Polymer-Paraburkholderia phytofirmans PsJN Coated Diammonium Phosphate Enhanced Microbial Survival, Phosphorous Use Efficiency, and Production of Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Laboratory Experiments
2.2. Description of Pot Experiment
2.3. Description of Field Experiment
2.4. Statistical Analysis
3. Results
3.1. Laboratory Experiments
3.1.1. Microbial Survival in Polymer Prototype Matrix and after Coating on DAP Fertilizer Surface
3.1.2. Microbes and Phosphorus Release Pattern from Coated DAP in Soil
3.1.3. Effect of Polymer-Bioaugmented PsJN Coated DAP on Wheat Growth and Yield Contributing Parameters under Wire-House Conditions
3.1.4. Effect of Polymer-Bioaugmented PsJN Coated DAP on Nutrients Concentration in Wheat Produces under Wire-House Conditions
3.1.5. Effect of Coated DAP on Phosphorus Efficiency of Wheat under Wire-House Conditions
3.1.6. Effect of Polymer-Bioaugmented PsJN Coated DAP on Wheat Growth and Yield Contributing Parameters under Field Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kidd, P.S.; Dominguez-Rodriguez, M.J.; Diez, J.; Monterroso, C. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 2007, 66, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Yaseen, M.; Naveed, M.; Ahmad, R. Use of controlled release phosphatic fertilizer to improve growth, yield and phosphorus use efficiency of wheat crop. Pak. J. Agric. Sci. 2017, 54, 541–547. [Google Scholar]
- Yaseen, M.; Aziz, M.Z.; Manzoor, A.; Naveed, M.; Hamid, Y.; Noor, S.; Khalid, M.A. Promoting growth, yield and phosphorus use efficiency of crops in maize-wheat cropping system by using polymer coated diammonium phosphate. Commun. Soil Sci. Plant Anal. 2017, 48, 646–655. [Google Scholar] [CrossRef]
- Heffer, P.; Prudehome, M. Fertilizer Outlook 2012–2016. In Proceedings of the 80th International Fertilizer Industry Association (IFA) Annual Conference, Doha, Qatar, 21–23 May 2012. [Google Scholar]
- Trenkel, M.E. Slow and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture; International Fertilizer Industry Association (IFA): Paris, France, 2010. [Google Scholar]
- Naveed, M.; Aziz, M.Z.; Yaseen, M. Microbes for legume improvement. In Perspectives of Endophytic Microbes for Legume Improvement; Zaidi, A., Khan, M.S., Musarrat, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 277–299. [Google Scholar]
- Aziz, M.Z.; Naveed, M.; Abbas, T.; Siddique, S.; Yaseen, M. Alternative Fertilizers and Sustainable Agriculture. In Innovations in Sustainable Agriculture; Springer: Cham, Switzerland, 2019; pp. 231–245. [Google Scholar] [CrossRef]
- Ashraf, M.N.; Aziz, T.; Maqsood, M.A.; Bilal, H.M.; Raza, S.; Zia, M.; Mustafa, A.; Xu, M.; Wang, Y. Evaluating organic materials coating on urea as potential nitrification inhibitors for enhanced nitrogen recovery and growth of maize (Zea mays). Int. J. Agric. Biol. 2019, 22, 1102–1108. [Google Scholar]
- Dubey, S.; Jhelum, V.; Patanjali, P. Controlled release agrochemicals formulations: A review. J. Sci. Ind. Res. 2013, 70, 105–112. [Google Scholar]
- Junli, H.; Xiangui, L.; Junhua, W.; Haiyan, C.; Rui, Y.; Jiabao, Z. Population size and specific potential of P-mineralizing and solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil. Pedobiologia 2009, 53, 49–58. [Google Scholar]
- Ali, M.A.; Naveed, M.; Mustafa, A.; Abbas, A. The good, the bad and the ugly of rhizosphere microbiome. In Probiotics and Plant Health; Springer: Singapore, 2017; pp. 253–290. [Google Scholar]
- Saeed, Z.; Naveed, M.; Imran, M.; Bashir, M.A.; Sattar, A.; Mustafa, A.; Hussain, A.; Xu, M. Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS ONE 2019, 14, e0213016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Guo, L.; Qin, S.; Li, C. Encapsulation of R. planticola from alginate-starch-bentonite and its controlled release and swelling behaviour under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 2012, 39, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y.; de-Bashan, E.L.; Prabhu, S.R.; Hernandez, J. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Schoebitz, M.; Lopez, M.D.; Roldan, A. Bioencapsulation of microbial inoculants for better soil–plant fertilization. Agron. Sustain. Dev. 2013, 33, 751–765. [Google Scholar] [CrossRef]
- Naveed, M.; Mitter, B.; Reichenauer, T.G.; Wieczorek, K.; Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 2014, 97, 30–39. [Google Scholar] [CrossRef]
- Compant, S.; Reiter, B.; Sessitsch, A.; Nowak, J.; Clement, C.; Ait-Barka, E. Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 2005, 71, 1685–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaseen, M.T.; Abbas, T.; Aziz, M.Z.; Wakeel, A.; Yasmeen, H.; Ahmed, W.; Ullah, A.; Naveed, M. Microbial assisted foliar feeding of micronutrients enhance growth, yield and biofortification of wheat. Int. J. Agric. Biol. 2018, 20, 353–360. [Google Scholar] [CrossRef]
- Wolf, B. The comprehensive system of leaf analysis and its use for diagnosis crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters, 1st ed.; Division of Agricultural Sciences, University of California Riverside: Riverside, CA, USA, 1961. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics, 3rd ed.; McGraw Hill, Inc. Book Company: New York, NY, USA, 1997. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Nat. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashan, Y. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 1986, 51, 1089–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, M.B.; Lee, H.; Trevors, J.T. Environmental applications of immobilized microbial cells: A review. J. Ind. Microbiol. 1996, 6, 79–101. [Google Scholar] [CrossRef]
- Du, C.W.; Zhou, J.M.; Shaviv, A. Release characteristics of nutrients from polymercoated compound controlled release fertilizers. J. Polym. Environ. 2006, 14, 223–230. [Google Scholar] [CrossRef]
- Ke, J.; Xing, X.M.; Li, G.H.; Ding, Y.F.; Dou, F.G.; Wang, S.H.; Liu, Z.H.; Tang, S.; Ding, C.Q.; Chen, L. Effects of different controlled-release nitrogen fertilisers on ammonia volatilisation: Nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice. Field Crop. Res. 2017, 205, 147–156. [Google Scholar] [CrossRef]
- Li, P.; Lu, J.; Wang, Y.; Wang, S.; Hussain, S.; Ren, T.; Cong, R.; Li, X. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric. Ecosyst. Environ. 2018, 251, 78–87. [Google Scholar] [CrossRef]
- Mustafa, A.; Naveed, M.; Saeed, Q.; Ashraf, M.N.; Hussain, A.; Abbas, T.; Kamran, M.; Minggang, X. Application Potentials of Plant Growth Promoting Rhizobacteria and Fungi as an Alternative to Conventional Weed Control Methods. Crop Prod. 2019, 205, 147–156. [Google Scholar]
- Trenkel, M.E. Slow and Controlled-Release and Stabilized Fertilizers, 2nd ed.; International Fertilizer Association: Paris, France, 2012. [Google Scholar]
- Simonne, E.H.; Hutchinson, C.M. Controlled-release fertilizers for vegetable in the era of best management practices: Teaching new tricks to an old dog. HortTechnology 2005, 15, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Niemiera, A.X.; Leda, C.E. Nitrogen leaching from Osmocote-fertilized pine bark at leaching fractions of 0 to 0.4. J. Environ. Hort. 2007, 11, 75–77. [Google Scholar]
- Fageria, N.K.; Carvalho, M.C.S. Comparison of conventional and polymer coated urea as nitrogen sources for lowland rice production. J. Plant Nutr. 2014, 37, 1358–1371. [Google Scholar] [CrossRef]
- Xiang, V.; Yun, J.J.; Ping, H.; Zao, L.M. Recent advances on the technologies to increase fertilizer-use efficiency. Agric. Sci. China 2008, 7, 469–479. [Google Scholar]
- Imran, M.; Irfan, M.; Yaseen, M.; Rasheed, N. Application of glycerin and polymer coated diammonium phosphate in alkaline calcareous soil for improving wheat growth, grain yield and phosphorus use efficiency. J. Crop Sci. Biotechnol. 2018, 21, 425–434. [Google Scholar] [CrossRef]
- Jing, J.; Rui, Y.; Zhang, F.; Rengel, Z.; Shen, J. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crop. Res. 2010, 119, 355–364. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Müller, T. Improving fertilizer-depot exploitation and maize growth by inoculation with plant growth-promoting bacteria: From lab to field. Chem. Biol. Technol. Agric. 2016, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Nkebiwe, P.M.; Neumann, G.; Müller, T. Densely rooted rhizosphere hotspots induced around subsurface NH4+-fertilizer depots: A home for soil PGPMs? Chem. Biol. Technol. Agric. 2017, 4, 29. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Gomez-Genao, N.J.; Moradtalab, N.; Wanke, D.; Chrobaczek, V.; Ahmed, A.; Windisch, S.; Geistlinger, J.; Walker, F.; Ludewig, U.; et al. The role of N form supply for PGPM-host plant interactions in maize. J. Plant Nutr. Soil Sci. 2019, 182, 908–920. [Google Scholar] [CrossRef]
- Mpanga, I.A.; Nkebiwe, P.M.; Kuhlmann, K.; Cozzolino, V.; Piccolo, A.; Geistlinger, G.; Berger, N.; Ludewig, U.; Neumann, G. The form of N supply determines plant growth promotion by P-solubilizing microorganisms in maize. Microorganisms 2019, 7, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharucha, U.; Patel, K.; Trivedi, U.B. Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric. Res. 2013, 2, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, G.; Tao Guo, T.; Xing, Y.; Mo, F.; Wang, H.; Fan, J.; Zhang, F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity, and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2020, 1–13. [Google Scholar] [CrossRef]
Treatments | Plant Height (cm) | Root Biomass (g pot−1) | Number of Fertile Tillers (pot−1) | Chlorophyll Contents (SPAD) | Photosynthetic Rate (µmol m−2 s−1) | 1000 Grains Weight (g) | Grains Yield | Straw Yield | Rhizospheric Soil PsJN Recovery | Root Endosphere PsJN Recovery |
---|---|---|---|---|---|---|---|---|---|---|
(g pot−1) | CFU−g Soil | CFU−g Root | ||||||||
T1 (control) | 54 f | 23 f | 5 f | 33 e | 9 f | 31 f | 5 f | 8 f | ---- | ---- |
T2 | 68 de | 34 d | 8 de | 43 d | 16 d | 40 d | 18 de | 26 de | ---- | ---- |
T3 | 75 c | 39 bc | 11 bc | 50 bc | 18 bc | 43 bc | 21 c | 34 bc | ---- | ---- |
T4 | 86 a | 44 a | 14 a | 56 a | 21 a | 47 a | 28 a | 36 a | 8 × 107 a | 6 × 105 a |
T5 | 78 b | 40 b | 11 ab | 51 b | 19 b | 44 b | 24 b | 33 b | 4 × 106 ab | 8 × 104 ab |
T6 | 69 d | 33 de | 9 d | 43 d | 14 e | 38 de | 19 d | 27 d | 6 × 104 c | 3 × 102 c |
HSD | 4.2 | 3.31 | 1.98 | 3.21 | 1.56 | 2.89 | 1.56 | 2.30 | ---- | ---- |
Treatments | Grains | Straw | ||||
---|---|---|---|---|---|---|
Nitrogen | Phosphorus | Potassium | Nitrogen | Phosphorus | Potassium | |
(%) | (%) | |||||
T1 (control) | 1.23 f | 0.10 f | 0.82 f | 1.01 f | 0.08 f | 1.08 f |
T2 | 1.74 de | 0.25 e | 1.10 de | 1.52 d | 0.18 e | 1.45 e |
T3 | 2.04 c | 0.29 c | 1.23 bc | 1.63 c | 0.20 cd | 1.68 c |
T4 | 2.38 a | 0.37 a | 1.42 a | 1.99 a | 0.24 a | 1.98 a |
T5 | 2.18 b | 0.32 b | 1.30 b | 1.79 b | 0.23 ab | 1.82 b |
T6 | 1.82 d | 0.27 d | 1.11 d | 1.49 de | 0.21 c | 1.59 cd |
HSD | 0.18 | 0.03 | 0.09 | 0.11 | 0.012 | 0.12 |
Treatments | Plant Height (cm) | Chlorophyll Contents (SPAD) | Grains Yield | Straw Yield | Total P † Uptake | P Recovery Efficiency | P Agronomic Efficiency |
---|---|---|---|---|---|---|---|
(kg ha−1) | (kg grains kg−1 DAP) | ||||||
T1 (control) | 65 f | 32 f | 2150 f | 3333 f | 9 f | ______ | ______ |
T2 | 77 d | 43 de | 4395 d | 6400 d | 27 de | 20 e | 25 e |
T3 | 83 c | 48 c | 4885 bc | 6850 bc | 33 bc | 26.6 d | 31 d |
T4 | 103 a | 54 a | 5400 a | 7344 a | 40 a | 34 c | 36 c |
T5 | 92 b | 51 b | 4900 b | 6900 b | 34 b | 37 b | 41 b |
T6 | 75 de | 44 d | 4300 de | 6200 e | 28 d | 42 a | 48 a |
HSD | 6.04 | 2.34 | 103.01 | 59.13 | 1.78 | 2.22 | 3.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, M.Z.; Yaseen, M.; Naveed, M.; Wang, X.; Fatima, K.; Saeed, Q.; Mustafa, A. Polymer-Paraburkholderia phytofirmans PsJN Coated Diammonium Phosphate Enhanced Microbial Survival, Phosphorous Use Efficiency, and Production of Wheat. Agronomy 2020, 10, 1344. https://doi.org/10.3390/agronomy10091344
Aziz MZ, Yaseen M, Naveed M, Wang X, Fatima K, Saeed Q, Mustafa A. Polymer-Paraburkholderia phytofirmans PsJN Coated Diammonium Phosphate Enhanced Microbial Survival, Phosphorous Use Efficiency, and Production of Wheat. Agronomy. 2020; 10(9):1344. https://doi.org/10.3390/agronomy10091344
Chicago/Turabian StyleAziz, Muhammad Zahir, Muhammad Yaseen, Muhammad Naveed, Xiukang Wang, Kaniz Fatima, Qudsia Saeed, and Adnan Mustafa. 2020. "Polymer-Paraburkholderia phytofirmans PsJN Coated Diammonium Phosphate Enhanced Microbial Survival, Phosphorous Use Efficiency, and Production of Wheat" Agronomy 10, no. 9: 1344. https://doi.org/10.3390/agronomy10091344
APA StyleAziz, M. Z., Yaseen, M., Naveed, M., Wang, X., Fatima, K., Saeed, Q., & Mustafa, A. (2020). Polymer-Paraburkholderia phytofirmans PsJN Coated Diammonium Phosphate Enhanced Microbial Survival, Phosphorous Use Efficiency, and Production of Wheat. Agronomy, 10(9), 1344. https://doi.org/10.3390/agronomy10091344