]
- Påhlsson, A.-M.B. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut. 1989, 47, 287–319. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Shi, Z.Y.; Li, Y.J.; Song, Z.M. Effects of AM Inoculation and Organic Amendment, Alone or in Combination, on Growth, P Nutrition, and Heavy-Metal Uptake of Tobacco in Pb-Cd-Contaminated Soil. J. Plant Growth Regul. 2012, 31, 549–559. [Google Scholar] [CrossRef]
- Mau, A.E.; Utami, S.R. Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on availability of soil phosphorus and growth of maize. J. Degr. Min. Lands Manag. 2014, 1, 69–74. [Google Scholar]
- Liu, Y.; Liu, Y.; Ding, Y.; Zheng, J.; Zhou, T.; Pan, G.; Crowley, D.; Li, L.; Zheng, J.; Zhang, X.; et al. Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China. PLoS ONE 2014, 9, e102000. [Google Scholar] [CrossRef]
- Afzal, M.; Yu, M.; Tang, C.; Zhang, L.; Muhammad, N.; Zhao, H.; Feng, J.; Yu, L.; Xu, J. The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. Environ. Int. 2019, 129, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Bolla, K.; Prasad, D.; Subrahmanyam, G. Effect of Cadmium on Abundance and Diversity of Free Living Nitrogen Fixing Azotobacter spp. J. Environ. Sci. Technol. 2012, 5, 184–191. [Google Scholar] [CrossRef]
Units | Soil Properties | Screening Values 1 (mg kg−1) | Trigger Values 2 (mg kg−1) | |
---|---|---|---|---|
Sand | g kg−1 | 630 | ||
Silt | g kg−1 | 210 | ||
Clay | g kg−1 | 160 | ||
pH | 6.78 ± 0.02 | |||
Electrical conductivity (EC) | mS cm−1 | 0.70 ± 0.01 | ||
Organic C (OC) | g kg−1 | 28.0 ± 0.2 | ||
Organic matter (OM) | g kg−1 | 48.0 ± 0.3 | ||
Total N | g kg−1 | 2.5 ± 0.1 | ||
NO3-N | mg kg−1 | 108 ± 2.4 | ||
NH4-N | mg kg−1 | 22.6 ± 0.3 | ||
C/N ratio | 11.2 | |||
Pseudo-total Cd | mg kg−1 | 132 ± 1.6 | 15 | |
Pseudo-total Cu | mg kg−1 | 343 ± 81 | 600 | |
Pseudo-total Pb | mg kg−1 | 36,439 ± 665 | 1000 | |
Pseudo-total Zn | mg kg−1 | 283 ± 3.6 | 1500 | |
NH4NO3-extractable Cd | mg kg−1 | 2.31 ± 0.04 | 0.1 | |
NH4NO3-extractable Cu | mg kg−1 | 0.70 ± 0.01 | 1 | |
NH4NO3-extractable Pb | mg kg−1 | 33.1 ± 1.2 | 0.1 | |
NH4NO3-extractable Zn | mg kg−1 | 0.34 ± 0.02 | 2 |
D. glomerata L. | Mixed Stand of Grasses | ||||||||
---|---|---|---|---|---|---|---|---|---|
NO3-N (mg kg−1) | NH4-N (mg kg−1) | Cd (mg kg−1) | Pb (mg kg−1) | NO3-N (mg kg−1) | NH4-N (mg kg−1) | Cd (mg kg−1) | Pb (mg kg−1) | ||
Compost (C) | C0 | 4.30 | 35 c | 2.27 a | 34 a | 5.49 | 34 c | 2.35 a | 37 a |
C1 | 4.38 | 53 b | 2.10 b | 33 a | 7.78 | 43 b | 2.05 b | 30 c | |
C2 | 3.69 | 62 a | 2.01 b | 27 b | 6.76 | 60 a | 2.11 b | 33 b | |
Biostimulants (B) | B0 | 5.18 | 43 b | 2.39 a | 34 a | 7.22 | 44 b | 2.24 a | 32 |
BP | 4.19 | 55 a | 1.96 b | 25 b | 6.50 | 43 b | 2.06 b | 34 | |
BT | 3.00 | 51 a | 2.03 b | 34 a | 6.31 | 50 a | 2.21 a | 35 | |
C × B | C0-B0 | 6.78 b | 30 f | 2.32 b | 37 ab | 7.27 b | 34 cd | 2.40 b | 33 |
C0-BP | 2.67 b | 39 ef | 2.16 bc | 23 d | 4.78 b | 29 d | 2.36 b | 37 | |
C0-BT | 3.45 b | 35 f | 2.32 b | 42 a | 4.40 b | 40 c | 2.28 b | 41 | |
C1-B0 | 5.51 b | 46 de | 2.44 b | 34 ac | 6.33 b | 36 cd | 2.13 bc | 33 | |
C1-BP | 3.08 b | 57 bc | 1.89 cd | 29 bd | 9.15 b | 50 b | 1.92 c | 27 | |
C1-BT | 4.56 b | 54 bc | 1.98 cd | 36 ab | 7.86 b | 43 bc | 2.09 bc | 31 | |
C2-B0 | 3.26 b | 52 bd | 2.43 b | 32 bd | 8.06 b | 62 a | 2.18 bc | 31 | |
C2-BP | 6.81 b | 70 a | 1.82 cd | 23 d | 5.56 b | 52 ab | 1.89 c | 36 | |
C2-BT | 1.00 b | 65 a | 1.79 d | 26 cd | 6.67 b | 67 a | 2.26 bc | 33 | |
Unplanted Control | 120.00 a | 19 g | 3.34 a | 34 ac | 120.00 a | 19 e | 3.34 a | 34 | |
ANOVA | C | n.s. | ** | ** | ** | n.s. | ** | ** | ** |
B | n.s | ** | ** | ** | n.s. | * | ** | n.s. | |
C × B | ** | ** | ** | ** | ** | ** | ** | n.s. |
D. glomerata L. | Mixed Stand of Grasses | ||||
---|---|---|---|---|---|
nifH (Copies g−1 Soil) | amoA (Copies g−1 Soil) | nifH (Copies g−1 Soil) | amoA (Copies g−1 Soil) | ||
Compost (C) | C0 | 4 × 104 b | 6 × 102 b | 4 × 104 b | 6 × 102 b |
C1 | 8 × 104 b | 51 × 102 b | 8 × 104 b | 50 × 102 b | |
C2 | 29 × 104 a | 258 × 102 a | 30 × 104 a | 254 × 102 a | |
Biostimulants (B) | B0 | 4 × 104 b | 6 × 102 b | 4 × 104 b | 6 × 102 b |
BP | 30 × 104 a | 259 × 102 a | 30 × 104 a | 254 × 102 a | |
BT | 8 × 104 b | 51 × 102 b | 8 × 104 b | 50 × 102 b | |
C × B | C0-B0 | 3 × 104 g | 6 × 102 d | 3 × 104 e | 6 × 102 d |
C0-BP | 4 × 104 ef | 6 × 102 d | 4 × 104 d | 6 × 102 d | |
C0-BT | 3 × 104 g | 6 × 102 d | 3 × 104 e | 6 × 102 d | |
C1-B0 | 3 × 104 g | 6 × 102 d | 3 × 104 e | 6 × 102 d | |
C1-BP | 13 × 104 b | 93 × 102 b | 13 × 104 b | 92 × 102 b | |
C1-BT | 7 × 104 d | 53 × 102 c | 7 × 104 c | 52 × 102 c | |
C2-B0 | 4 × 104 e | 6 × 102 d | 4 × 104 d | 6 × 102 d | |
C2-BP | 71 × 104 a | 678 × 102 a | 73 × 104 a | 666 × 102 a | |
C2-BT | 13 × 104 c | 93 × 102 b | 13 × 104 b | 92 × 102 b | |
Unplanted control | 1 × 104 h | 2 × 102 d | 1 × 104 f | 2 × 102d | |
ANOVA | C | ** | ** | ** | ** |
B | ** | ** | ** | ** | |
C × B | ** | ** | ** | ** |
D. glomerata L. | Mixed Stand of Grasses | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DW (g) | N (%) | N (mg pot−1) | Cd (mg kg−1) | Pb (mg kg−1) | DW (g) | N (%) | N (mg pot−1) | Cd (mg kg−1) | Pb (mg kg−1) | ||
Compost (C) | C0 | 0.42 b | 6.07 a | 23 | 72 a | 558 a | 0.44 | 4.57 c | 18 c | 96 a | 382 a |
C1 | 0.59 a | 3.84 b | 22 | 67 ab | 332 b | 0.43 | 6.82 a | 29 a | 92 a | 287 b | |
C2 | 0.57 a | 4.56 b | 25 | 60 b | 358 b | 0.42 | 5.77 b | 24 b | 62 b | 292 b | |
Biostimulants (B) | B0 | 0.44 c | 4.23 c | 18 c | 70 | 447 | 0.36 c | 5.67 b | 18 c | 89 | 312 |
BP | 0.62 a | 4.80 b | 28 a | 64 | 382 | 0.51 a | 6.14 a | 31 a | 81 | 298 | |
BT | 0.52 b | 5.45 a | 24 b | 65 | 418 | 0.43 b | 5.35 b | 23 b | 81 | 351 | |
C × B | C0-B0 | 0.56 bc | 3.57 | 19 bc | 74 a | 569 | 0.41 bc | 4.80 d | 13 e | 104 a | 308 |
C0-BP | 0.47 cd | 6.21 | 29 a | 68 ab | 352 | 0.51 a | 4.81 d | 24 bd | 86 ab | 340 | |
C0-BT | 0.24 e | 8.43 | 20 bc | 74 a | 752 | 0.41 bc | 4.10 e | 16 de | 97 a | 499 | |
C1-B0 | 0.36 de | 4.30 | 15 c | 64 ac | 311 | 0.33 c | 6.40 b | 21 de | 92 ab | 286 | |
C1-BP | 0.72 a | 3.82 | 27 a | 71 ab | 423 | 0.53 a | 7.31 a | 39 a | 96 ab | 233 | |
C1-BT | 0.70 a | 3.40 | 24 a | 67 ac | 261 | 0.43 bc | 6.76 ab | 29 bc | 89 ab | 341 | |
C2-B0 | 0.40 d | 4.81 | 19 bc | 71 ab | 461 | 0.34 c | 5.79 c | 19 de | 70 bc | 341 | |
C2-BP | 0.66 a | 4.36 | 29 a | 54 c | 371 | 0.49 a | 6.30 bc | 31 b | 60 c | 321 | |
C2-BT | 0.64 a | 4.51 | 28 a | 56 bc | 242 | 0.45 ab | 5.20 d | 23 bd | 56 c | 214 | |
ANOVA | C | ** | ** | n.s | * | * | n.s. | ** | ** | ** | * |
B | ** | ** | * | n.s. | n.s. | ** | ** | ** | n.s. | n.s. | |
C × B | ** | n.s. | * | * | n.s. | * | * | n.s. | * | n.s. |
Variables | Plant-N 1 | Plant-Pb | Plant-Cd | PW-pH | PW-Pb | PW-Cd | Soil-pH | Soil-Pb | Soil-Cd | Soil-NO3 | Soil-NH4 | Soil-amoA | Soil-nifH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant-DW | −0.715 * | −0.442 * | −0.340 | 0.208 | −0.135 | −0.195 | 0.117 | −0.398 * | −0.732 * | 0.074 | 0.295 | 0.305 | 0.200 |
Plant-N1 | 0.346 | 0.212 | −0.282 | 0.128 | 0.216 | −0.126 | 0.141 | 0.260 | −0.257 | −0.355 | −0.171 | −0.166 | |
Plant-Pb | 0.282 | −0.332 | 0.282 | 0.326 | −0.071 | 0.382 * | 0.255 | 0.319 | −0.203 | −0.134 | −0.129 | ||
Plant-Cd | −0.095 | 0.294 | 0.325 | −0.004 | 0.331 | 0.288 | 0.122 | −0.154 | −0.263 | −0.256 | |||
PW-pH | −0.111 | −0.405 * | 0.242 | 0.000 | 0.005 | 0.319 | 0.270 | −0.009 | −0.014 | ||||
PW-Pb | 0.016 | 0.120 | −0.008 | 0.091 | −0.055 | 0.168 | 0.175 | 0.176 | |||||
PW-Cd | 0.306 | 0.313 | 0.261 | 0.364 | −0.282 | −0.344 | −0.354 | ||||||
Soil-pH | 0.140 | −0.097 | −0.005 | −0.107 | −0.142 | −0.147 | |||||||
Soil-Pb | 0.504 | 0.116 | −0.289 | −0.469 * | −0.483 * | ||||||||
Soil-Cd | 0.116 | −0.332 | −0.494 * | −0.493 * | |||||||||
Soil-NO3 | −0.087 | 0.336 | 0.324 | ||||||||||
Soil-NH4 | 0.615 * | 0.624 * | |||||||||||
Soil-amoA | 0.999 * |
Variables | Plant-N 1 | Plant-Pb | Plant-Cd | PW-pH | PW-Pb | PW-Cd | Soil-pH | Soil-Pb | Soil-Cd | Soil-NO3 | Soil-NH4 | Soil-amoA | Soil-nifH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant-DW | 0.113 | −0.251 | 0.131 | −0.339 | −0.110 | 0.234 | −0.098 | 0.066 | −0.116 | −0.205 | 0.012 | 0.323 | 0.324 |
Plant-N1 | −0.283 | −0.096 | 0.347 | 0.218 | 0.170 | −0.038 | −0.583 * | −0.703 * | 0.296 | 0.258 | 0.279 | 0.274 | |
Plant-Pb | 0.215 | −0.157 | −0.056 | −0.288 | 0.324 | 0.450 * | 0.227 | −0.238 | −0.386 | −0.090 | −0.097 | ||
Plant-Cd | −0.328 | −0.338 | 0.307 | 0.308 | 0.058 | 0.292 | 0.254 | −0.271 | −0.291 | −0.304 | |||
PW-pH | 0.126 | −0.525 * | −0.053 | −0.134 | −0.399 | 0.037 | 0.205 | 0.340 | 0.345 | ||||
PW-Pb | 0.208 | −0.091 | −0.159 | −0.191 | 0.064 | 0.134 | −0.038 | −0.037 | |||||
PW-Cd | 0.223 | −0.356 | 0.071 | 0.163 | −0.313 | −0.518 * | −0.523 * | ||||||
Soil-pH | 0.053 | 0.005 | −0.112 | −0.248 | −0.052 | −0.064 | |||||||
Soil-Pb | 0.349 | −0.259 | −0.295 | 0.124 | 0.123 | ||||||||
Soil-Cd | −0.293 | −0.310 | −0.555 * | −0.554 * | |||||||||
Soil-NO3 | 0.186 | −0.117 | −0.121 | ||||||||||
Soil-NH4 | 0.258 | 0.270 | |||||||||||
Soil-amoA | 0.999 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visconti, D.; Caporale, A.G.; Pontoni, L.; Ventorino, V.; Fagnano, M.; Adamo, P.; Pepe, O.; Woo, S.L.; Fiorentino, N. Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment. Agronomy 2020, 10, 1310. https://doi.org/10.3390/agronomy10091310
Visconti D, Caporale AG, Pontoni L, Ventorino V, Fagnano M, Adamo P, Pepe O, Woo SL, Fiorentino N. Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment. Agronomy. 2020; 10(9):1310. https://doi.org/10.3390/agronomy10091310
Chicago/Turabian StyleVisconti, Donato, Antonio Giandonato Caporale, Ludovico Pontoni, Valeria Ventorino, Massimo Fagnano, Paola Adamo, Olimpia Pepe, Sheridan Lois Woo, and Nunzio Fiorentino. 2020. "Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment" Agronomy 10, no. 9: 1310. https://doi.org/10.3390/agronomy10091310
APA StyleVisconti, D., Caporale, A. G., Pontoni, L., Ventorino, V., Fagnano, M., Adamo, P., Pepe, O., Woo, S. L., & Fiorentino, N. (2020). Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment. Agronomy, 10(9), 1310. https://doi.org/10.3390/agronomy10091310