Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
- I: no fertilization (control);
- II, III, and IV: 150 kg N, 200 kg N, and 250 kg N ha−1, respectively, with no S fertilization—as ammonium nitrate (34% N);
- V, VI, and VII: 150 kg N and 30 kg S ha−1, 200 kg N and 40 kg S ha−1, 250 kg N and 50 kg S ha−1, respectively—S was introduced with fertilizer A (a mixture of ammonium nitrate and ammonium sulfate, 26% N and 13% S) conventionally available on the Polish market; N dose was supplemented with ammonium nitrate;
- VIII, IX, and X: 150 kg N and 30 kg S ha−1, 200 kg N and 40 kg S ha−1, 250 kg N and 50 kg S ha−1, respectively—S and N were introduced with fertilizer B (a mixture of ammonium nitrate and ammonium sulfate, 30% N and 6% S) which was a new fertilizer available on the Polish market and containing N and S in proportions designed for cereals cultivation.
2.2. Calculations
- Ea—agronomic efficiency of nitrogen fertilization (kg kg−1 N),
- Y—yield of fertilized plants (kg ha−1),
- Yo—yield of control plants (unfertilized) (kg ha−1),
- D—nitrogen dose (kg N ha−1).
- R—apparent nitrogen recovery (%),
- U— nitrogen uptake by fertilized plants (kg N ha−1),
- Uo— nitrogen uptake by control plants (unfertilized) (kg N ha−1),
- Ep—physiological efficiency of fertilization (kg kg−1 N).
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Curtis, T.; Halford, N.G. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G.; Reynolds, M.P. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Grewal, S.; Goel, S. Current research status and future challenges to wheat production in India. Indian J. Biotechnol. 2015, 14, 445–454. [Google Scholar]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, J.S.; Sareen, S.; Tyagi, B.S.; Singh, G.; Chowdhury, A.K.; Dhar, T.; Singh, V.; King, I.P.; Young, S.D.; Broadley, M.R. Characterising variation in wheat traits under hostile soil conditions in India. PLoS ONE 2017, 12, e0179208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDA. Grain: World Markets and Trade. 2019. Available online: https://apps.fas.usda.gov/psdonline/circulars/grain.pdf (accessed on 17 July 2020).
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). New Food Balances. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 2 December 2019).
- FAO. Cereal Supply and Demand Brief. 2019. Available online: http://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 17 July 2020).
- Antonkiewicz, J.; Kuc, A.; Witkowicz, R.; Tabak, M. Effect of municipal sewage sludge on soil chemical properties and chemical composition of spring wheat. Ecol. Chem. Eng. S 2019, 26, 583–595. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Singh, S.S.; Jain, N.; Singh, G.P.; Prabhu, K. Wheat production in India: Technologies to face future challenges. J. Agric. Sci. 2010, 2, 164. [Google Scholar] [CrossRef] [Green Version]
- Goutam, U.; Kukreja, S.; Tiwari, R.; Chaudhury, A.; Gupta, R.K.; Dholakia, B.B.; Yadav, R. Biotechnological approaches for grain quality improvement in wheat: Present status and future possibilities. Aust. J. Crop Sci. 2013, 7, 469–483. [Google Scholar]
- Peña-Bautista, R.J.; Hernandez-Espinosa, N.; Jones, J.M.; Guzman, C.G.; Braun, H.J. CIMMYT series on carbohydrates, wheat, grains, and health: Wheat-based foods: Their global and regional importance in the food supply, nutrition, and health. Cereal Foods World 2017, 62, 231–249. [Google Scholar] [CrossRef]
- Mueller, B.; Hauser, M.; Iles, C.; Rimi, R.H.; Zwiers, F.W.; Wan, H. Lengthening of the growing season in wheat and maize producing regions. Weather Clim. Extrem. 2015, 9, 47–56. [Google Scholar] [CrossRef] [Green Version]
- El Afandi, G.; Khalil, F.A.; Ouda, S.A. Using irrigation scheduling to increase water productivity of wheat-maize rotation under climate change conditions. Chil. J. Agric. Res. 2010, 70, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Nuttall, J.G.; O’Leary, G.; Panozzo, J.F.; Walker, C.; Barlow, K.; Fitzgerald, G. Models of grain quality in wheat—A review. Field Crop. Res. 2017, 202, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, N.; Sinha, A. Future climate analogues of current wheat production zones in India. Curr. Sci. 2019, 116, 264–271. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef] [Green Version]
- FAO. World Fertilizer Trends and Outlook to 2022. Rome. 2019. Available online: http://www.fao.org/3/ca6746en/CA6746EN.pdf?eloutlink=imf2fao (accessed on 17 July 2020).
- European Commission. From Farm to Fork. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/actions-being-taken-eu/farm-fork_en (accessed on 24 July 2020).
- Jan, M.T.; Khan, M.J.; Khan, A.; Arif, M.; Farhatullah Jan, D.; Saeed, M.; Afridi, M.Z. Improving wheat productivity through source and timing of nitrogen fertilization. Pak. J. Bot. 2011, 43, 905–914. [Google Scholar]
- Carvalho, J.M.G.; Bonfim-Silva, E.M.; Da Silva, T.J.A.; Sousa, H.H.D.F.; Guimarães, S.L.; Pacheco, A.B. Nitrogen and potassium in production, nutrition and water use efficiency in wheat plants. Cienc. Investig. Agrar. 2016, 43, 442–451. [Google Scholar] [CrossRef]
- Ladha, J.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Van Kessel, C.; Richter, D.D.B.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Sci. Rep. 2016, 6, 19355. [Google Scholar] [CrossRef] [Green Version]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic effect of sulfur and nitrogen in the organic and mineral fertilization of durum wheat: Grain yield and quality traits in the mediterranean environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Schulz, R.; Makary, T.; Hubert, S.; Hartung, K.; Gruber, S.; Donath, S.; Döhler, J.; Weis, K.; Ehrhart, E.; Claupein, W.; et al. Is it necessary to split nitrogen fertilization for winter wheat? On-farm research on Luvisols in South-West Germany. J. Agric. Sci. 2015, 153, 575–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, M.; Amiri, M.B. Optimizing application rate of nitrogen, phosphorus and cattle manure in wheat production: An approach to determine optimum scenario using response-surface methodology. J. Soil Sci. Plant Nutr. 2018, 18, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.L.; Kidwell, K.K.; McCracken, V.A.; Bolton, R.P.; Allen, M. Economically optimal wheat yield, protein and nitrogen use component responses to varying N supply and genotype. Front. Plant Sci. 2020, 10, 1790. [Google Scholar] [CrossRef]
- Yu, Z.; Juhász, A.; Islam, S.; Diepeveen, D.A.; Zhang, J.; Wang, P.; Ma, W. Impact of mid-season sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein. Sci. Rep. 2018, 8, 2499. [Google Scholar] [CrossRef] [Green Version]
- Tabak, M.; Filipek-Mazur, B. Influence of sulfur and iron fertilization on nutrient utilization by plants. Infrastrukt. Ekol. Teren. Wiej. 2019, II/1, 53–65. [Google Scholar] [CrossRef]
- Hřivna, L.; Kotková, B.; Burešová, I. Effect of sulphur fertilization on yield and quality of wheat grain. Cereal Res. Commun. 2015, 43, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y. Grain nitrogen concentration in wheat grown under intensive organic manure application on andosols in central Japan. Plant Prod. Sci. 2012, 15, 40–47. [Google Scholar] [CrossRef]
- Dostálová, Y.; Hřivna, L.; Kotková, B.; Buresova, I.; Janeçková, M.; Šottníková, V. Effect of nitrogen and sulphur fertilization on the quality of barley protein. Plant Soil Environ. 2015, 61, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Benin, G.; Bornhofen, E.; Beche, E.; Pagliosa, E.S.; Da Silva, C.L.; Pinnow, C. Agronomic performance of wheat cultivars in response to nitrogen fertilization levels. Acta Sci. Agron. 2012, 34, 275–283. [Google Scholar] [CrossRef]
- Lisowska, A.; Tabak, M.; Filipek-Mazur, B.; Gorczyca, O. Effect of sulfur-containing fertilizers on the quantity and quality of spring oilseed rape and winter wheat yield. J. Elem. 2019, 24, 1383–1394. [Google Scholar] [CrossRef]
- Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 2014, 4, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Cuong, T.X.; Ullah, H.; Datta, A.; Hanh, T.C. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci. 2017, 24, 283–290. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification, 1st ed.; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Industry Association (IFA); International Water Management Institute (IWMI); International Plant Nutrition Institute (IPNI); International Potash Institute (IPI.): Paris, France, 2015; pp. 8–38. ISBN 979-10-92366-02-0. [Google Scholar]
- Wang, Q.; Li, F.; Zhao, L.; Xinhui, Z.; Shi, S.; Zhao, W.; Song, W.; Vance, M.M. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil 2010, 337, 325–339. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Grace, P.R.; Cafiero, G.; Sartori, L.; Pisante, M.; Landi, G.; De Franchi, S.; Basso, F. Criteria for selecting optimal nitrogen fertilizer rates for precision agriculture. Ital. J. Agron. 2009, 4, 147. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, P.; Tong, Y.; Norse, D.; Lu, Y.; Powlson, D. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: A case study from Shaanxi Province, northwest China. Agric. Ecosyst. Environ. 2015, 209, 89–99. [Google Scholar] [CrossRef]
- Walsh, O.S.; Shafian, S.; Christiaens, R.J. Nitrogen fertilizer management in dryland wheat cropping systems. Plants 2018, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Haile, D.; Nigussie, D.; Ayana, A. Nitrogen use efficiency of bread wheat: Effects of nitrogen rate and time of application. J. Soil Sci. Plant Nutr. 2012, 12, 389–409. [Google Scholar] [CrossRef]
- Litke, L.; Gaile, Z.; Ruža, A. Effect of nitrogen fertilization on winter wheat yield and yield quality. Agron. Res. 2018, 16, 500–509. [Google Scholar] [CrossRef]
- Duan, W.; Yu, Z.; Zhang, Y.; Wang, N.; Shi, Y.; Xu, Z. Effects of nitrogen application on biomass accumulation, remobilization, and soil water contents in a rainfed wheat field. Turk. J. Field Crop. 2014, 19, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Ahmad, A.; Syed, W.H.; Khaliq, T.; Asif, M.; Aziz, M.; Mubeen, M. Effects of nitrogen on growth and yield components of wheat (report). Sci. Int. 2011, 24, 331–332. [Google Scholar]
- Aizpurua, A.; Estavillo, J.-M.; Castellón, A.; Alonso, A.; Besga, G.; Ortuzar-Iragorri, M.A. Estimation of optimum nitrogen fertilizer rates in winter wheat in humid mediterranean conditions, II: Economically optimal dose of nitrogen. Commun. Soil Sci. Plant. Anal. 2010, 41, 301–307. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Castellarín, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crop. Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- Klikocka, H.; Cybulska, M.; Nowak, A. Efficiency of fertilization and utilization of nitrogen and sulphur by spring wheat. Pol. J. Environ. Stud. 2017, 26, 2029–2036. [Google Scholar] [CrossRef]
- Noulas, C.; Herrera, J.M.; Tziouvalekas, M.; Qin, R.; Ruijun, Q. Agronomic assessment of nitrogen use efficiency in spring wheat and interrelations with leaf greenness under field conditions. Commun. Soil Sci. Plant. Anal. 2018, 49, 763–781. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Ma, Y.; Jia, Y.; Liang, Q. Apparent accumulated nitrogen fertilizer recovery in long-term wheat—Maize cropping systems in China. Agronomy 2018, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Van Bueren, E.T.L.; Struik, P.C. Diverse concepts of breeding for nitrogen use efficiency. A review. Agron. Sustain. Dev. 2017, 37, 50. [Google Scholar] [CrossRef] [Green Version]
- Ayadi, S.; Karmous, C.; Chamekh, Z.; Hammami, Z.; Baraket, M.; Esposito, S.; Rezgui, S.; Trifa, Y. Effects of nitrogen rates on grain yield and nitrogen agronomic efficiency of durum wheat genotypes under different environments. Ann. Appl. Biol. 2016, 168, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Mandić, V.; Krnjaja, V.; Tomić, Z.; Bijelic, Z.; Simic, A.; Muslic, D.R.; Gogic, M. Nitrogen fertilizer influence on wheat yield and use efficiency under different environmental conditions. Chil. J. Agric. Res. 2015, 75, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Panayotova, G.; Kostadinova, S. Nitrogen fertilization of durum wheat varieties. Bulg. J. Agric. Sci. 2015, 21, 599–604. [Google Scholar]
- Belete, F.; Dechassa, N.; Molla, A.; Tana, T. Effect of nitrogen fertilizer rates on grain yield and nitrogen uptake and use efficiency of bread wheat (Triticum aestivum L.) varieties on the Vertisols of central highlands of Ethiopia. Agric. Food Secur. 2018, 7, 78. [Google Scholar] [CrossRef]
- Szmigiel, A.; Kołodziejczyk, M.; Oleksy, A.; Kulig, B. Efficiency of nitrogen fertilization in spring wheat. Int. J. Plant Prod. 2016, 10, 447–456. [Google Scholar]
- Chuan, L.; He, P.; Zhao, T.; Zheng, H.; Xu, X. Agronomic characteristics related to grain yield and nutrient use efficiency for wheat production in China. PLoS ONE 2016, 11, e0162802. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Xu, Z.; Zhao, J.; Wang, Y.; Yu, Z. Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat—Soil system. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 681–692. [Google Scholar] [CrossRef]
- Velasco, J.L.; Rozas, H.S.; Echeverría, H.E.; Barbieri, P.A. Optimizing fertilizer nitrogen use efficiency by intensively managed spring wheat in humid regions: Effect of split application. Can. J. Plant Sci. 2012, 92, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Karklins, A.; Ruza, A. Nitrogen apparent recovery can be used as the indicator of soil nitrogen supply. Zemdirb. Agric. 2015, 102, 133–140. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Wang, C.; Lu, H.; Li, S.; Xie, Y.; Ma, D.; Zhu, Y.; Guo, T. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE 2017, 12, e0178494. [Google Scholar] [CrossRef]
- Liang, B.; Yang, X.; Murphy, D.V.; He, X.; Zhou, J. Fate of 15 N-labeled fertilizer in soils under dryland agriculture after 19 years of different fertilizations. Biol. Fertil. Soils 2013, 49, 977–986. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Hirel, B.; Tetu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Kubota, H.; Iqbal, M.; Quideau, S.; Dyck, M.; Spaner, D. Agronomic and physiological aspects of nitrogen use efficiency in conventional and organic cereal-based production systems. Renew. Agric. Food Syst. 2018, 33, 443–466. [Google Scholar] [CrossRef]
- Shejbalová, Š.; Černý, J.; Vašák, F.; Kulhánek, M.; Balik, J. Nitrogen efficiency of spring barley in long-term experiment. Plant Soil Environ. 2014, 60, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dong, S.; Dai, X.; Wu, T.; Wang, X.; Bai, H.; Wang, L.; He, M. Combined effect of plant density and nitrogen input on grain yield, nitrogen uptake and utilization of winter wheat. Vegetos 2016, 29, 2. [Google Scholar] [CrossRef]
- Xu, A.; Li, L.; Xie, J.; Wang, X.; Coulter, J.A.; Liu, C.; Wang, L. Effect of long-term nitrogen addition on wheat yield, nitrogen use efficiency, and residual soil nitrate in a semiarid area of the loess plateau of China. Sustainability 2020, 12, 1735. [Google Scholar] [CrossRef] [Green Version]
- Grzebisz, W. Technologies of fertilization of arable crops—Yielding physiology. In Cereals and Maize; Powszechne Wydawnictwo Rolnicze i Leśne Sp. z o.o.: Poznań, Poland, 2012; Volume 2, p. 108. ISBN 978-83-09-01079-1. (In Polish) [Google Scholar]
- Kulhánek, M.; Balík, J.; Černý, J.; Peklová, L.; Sedlář, O. Winter wheat fertilizing using nitrogen—Sulphur fertilizer. Arch. Agron. Soil Sci. 2013, 60, 67–74. [Google Scholar] [CrossRef]
- Sestak, I.; Mesic, M.; Zgorelec, Z.; Kisic, I.; Bašić, F. Winter wheat agronomic traits and nitrate leaching under variable nitrogen fertilization. Plant Soil Environ. 2014, 60, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Liang, X.; Torrion, J.A.; Walsh, O.S.; O’Brien, K.; Liu, Q. the influence of water and nitrogen availability on the expression of end-use quality parameters of spring wheat. Agronomy 2018, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Kahlown, M.A.; Asraf, M.; Roof, A.; Haq, Z.U. Determination of Crop Water Requirement of Major Crops under Shallow Water-Table Conditions; Pakistan Council of Research in Water Resources: Islamabad, Pakistan, 2003; ISBN 969-8469-11-7.
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Mäkinen, H.; Kaseva, J.; Trnka, M.; Balek, J.; Kersebaum, K.; Nendel, C.; Gobin, A.; Olesen, J.E.; Bindi, M.; Ferrise, R.; et al. Sensitivity of European wheat to extreme weather. Field Crop. Res. 2018, 222, 209–217. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Mishra, R.K. Wheat root growth and seasonal water use as affected by irrigation under shallow water table conditions. Plant Soil 1986, 92, 181–188. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield response to water. In FAO Irrigation and Drainage Paper No. 33; FAO: Rome, Italy, 1979; ISBN 9251007446. [Google Scholar]
- Matějková, S.; Kumhálová, J.; Lipavský, J. Evaluation of crop yield under different nitrogen doses of mineral fertilization. Plant Soil Environ. 2010, 56, 163–167. [Google Scholar] [CrossRef] [Green Version]
Treatment | Optimal N Dose (kg N ha−1) | Maximum Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | Mean | 2015 | 2016 | 2017 | Mean | |
Ammonium nitrate: 34% N | 166 | 235 | 269 | 211 | 8053 | 6553 | 9364 | 7904 |
Fertilizer A: 24% N and 13% S | 219 | 153 | 323 | 199 | 8078 | 7126 | 9818 | 8122 |
Fertilizer B: 30% N and 6% S | 170 | 262 | 250 | 217 | 8194 | 6973 | 9833 | 8251 |
Mean for all treatments | 179 | 190 | 274 | 208 | 8084 | 6770 | 9636 | 8086 |
Treatment | Year | Mean | |||
---|---|---|---|---|---|
2015 | 2016 | 2017 | |||
Ammonium nitrate: 34% N | |||||
N dose (kg ha−1) | 150 | 10.7 | 12 | 14.2 | 12.3 |
200 | 8.3 | 4.9 | 11.7 | 8.3 | |
250 | 4.8 | 7.4 | 10.4 | 7.5 | |
Fertilizer A: 26% N and 13% S | |||||
N dose (kg ha−1) | 150 | 10.7 | 17.9 | 14.6 | 14.4 |
200 | 7.7 | 6.1 | 12.8 | 8.9 | |
250 | 6.8 | 6.4 | 11.6 | 8.3 | |
Fertilizer B: 30% N and 6% S | |||||
N dose (kg ha−1) | 150 | 12 | 10.3 | 17.3 | 13.2 |
200 | 8.5 | 10.4 | 14.4 | 11.1 | |
250 | 5.7 | 7.8 | 12.3 | 8.6 | |
Mean | 8.4 | 9.2 | 13.3 | 10.3 | |
LSD0.05 for: | |||||
Treatment | 1 | ||||
Year | 0.6 | ||||
Treatment × year | 1.7 |
Treatment | Year | Mean | |||
---|---|---|---|---|---|
2015 | 2016 | 2017 | |||
Control (no fertilization) | 93.3 | 91 | 114.5 | 99.6 | |
Ammonium nitrate: 34% N | |||||
N dose (kg ha−1) | 150 | 156.0 | 152.6 | 187.8 | 165.5 |
200 | 159.2 | 148.5 | 209.0 | 172.2 | |
250 | 167.1 | 184.7 | 219.4 | 190.4 | |
Fertilizer A: 26% N and 13% S | |||||
N dose (kg ha−1) | 150 | 151.2 | 186.1 | 193.8 | 177.0 |
200 | 165.0 | 164.0 | 217.8 | 182.3 | |
250 | 175.7 | 182.9 | 237.2 | 198.6 | |
Fertilizer B: 30% N and 6% S | |||||
N dose (kg ha−1) | 150 | 159.0 | 162.2 | 197.8 | 173.0 |
200 | 171.7 | 182.0 | 212.7 | 188.8 | |
250 | 170.9 | 191.9 | 240.3 | 201.0 | |
Mean | 156.9 | 164.6 | 203.0 | 174.8 | |
LSD0.05 for: | |||||
Treatment | 4.2 | ||||
Year | 2.3 | ||||
Treatment × year | 7.3 |
Treatment | Year | Mean | |||
---|---|---|---|---|---|
2015 | 2016 | 2017 | |||
Ammonium nitrate: 34% N | |||||
N dose (kg ha−1) | 150 | 41.8 | 41 | 48.9 | 43.9 |
200 | 33 | 28.8 | 47.2 | 36.3 | |
250 | 29.5 | 37.5 | 41.9 | 36.3 | |
Fertilizer A: 26% N and 13% S | |||||
N dose (kg ha−1) | 150 | 38.6 | 63.4 | 52.8 | 51.6 |
200 | 35.8 | 36.5 | 51.6 | 41.3 | |
250 | 33 | 36.8 | 49.1 | 39.6 | |
Fertilizer B: 30% N and 6% S | |||||
N dose (kg ha−1) | 150 | 43.8 | 47.5 | 55.5 | 48.9 |
200 | 39.2 | 45.5 | 49.1 | 44.6 | |
250 | 31.1 | 40.4 | 50.3 | 40.6 | |
Mean | 36.2 | 41.9 | 49.6 | 42.6 | |
LSD0.05 for: | |||||
Treatment | 2.2 | ||||
Year | 1.3 | ||||
Treatment × year | 3.9 |
Treatment | Year | Mean | |||
---|---|---|---|---|---|
2015 | 2016 | 2017 | |||
Ammonium nitrate: 34% N | |||||
N dose (kg ha−1) | 150 | 25.7 | 29.2 | 28.9 | 27.9 |
200 | 25 | 16.4 | 24.8 | 22.1 | |
250 | 16.3 | 19.7 | 24.7 | 20.2 | |
Fertilizer A: 26% N and 13% S | |||||
N dose (kg ha−1) | 150 | 27.7 | 28.2 | 27.6 | 27.8 |
200 | 21.4 | 16.7 | 24.9 | 21 | |
250 | 20.7 | 17.5 | 23.7 | 20.6 | |
Fertilizer B: 30% N and 6% S | |||||
N dose (kg ha−1) | 150 | 27.4 | 21.5 | 31.1 | 26.7 |
200 | 21.7 | 22.9 | 29.4 | 24.7 | |
250 | 18.1 | 19.3 | 24.4 | 20.6 | |
Mean | 22.7 | 21.3 | 26.6 | 23.5 | |
LSD0.05 for: | |||||
Treatment | 1.2 | ||||
Year | 0.7 | ||||
Treatment × year | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabak, M.; Lepiarczyk, A.; Filipek-Mazur, B.; Lisowska, A. Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy 2020, 10, 1304. https://doi.org/10.3390/agronomy10091304
Tabak M, Lepiarczyk A, Filipek-Mazur B, Lisowska A. Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy. 2020; 10(9):1304. https://doi.org/10.3390/agronomy10091304
Chicago/Turabian StyleTabak, Monika, Andrzej Lepiarczyk, Barbara Filipek-Mazur, and Aneta Lisowska. 2020. "Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization" Agronomy 10, no. 9: 1304. https://doi.org/10.3390/agronomy10091304
APA StyleTabak, M., Lepiarczyk, A., Filipek-Mazur, B., & Lisowska, A. (2020). Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy, 10(9), 1304. https://doi.org/10.3390/agronomy10091304