The Impact of Exogenous Organic Matter on Wheat Growth and Mineral Nitrogen Availability in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Soils and Exogenous Organic Matter (EOM) Amendments
- Animal meal—organic fertilizer produced from animal waste according to Regulation (EC) No 1069/2009 of the European Parliament and the Council of Europe. Registered as an organic fertilizer under number MBN-NP-7–6 (70% organic matter content, 90% dry matter) with a high content of nitrogen, phosphorus, and macro-elements.
- Industrial compost—organic fertilizer obtained from municipal biodegradable waste, e.g., grass, leaves, sawdust, and weeds (including municipal sewage sludge) (organic matter content 23%, dry matter 60%).
- Digestate—obtained from the largest producer of French fries (McCain’s Sp. z o.o. in Strzelin) and made from potato starch, utilizing materials from the potato industry. The batch included potato peelings and residues from the production of French fries, all of them fermented and then dewatered in a biogas plant (organic matter content 69%, dry matter content 14%).
2.2. Description of the Pot Experiment
2.3. Determination of the Physicochemical Properties of Soils and EOMs
2.4. Determination of the Ammonium Nitrogen (N-NH4+) and Nitrate Nitrogen (N-NO3−) Concentrations
2.5. Statistics
3. Results and Discussion
3.1. The Effect of Exogenous Organic Matter (EOM) on the Mineral Nitrogen (N-NH4+ and N-NO3−) Content in Soils
3.2. The Effect of Exogenous Organic Matter (EOM) on the Wheat Biomass Yield
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weil, R.; Magdoff, F. Significance of soil organic matter to soil quality and health. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 1–36. ISBN 0-8493-1294-9. [Google Scholar]
- Spaccini, R.; Zena, A.; Igwe, C.; Mbagwu, J.; Piccolo, A. Carbohydrates in water-stable aggregates and particle size fractions of forested and cultivated soils in two contrasting tropical ecosystems. Biogeochemistry 2001, 53, 1–22. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jastrow, J.D.; Amonette, J.E.; Bailey, V.L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim. Chang. 2007, 80, 5–23. [Google Scholar] [CrossRef]
- Ding, X.; Han, X.; Liang, Y.; Qiao, Y.; Li, L.; Li, N. Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soil Tillage Res. 2012, 122, 36–41. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, X.; Chen, Y.; Dong, J.; Shi, J. Effect of exogenous substances on soil organic and inorganic carbon sequestration under maize stover addition. Soil Sci. Plant Nutr. 2017, 63, 591–598. [Google Scholar] [CrossRef]
- Imbufe, A.U.; Patti, A.F.; Burrow, D.; Surapaneni, A.; Jackson, W.R.; Milner, A.D. Effects of potassium humate on aggregate stability of two soils from Victoria, Australia. Geoderma 2005, 125, 321–330. [Google Scholar] [CrossRef]
- Horii, A.; McCue, P.; Shetty, K. Seed vigour studies in corn, soybean and tomato in response to fish protein hydrolysates and consequences on phenolic-linked responses. Bioresour. Technol. 2007, 98, 2170–2177. [Google Scholar] [CrossRef]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutr. Cycl. Agroecosyst. 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Olk, D.C.; Dinnes, D.L.; Scoresby, J.R.; Callaway, C.R.; Darlington, J.W. Can humic products substantially improve ecosystem quality and economic yield? Silva Balc. 2019, 20, 95–110. [Google Scholar]
- Mondini, C.; Cayuela, M.L.; Sinicco, T.; Sanchez-Monedero, M.A.; Bertolone, E.; Bardi, L. Soil application of meat and bone meal. Short-term effects on mineralization dynamics and soil biochemical and microbiological properties. Soil Biol. Biochem. 2008, 40, 462–474. [Google Scholar] [CrossRef]
- Quilty, J.; Cattle, S. Use and understanding of organic amendments in Australian agriculture: A review. Soil Res. 2011, 49, 1–26. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. Determining the effect of exogenous organic materials on spatial distribution of maize yield. Sci. Rep. 2019, 9, 19883. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic. J. Soils Sediments 2020, 20, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- European Commission. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2020; 20.5.2020 COM (2020) 381 final. [Google Scholar]
- Scholefield, D.; Lockyer, D.R.; Whitehead, D.C.; Tyson, K.C. A model to predict transformations and losses of nitrogen in UK pastures grazed by beaf cattle. Plant Soil 1991, 132, 165–171. [Google Scholar] [CrossRef]
- Gil, M.; Carballo, M.; Calvo, L. Modelling N mineralization from bovine manure and sewage sludge composts. Bioresour. Technol. 2011, 102, 863–871. [Google Scholar] [CrossRef]
- Bloch, S.; Ryu, M.; Ozaydin, B.; Broglie, R. Harnessing atmospheric nitrogen for cereal crop production. Curr. Opin. Biotechnol. 2020, 62, 181–188. [Google Scholar] [CrossRef]
- Chang, E.H.; Wang, C.H.; Chen, C.L.; Chung, R.S. Effects of long-term treatments of different organic fertilizers complemented with chemical N fertilizer on the chemical and biological properties of soils. Soil Sci. Plant Nutr. 2014, 60, 499–511. [Google Scholar] [CrossRef]
- Odlare, M.; Pell, M.; Svensson, K. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag. 2008, 28, 1246–1253. [Google Scholar] [CrossRef]
- Krzywy-Gawrońska, E. Changes in the content of total, nitrate and ammonium nitrogen in the mass of composts from municipal sewage sludge and potato pulp during decomposition. Zesz. Probl. Postepow Nauk Rol. 2006, 513, 243–249. (In Polish) [Google Scholar]
- Wang, C.; Wan, S.; Xing, X.; Zhang, L.; Han, X. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol. Biochem. 2006, 38, 1101–1110. [Google Scholar] [CrossRef]
- Chakraborty, J.; Paul, N.; Saba, D.; Das, D.K. Nitrogen Transformation in Soil Amended with Organic Matters at Different Stages. Indian Agric. 2012, 56, 39–45. [Google Scholar]
- Beraud, J.; Fine, P.; Yermiyahu, U.; Keinan, M.; Rosenberg, R.; Hadas, A.; Bar, T.A. Modeling carbon and nitrogen transformations for adjustment of compost application with nitrogen uptake by wheat. J. Environ. Qual. 2005, 34, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.; MacKerron, D.K.L. Basic concepts of the management of supply of nitrogen and water in potato production. In Management of Nitrogen and Water in Potato Production Wageningen; Haverkort, A.J., MacKerron, D.K.L., Eds.; Wageningen Press: Wageningen, The Netherlands, 2000; pp. 15–33. [Google Scholar]
- European Commission. Directive 91/676/EEC. Council Directive of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0676:EN:HTML (accessed on 8 June 2020).
- Jilling, A.; Keiluweit, M.; Contosta, A.R.; Frey, S.; Schimel, J.; Schnecker, J.; Smith, R.G.; Tiemann, L.; Grandy, A.S. Minerals in the Rhizosphere: Over-looked Mediators of Soil Nitrogen Availability to Plants and Microbes. Biogeochemistry 2018, 139, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Kothawala, D.N.; Moore, T.R. Adsorption of Dissolved Nitrogen by For-est Mineral Soils. Can. J. For. Res. 2009, 39, 2381–2390. [Google Scholar] [CrossRef]
- Brady, N.; Weil, R. Nutrient cycles and soil fertility. In Elements of the Nature and Properties of Soils, 3rd ed.; Anthony, V.R., Ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2010; pp. 396–420. [Google Scholar]
- Nagele, W.; Conrad, R. Influence of pH on the release of NO and N20 from fertilized and unfertilized soil. Biol. Fertil. Soils 1990, 10, 139–144. [Google Scholar]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Amlinger, F.; Gotz, B.; Dreher, P.; Geszti, J.; Weissteiner, C. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability—A review. Eur. J. Soil Biol. 2003, 39, 107–116. [Google Scholar] [CrossRef]
- Allison, S.; Vitousek, P. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Janssen, B.H. Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials. Plant Soil. 1996, 181, 39–45. [Google Scholar] [CrossRef]
- Bila, P.; Sarapatka, B.; Cap, L. The Influence of Type, Composition and Dosage of Exogenous Organic Matter on Selected Biochemical Soil Properties. Soil Water Res. 2016, 11, 220–227. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, R.; Ochoa, V.; Hinojosa, M.B.; Carreira, J.A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol. Biochem. 2008, 40, 2137–2145. [Google Scholar] [CrossRef]
- Franco-Otero, V.G.; Soler-Rovira, P.; Hernandez, D.; Lopez-de-Sa, E.; Plaza, C. Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity, and chemical properties of soil. Biol. Fertil. Soils 2012, 48, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Cayuela, M.L.; Sinicco, T.; Mondini, C. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil. Appl. Soil Ecol. 2009, 4, 118–127. [Google Scholar] [CrossRef]
- He, P.; Wan, S.; Fang, X.; Wang, F.; Chen, F. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition. Sci. Rep. 2016, 6, 23717. [Google Scholar] [CrossRef] [PubMed]
- Smith, R. Nitrogen Fertility Management in Organic Production, University of California Extension Presentation. 2006. Available online: http://Cemonterey.ucanr.edu/files/85316.pdf (accessed on 4 June 2020).
- Sullivan, D. Estimating Plant-Available Nitrogen from Manure. Oregon State University Extension Bulletin EM 8954 E. 2008. Available online: https://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/20528/em8954-e.pdf (accessed on 4 June 2020).
Soil Origin | Description | Particle Size Distribution | pH | TC | TOC | TN | ||
---|---|---|---|---|---|---|---|---|
2.0–0.05 mm | 0.05–0.002 mm | <0.002 mm | ||||||
Dlouha Ves | Site 1 soil | 10 | 58 | 32 | 7.00 | 19.3 | 11.9 | 1.72 |
Nowa Wieś | Site 2 soil | 70 | 28 | 2 | 5.78 | 7.7 | 4.5 | 0.70 |
Pastuchów | Site 3 soil | 27 | 67 | 6 | 6.88 | 11.4 | 7.8 | 1.14 |
Type of EOM | C | N | C/N | Mg | Na | K | Ca | P |
---|---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | |||||||
Animal meal | 401 | 84 | 4.8 | 2110 | 7911 | 5717 | 84,208 | 64,231 |
Industrial compost | 179 | 23 | 7.8 | 4557 | 407 | 10,605 | 10,061 | 7535 |
Digestate | 407 | 69 | 5.9 | 5054 | 3708 | 17,681 | 12,338 | 27,905 |
Soil Additive | Organic Fertilization: EOM | Mineral Fertilization: Ca(NO3)2 |
---|---|---|
Control | 0 N ratio | 100% N ratio |
Animal meal | 50% N ratio | 50% N ratio |
Animal meal | 100% N ratio | 0 N ratio |
Industrial compost | 50% N ratio | 50% N ratio |
Industrial compost | 100% N ratio | 0 N ratio |
Digestate | 50% N ratio | 50% N ratio |
Digestate | 100% N ratio | 0 N ratio |
Control | Animal Meal 50% | Industrial Compost 50% | Digestate 50% | Animal Meal 100% | Industrial Compost 100% | Digestate 100% | |
---|---|---|---|---|---|---|---|
Soil before sowing (mg kg−1) | |||||||
Site 1 soil | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A |
Site 2 soil | 2.3 B | 3.2 B | 3.0 B | 2.7 B | 1.5 B | 1.2 B | 1.8 B |
Site 3 soil | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A |
Soil after harvesting (mg kg−1) | |||||||
Site 1 soil | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A |
Site 2 soil | 4.1 B | 4.0 B | 4.5 B | 4.9 B | 4.7 B | 5.4 B | 3.9 B |
Site 3 soil | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A | <0.5 A |
Control | Animal Meal 50% | Industrial Compost 50% | Digestate 50% | Animal Meal 100% | Industrial Compost 100% | Digestate 100% | |
---|---|---|---|---|---|---|---|
Soil before sowing (mg kg−1) | |||||||
Site 1 soil | 144.0 A | 88.3 B | 92.2 B | 110.5 A | 89.8 C | 69.6 A | 114.8 A |
Site 2 soil | 87.3 B | 96.4 B | 162.7 A | 97.8 A | 122.7 B | 61.7 A | 115.7 A |
Site 3 soil | 104.1 B | 129.9 A | 89.4 B | 128.6 A | 139.7 A | 64.3 A | 113.0 A |
Soil after harvesting (mg kg−1) | |||||||
Site 1 soil | 23.9 A | 23.7 A | 19.6 A | 22.6 A | 25.0 A | 21.4 A | 25.1 A |
Site 2 soil | 4.0 B | 4.2 B | 6.2 B | 1.9 B | 3.2 B | 4.9 C | 6.4 B |
Site 3 soil | 16.2 A | 17.2 A | 15.9 A | 15.3 A | 21.5 A | 15.1 B | 26.5 A |
Soil | EOM | TGW (g) | Proportion of Grains in the Yield (%) |
---|---|---|---|
Site 1 soil | Control | 37.13 d | 54 |
Site 1 soil | Animal meal 50% | 33.13 abcd | 46 |
Site 1 soil | Industrial compost 50% | 37.75 d | 43 |
Site 1 soil | Digestate 50% | 36.88 d | 46 |
Site 1 soil | Animal meal 100% | 36.38 cd | 46 |
Site 1 soil | Industrial compost 100% | 36.63 bcd | 44 |
Site 1 soil | Digestate 100% | 34.50 d | 53 |
Site 2 soil | Control | 28.50 a | 45 |
Site 2 soil | Animal meal 50% | 29.13 ab | 43 |
Site 2 soil | Industrial compost 50% | 32.13 abcd | 51 |
Site 2 soil | Digestate 50% | 29.00 ab | 46 |
Site 2 soil | Animal meal 100% | 28.38 a | 49 |
Site 2 soil | Industrial compost 100% | 30.25 ab | 50 |
Site 2 soil | Digestate 100% | 28.63 ab | 43 |
Site 3 soil | Control | 31.88 abcd | 46 |
Site 3 soil | Animal meal 50% | 30.63 abc | 45 |
Site 3 soil | Industrial compost 50% | 28.75 ab | 41 |
Site 3 soil | Digestate 50% | 29.63 ab | 40 |
Site 3 soil | Animal meal 100% | 29.88 ab | 50 |
Site 3 soil | Industrial compost 100% | 30.50 abc | 44 |
Site 3 soil | Digestate 100% | 33.00 abcd | 47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The Impact of Exogenous Organic Matter on Wheat Growth and Mineral Nitrogen Availability in Soil. Agronomy 2020, 10, 1314. https://doi.org/10.3390/agronomy10091314
Ukalska-Jaruga A, Siebielec G, Siebielec S, Pecio M. The Impact of Exogenous Organic Matter on Wheat Growth and Mineral Nitrogen Availability in Soil. Agronomy. 2020; 10(9):1314. https://doi.org/10.3390/agronomy10091314
Chicago/Turabian StyleUkalska-Jaruga, Aleksandra, Grzegorz Siebielec, Sylwia Siebielec, and Monika Pecio. 2020. "The Impact of Exogenous Organic Matter on Wheat Growth and Mineral Nitrogen Availability in Soil" Agronomy 10, no. 9: 1314. https://doi.org/10.3390/agronomy10091314
APA StyleUkalska-Jaruga, A., Siebielec, G., Siebielec, S., & Pecio, M. (2020). The Impact of Exogenous Organic Matter on Wheat Growth and Mineral Nitrogen Availability in Soil. Agronomy, 10(9), 1314. https://doi.org/10.3390/agronomy10091314