Double-Double Row Planting Mode at Deficit Irrigation Regime Increases Winter Wheat Yield and Water Use Efficiency in North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design and Crop Management
2.3. Sampling and Calculations
2.3.1. Winter Wheat Yield
2.3.2. Soil Water Content and Storage
2.3.3. Calculation of Evapotranspiration
2.3.4. Water Use Efficiency
2.4. Statistical Analyses
3. Results
3.1. Soil Water Content at Different Soil Layers at GS35, GS49, and GS71
3.2. Soil Water Content during the Whole Growing Season of Winter Wheat
3.3. Soil Water Storage at Different Growth Stages
3.4. Evapotranspiration during Different Growth Stages
3.5. Yield, Water Use Efficiency, Seasonal Soil Water Depletion, and Evapotranspiration
3.6. Relationship Between Yield and Evapotranspiration
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luo, J.; Shen, Y.; Qi, Y.; Zhang, Y.; Xiao, D. Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China. Agric. Syst. 2018, 159, 32–41. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Slafer, G.A.; Davies, W.J.; Berry, P.M.; Sylvester-Bradley, R.; Martre, P.; Calderini, D.F.; Griffiths, S.; Reynolds, M.P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 2011, 62, 469–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19. [Google Scholar] [CrossRef]
- Knapp, A.K.; Briggs, J.M.; Koelliker, J.K. Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 2001, 4, 19–28. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Liu, X.; Liu, X.; Shao, L.; Chen, S.; Wang, J.; Dong, X. Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain. Agric. Water Manag. 2019, 211, 202–209. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Li, J.; Liu, Z.; Zhao, Z.; Zhang, Y.; Zhou, S.; Wang, Z. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crop. Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Pei, H.; Min, L.; Qi, Y.; Liu, X.; Jia, Y.; Shen, Y.; Liu, C. Impacts of varied irrigation on field water budegts and crop yields in the North China Plain: Rainfed vs. irrigated double cropping system. Agric. Water Manag. 2017, 190, 42–54. [Google Scholar] [CrossRef]
- Liang, H.; Qin, W.; Hu, K.; Tao, H.; Li, B. Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain. Agric. Water Manag. 2019, 213, 732–741. [Google Scholar] [CrossRef]
- Deng, X.-P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Man, J.; Shi, Y.; Yu, Z.; Zhang, Y. Dry matter production, photosynthesis of flag leaves and water use in winter wheat are affected by supplemental irrigation in the Huang-Huai-Hai Plain of China. PLoS ONE 2015, 10, e0137274. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop. Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Zhou, X.; Chen, Y.; Ouyang, Z. Planting pattern and irrigation effects on water-use efficiency of winter wheat. Crop. Sci. 2014, 54, 1166–1174. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.; Ma, X.; Ahmad, I.; Jia, Q.; Akmal, M.; Hussain, Z.; Arif, M.; Cai, T.; Zhang, J.; et al. Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns. Agric. Water Manag. 2019, 219, 1–11. [Google Scholar] [CrossRef]
- Xu, C.; Tao, H.; Tian, B.; Gao, Y.; Ren, J.; Wang, P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crop. Res. 2016, 196, 268–275. [Google Scholar] [CrossRef]
- Ali, S.; Ma, X.; Jia, Q.; Ahmad, I.; Ahmad, S.; Sha, Z.; Yun, B.; Muhammad, A.; Ren, X.; Shah, S.; et al. Supplemental irrigation strategy for improving grain filling, economic return, and production in winter wheat under the ridge and furrow rainwater harvesting system. Agric. Water Manag. 2019, 226, 105842. [Google Scholar] [CrossRef]
- Zhou, X.B.; Chen, Y.H.; Ouyang, Z. Spacing between rows: Effects on water-use efficiency of double-cropped wheat and soybean. J. Agric. Sci. 2013, 153, 90–101. [Google Scholar] [CrossRef]
- Zhang, X.; Kamran, M.; Li, F.; Xue, X.; Jia, Z.; Han, Q. Optimizing fertilization under ridge-furrow rainfall harvesting system to improve foxtail millet yield and water use in a semiarid region, China. Agric. Water Manag. 2020, 227, 105852. [Google Scholar] [CrossRef]
- Ghasemi-Aghbolaghi, S.; Sepaskhah, A.R. Barley (Hordeum vulgare L.) response to partial root drying irrigation, planting method and nitrogen application rates. Int. J. Plant Prod. 2018, 12, 13–24. [Google Scholar] [CrossRef]
- Jia, Q.; Sun, L.; Ali, S.; Liu, D.; Zhang, Y.; Ren, X.; Zhang, P.; Jia, Z. Deficit irrigation and planting patterns strategies to improve maize yield and water productivity at different plant densities in semi-arid regions. Sci. Rep. 2017, 7, 13881. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Chen, J.; Wang, Z.; Wu, X.; Wu, X.; Ding, R.; Han, Q.; Cai, T.; Jia, Z. Ridge and furrow planting pattern optimizes canopy structure of summer maize and obtains higher grain yield. Field Crop. Res. 2018, 219, 242–249. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, X.B.; Chen, Y.H. Effects of irrigation and precision planting patterns on photosynthetic product of wheat. Agron. J. 2016, 108, 2322–2328. [Google Scholar] [CrossRef]
- Zhou, X.B.; Yang, L.; Shi, L.B.; Yong, Y.Y. Effect of population horizontal structure and water condition on physiological characteristic and evapotranspiration of winter wheat. Int. J. Agric. Biol. 2019, 22, 263–269. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Wang, L.; He, X.; Zhang, X.Y.; Chen, S.; Chen, J.; Yang, Y. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agric. For. Meteorol. 2008, 148, 1848–1859. [Google Scholar] [CrossRef]
- Xue, Q.; Zhu, Z.; Musick, J.; Stewart, B.A.; Dusek, D.A. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil 2003, 257, 151–161. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Bian, C.; Ma, C.; Liu, X.; Gao, C.; Liu, Q.; Yan, Z.; Ren, Y.; Li, Q. Responses of winter wheat yield and water use efficiency to irrigation frequency and planting pattern. PLoS ONE 2016, 11, e0154673. [Google Scholar] [CrossRef] [Green Version]
- Saliendra, N.Z.; Sperry, J.S.; Comstock, J.P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta 1995, 196, 357–366. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Sun, H.; Chen, S.; Shao, L. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrig. Sci. 2013, 31, 1103–1112. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, X.; Shao, L.; Chen, S.; Sun, H. Assessing the performance of different irrigation systems on winter wheat under limited water supply. Agric. Water Manag. 2018, 196, 133–143. [Google Scholar] [CrossRef]
- Yuan, Z.; Yan, D.-H.; Yang, Z.-Y.; Yin, J.; Yuan, Y. Temporal and spatial variability of drought in Huang-Huai-Hai River Basin, China. Theor. Appl. Clim. 2015, 122, 755–769. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, F.-X.; Liu, H.; Yuan, B.-Z. Potato evapotranspiration and yield under different drip irrigation regimes. Irrig. Sci. 2004, 23, 133–143. [Google Scholar] [CrossRef]
- Chen, H.; Shao, M.; Li, Y. The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China. J. Hydrol. 2008, 360, 242–251. [Google Scholar] [CrossRef]
- Chen, Z.; Khan, A.; Shi, X.; Hao, X.; Tan, D.K.Y.; Luo, H. Water-nutrient management enhances root morpho-physiological functioning, phosphorus absorption, transportation and utilization of cotton in arid region. Ind. Crop. Prod. 2020, 143, 111975. [Google Scholar] [CrossRef]
- Ji, X.-B.; Kang, E.-S.; Chen, R.-S.; Zhao, W.-Z.; Zhang, Z.-H.; Jin, B.-W. A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied. Agric. Water Manag. 2007, 87, 337–346. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.D.; Ahuja, L.R. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, S.; Song, X. A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain. Agric. Water Manag. 2013, 127, 13–24. [Google Scholar] [CrossRef]
- Penna, D.; Brocca, L.; Borga, M.; Fontana, G.D. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. J. Hydrol. 2013, 477, 55–71. [Google Scholar] [CrossRef]
- Feng, S.; Gu, S.; Zhang, H.; Wang, D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crop. Res. 2017, 214, 131–141. [Google Scholar] [CrossRef]
- Wang, C.; Liu, W.; Li, Q.; Ma, D.-Y.; Lu, H.; Feng, W.; Xie, Y.; Zhu, Y.; Guo, T. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crop. Res. 2014, 165, 138–149. [Google Scholar] [CrossRef]
- Li, D.; Shao, M. Temporal stability analysis for estimating spatial mean soil water storage and deep percolation in irrigated maize crops. Agric. Water Manag. 2014, 144, 140–149. [Google Scholar] [CrossRef]
- Helman, D.; Lensky, I.M.; Bonfil, D.J. Early prediction of wheat grain yield production from root-zone soil water content at heading using Crop RS-Met. Field Crop. Res. 2019, 232, 11–23. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189, 115–117. [Google Scholar] [CrossRef]
- Abalos, D.; Sanchez-Martin, L.; Garcia-Torres, L.; Van Groenigen, J.W.; Vallejo, A. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Sci. Total. Environ. 2014, 490, 880–888. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Xu, H.; Peng, D.; Yin, Y.; Yang, W.; Ni, Y.; Chen, X.; Xu, C.; Yang, D.; Cui, Z.; et al. Exogenous hormonal application improves grain yield of wheat by optimizing tiller productivity. Field Crop. Res. 2014, 155, 172–183. [Google Scholar] [CrossRef]
- Li, Q.; Dong, B.; Qiao, Y.; Liu, M.; Zhang, J. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric. Water Manag. 2010, 97, 1676–1682. [Google Scholar] [CrossRef]
- Enciso, J.M.; Unruh, B.L.; Colaizzi, P.D.; Multer, W.L. Cotton response to subsurface drip irrigation frequency under deficit irrigation. Appl. Eng. Agric. 2003, 19, 555–558. [Google Scholar] [CrossRef]
- Rothfuss, Y.; Biron, P.; Braud, I.; Canale, L.; Durand, J.-L.; Gaudet, J.-P.; Richard, P.; Vauclin, M.; Bariac, T. Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions. Hydrol. Process. 2010, 24, 3177–3194. [Google Scholar] [CrossRef]
- Singh, B.-; Eberbach, P.L.; Humphreys, E.; Kukal, S.S. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agric. Water Manag. 2011, 98, 1847–1855. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Liu, C.-M.; Zhang, X.-Y.; Shen, Y.-J.; Zhang, Y.-Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Payero, J.O.; Melvin, S.R.; Irmak, S.; Tarkalson, D. Yield response of corn to deficit irrigation in a semiarid climate. Agric. Water Manag. 2006, 84, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Lu, N.; Fu, B.; Wang, J.; Li, Z.; Fang, W.; Liu, J.; Wang, C.; Zhang, L. Evapotranspiration partitioning and its implications for plant water use strategy: Evidence from a black locust plantation in the semi-arid Loess Plateau, China. For. Ecol. Manag. 2018, 424, 428–438. [Google Scholar] [CrossRef]
- Peake, A.S.; Carberry, P.S.; Raine, S.R.; Gett, V.; Smith, R.J. An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia. Agric. Water Manag. 2016, 169, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.; Zhou, Z.; Zhu, Q.; Liao, K. Comparing the spatio-temporal variations of soil water content and soil free water content at the hillslope scale. Catena 2018, 160, 366–375. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Stark, J.C.; O’Brien, K.; Souza, E. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop. Sci. 2001, 41, 327–335. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Liu, M.; Pei, D.; Sun, H. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron. J. 2005, 97, 783–790. [Google Scholar] [CrossRef]
Zadok Scale [28] | Description |
---|---|
1 | Start of imbibition |
24 | Main shoot and 4 tillers |
30 | Pseudo stem erection |
35 | 5th node detectable |
44 | From flag leaf sheath extending to boots just swollen |
48 | First awns begin |
49 | First awns visible |
71 | Kernel watery ripe |
80 | Dough begin |
91 | Kernel hard (difficult to divide with thumbnail) |
Treatments | GS34 | GS48 | Total Irrigation (mm) |
---|---|---|---|
(27 March 2015, 27 March 2016) | (26 April 2015, 25 April 2016) | ||
W1 | 50 | 50 | 100 |
W2 | 100 | 0 | 100 |
W3 | 100 | 100 | 200 |
Source of Variation P > F | GS35 | GS49 | GS71 | |||
---|---|---|---|---|---|---|
2014/15 | 2015/16 | 2014/15 | 2015/16 | 2014/15 | 2015/16 | |
Irrigation | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Planting mode (PM) | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Irrigation × PM | 0.0002 | 0.2104 | 0.0001 | 0.0041 | 0.0087 | 0.0314 |
Years | 0.0001 | 0.0001 | 0.0001 | |||
Years × Irrigation | 0.2778 | 0.0001 | 0.0001 | |||
Years × PM | 0.0001 | 0.0001 | 0.0001 | |||
Years × Irrigation × PM | 0.0024 | 0.0001 | 0.0066 |
Source of Variation P > F | Soil Water Content (%) | Soil Water Storage (mm) | ||
---|---|---|---|---|
2014/15 | 2015/16 | 2014/15 | 2015/16 | |
Irrigation | 0.0056 | 0.0057 | 0.0069 | 0.0065 |
Planting mode (PM) | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Irrigation × PM | 0.8359 | 0.0499 | 0.7094 | 0.0164 |
Years | 0.0001 | 0.3671 | ||
Years × Irrigation | 0.2778 | 0.8745 | ||
Years × PM | 0.0001 | 0.0001 | ||
Years × Irrigation × PM | 0.0024 | 0.5888 |
Irrigation | PM | GS01–GS24 | GS24–GS35 | GS35–GS44 | GS44–GS49 | GS49–GS71 | GS71–GS91 |
---|---|---|---|---|---|---|---|
2014/2015 | |||||||
W1 | U | 81.4 a | 51.1 a | 66.1 a | 55.5 a | 48.6 b | 59.0 a |
DD | 63.1 c | 49.7 a | 64.6 a | 39.0 c | 51.2 ab | 48.1 b | |
F | 69.9 b | 50.7 a | 64.9 a | 45.8 b | 53.3 a | 44.0 b | |
W2 | U | 82.2 a | 58.8 a | 78.8 a | 32.3 a | 59.2 ab | 67.9 a |
DD | 66.1 c | 51.8 b | 65.0 c | 34.8 a | 62.3 a | 65.2 a | |
F | 72.1 b | 53.7 b | 71.2 b | 33.8 a | 57.9 b | 56.3 b | |
W3 | U | 81.5 a | 72.9 a | 68.3 b | 71.3 a | 57.4 a | 98.1 a |
DD | 69.8 b | 53.2 c | 66.1 b | 62.1 a | 58.7 a | 89.9 b | |
F | 68.1 b | 58.9 b | 72.4 a | 64.5 b | 60.3 a | 82.7 c | |
Source of variance | |||||||
Irrigation | 0.5734 | 0.0001 | 0.0006 | 0.0008 | 0.0005 | 0.0001 | |
PM | 0.0001 | 0.0001 | 0.0001 | 0.0072 | 0.0356 | 0.0001 | |
Irrigation × PM | 0.00829 | 0.0001 | 0.0001 | 0.0308 | 0.0395 | 0.0002 | |
2015/2016 | |||||||
W1 | U | 116.4 a | 88.3 b | 77.9 a | 54.1 a | 55.6 c | 20.4 a |
DD | 103.6 b | 97.7 a | 77.9 a | 55.7 a | 63.4 b | 21.6 a | |
F | 106.4 b | 79.2 c | 77.5 a | 51.3 b | 67.5 a | 16.9 b | |
W2 | U | 106.6 a | 102.4 a | 88.2 a | 42.5 ab | 60.0 a | 17.5 ab |
DD | 101.9 ab | 93.8 b | 87.9 a | 44.1 a | 59.3 a | 14.8 b | |
F | 108 b | 88.2 c | 86.8 a | 40.3 b | 58.1 a | 17.8 a | |
W3 | U | 113.8 a | 115.9 a | 80.5 a | 78.5 a | 83.6 a | 46.0 a |
DD | 105.0 b | 99.7 b | 80.3 a | 73.2 b | 81.9 a | 47.0 a | |
F | 105.2 b | 99.1 b | 80.6 a | 65.8 c | 81.4 a | 48.9 a | |
Source of variation | |||||||
Irrigation | 0.0678 | 0.0001 | 0.0002 | 0.0001 | 0.0001 | 0.0001 | |
PM | 0.0001 | 0.0001 | 0.5332 | 0.0002 | 0.0201 | 0.9866 | |
Irrigation × PM | 0.2758 | 0.0001 | 0.7236 | 0.0111 | 0.0001 | 0.0247 | |
Years × Irrigation | 0.0120 | 0.0659 | 0.0001 | 0.6298 | 0.0001 | 0.0001 | |
Years × PM | 0.0324 | 0.4799 | 0.0772 | 0.3722 | 0.9823 | 0.0058 | |
Years × Irrigation × PM | 0.9814 | 0.0001 | 0.0147 | 0.0337 | 0.0124 | 0.0016 | |
R | 0.4716 * | 5224 * | 0.3666 | 0.5733 * | 0.8112 ** | −0.0117 |
Treatments | Yield (g m−2) | Soil Water Depletion (mm) | Evapotranspiration (mm) | WUE (g m−2 mm−1) | ||||
---|---|---|---|---|---|---|---|---|
2014/15 | 2015/16 | 2014/15 | 2015/16 | 2014/15 | 2015/16 | 2014/15 | 2015/16 | |
Irrigation (mm) | ||||||||
W1 | 755 b | 823 b | 78.8 b | 126.7 a | 344.0 c | 421.1 b | 2.20 a | 1.93 a |
W2 | 726 c | 771 c | 98.2 a | 121.1 a | 363.4 b | 415.5 b | 2.00 b | 1.86 b |
W3 | 804 a | 991 a | 55.9 c | 108.5 b | 421.1 a | 502.9 a | 1.91 b | 1.98 a |
Planting mode (PM) | ||||||||
Uniform row | 763 b | 767 c | 95.0 a | 121.7 a | 393.5 a | 449.4 a | 1.95 b | 1.71 c |
Double-double row | 802 a | 878 b | 64.7 c | 118.6 ab | 363.2 b | 446.3 ab | 2.23 a | 1.96 b |
Furrow-ridge row | 720 c | 940 a | 73.2 b | 116.1 b | 371.7 b | 443.8 b | 1.95 b | 2.13 a |
Source of variation | P > F | |||||||
Irrigation | 0.0001 | 0.0001 | 0.0001 | 0.0036 | 0.0001 | 0.0001 | 0.0001 | 0.0281 |
PM | 0.0001 | 0.0001 | 0.0001 | 0.1175 | 0.0001 | 0.3313 | 0.0001 | 0.0001 |
Irrigation × PM | 0.0461 | 0.0181 | 0.0167 | 0.0039 | 0.0178 | 0.0719 | 0.0078 | 0.0001 |
Years × Irrigation | 0.0001 | 0.0135 | 0.0135 | 0.0001 | ||||
Years × PM | 0.0001 | 0.0002 | 0.0002 | 0.0001 | ||||
Years × Irrigation × PM | 0.0047 | 0.0096 | 0.0096 | 0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.B.; Wang, G.Y.; Yang, L.; Wu, H.Y. Double-Double Row Planting Mode at Deficit Irrigation Regime Increases Winter Wheat Yield and Water Use Efficiency in North China Plain. Agronomy 2020, 10, 1315. https://doi.org/10.3390/agronomy10091315
Zhou XB, Wang GY, Yang L, Wu HY. Double-Double Row Planting Mode at Deficit Irrigation Regime Increases Winter Wheat Yield and Water Use Efficiency in North China Plain. Agronomy. 2020; 10(9):1315. https://doi.org/10.3390/agronomy10091315
Chicago/Turabian StyleZhou, Xun Bo, Guo Yun Wang, Li Yang, and Hai Yan Wu. 2020. "Double-Double Row Planting Mode at Deficit Irrigation Regime Increases Winter Wheat Yield and Water Use Efficiency in North China Plain" Agronomy 10, no. 9: 1315. https://doi.org/10.3390/agronomy10091315
APA StyleZhou, X. B., Wang, G. Y., Yang, L., & Wu, H. Y. (2020). Double-Double Row Planting Mode at Deficit Irrigation Regime Increases Winter Wheat Yield and Water Use Efficiency in North China Plain. Agronomy, 10(9), 1315. https://doi.org/10.3390/agronomy10091315