From Old-Generation to Next-Generation Nematicides
Abstract
:1. Introduction
2. Old-Generation Nematicides
3. Next-Generation Nematicides
3.1. Background
3.2. Fluensulfone
3.2.1. Toxicity and Impact on the Environment
3.2.2. Mode of Action
3.2.3. Characteristics
3.2.4. Field Application, Efficacy, and Environmental Conditions
3.3. Fluopyram
3.3.1. Toxicity and Impact on the Environment
3.3.2. Mode of Action
3.3.3. Characteristics
3.3.4. Field Application, Efficacy, and Environmental Conditions
3.4. Fluazaindolizine
3.4.1. Toxicity and Impact on the Environment
3.4.2. Characteristics and Mode of Action
3.4.3. Field Application, Efficacy, and Environmental Conditions
4. Future Perspectives
Funding
Conflicts of Interest
References
- CABI. Invasive Species Compendium; CAB International: Wallingford, UK, 2020. [Google Scholar]
- Schacht, H. Über einige Feinde der Rübenfelder. Z. Des Ver. Für Die Rübenzucker-Ind. Im Zollverein 1859, 9, 175–179. [Google Scholar]
- Neal, J.C. The root-knot disease of the peach, orange and other plants in Florida due to the work of Anguillula. U.S. Dept. Agri. Bur. Ent. Bull. 1889, 20, 31. [Google Scholar]
- Bessey, E.A. Root-knot and its control. U.S. Dept. Agri. Bur. Plant. Indus. Bull. 1911, 217, 89. [Google Scholar]
- Taylor, A.L. Nematocides and nematicides—A history. Nematropica 2003, 33, 225–232. [Google Scholar]
- EPA. Iodomethane, New Chemical Registration, Pesticide Fact Sheet; US Environmental Protection Agency: Washington, DC, USA, 2007; p. 36.
- Cebolla, V.; Llobell, D.; Oliver, A.; Valero, L.M.; Torro, F.; Hernandez, A. The emulsifiable formulations of dimethyl disulfide (DMDS) and its mixtures with chloropicrin as alternatives to methyl bromide. Acta Hortic. 2010, 883, 163–170. [Google Scholar] [CrossRef]
- Rich, J.R.; Dunn, R.A.; Noling, J.W. Nematicides: Past and present uses. In Nematology Vol 2, Nematode Management and Utilization; Chen, Z.X., Chen, S.Y., Dickson, D.W., Eds.; CABI Publishing: Oxfordshire, UK, 2004; pp. 1179–1200. [Google Scholar]
- Desaeger, J.; Wram, C.; Zasada, I. New reduced-risk agricultural nematicides—Rationale and review. J. Nematol. 2020, 52, 1–16. [Google Scholar] [CrossRef]
- Chitwood, D.J. Nematicides. In Encyclopedia of Agrochemicals; Plimmer, J.R., Ed.; John Wiley & Sons: New York, NY, USA, 2003; pp. 1104–1115. [Google Scholar] [CrossRef]
- Chellemi, D.O. Plant health management: Soil fumigation. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Elsevier Science & Technology: Oxford, UK, 2014; pp. 456–459. [Google Scholar] [CrossRef]
- APVMA. Public Release Summery on the Evaluation of the New Active Fluensulfone in the Product Nimitz 480 EC Nematicide; Australian Pesticides and Veterinary Medicines Authority: Kingstone, Australia, 2015; p. 47. [Google Scholar]
- PPDB. Fluopyram. Pesticide Properties Data Base; University of Hertfordshire: Hertfordshire, UK, 2019. [Google Scholar]
- CIB: Minutes of the 54th Meeting of the Central Insecticides Board, New Dehli. 2018. Available online: http://ppqs.gov.in/sites/default/files/minutes_of_54th_central_insecticides_board_cib_meeting.pdf (accessed on 2 June 2020).
- Chawla, S.; Patel, D.J.; Patel, S.H.; Kalasariya, R.L.; Shah, P.G. Behaviour and risk assessment of fluopyram and its metabolite in cucumber (Cucumis sativus) fruit and in soil. Environ. Sci. Pollut. Res. 2018, 25, 11626–11634. [Google Scholar] [CrossRef]
- Lahm, G.P.; Desaeger, J.; Smith, B.K.; Pahutski, T.F.; Rivera, M.A.; Meloro, T.; Kucharczyk, R.; Lett, R.M.; Daly, A.; Smith, B.T.; et al. The discovery of fluazaindolizine: A new product for the control of plant-parasitic nematodes. Bioorg. Med. Chem. Lett. 2017, 7, 1572–1575. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Pang, K.; Fan, X.; Ma, Y.; Hu, J. Dissipation behavior and residue distribution of fluazaindolizine and its seven metabolites in tomato ecosystem based on SAX SPE procedure using HPLC-QqQ-MS/MS technique. J. Hazard. Mater. 2018, 342, 698–704. [Google Scholar] [CrossRef]
- Burns, A.R.; Luciani, G.M.; Musso, G.; Bagg, R.; Yeo, M.; Zhang, Y.; Rajendran, L.; Glavin, J.; Hunter, R.; Redman, E.; et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat. Commun. 2015, 6, 7485. [Google Scholar] [CrossRef]
- Faske, T.R.; Hurd, K. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to fluopyram. J. Nematol. 2015, 47, 316–321. [Google Scholar] [PubMed]
- Manzelli, M.A. A residual organophosphoros nematocide. Plant. Dis. Rep. 1955, 39, 400–404. [Google Scholar]
- Wright, D.J.; Womac, N. Inhibition of development of Meloidogyne incognita by root and foliar applications of oxamyl. Ann. Appl. Biol. 1981, 97, 297–302. [Google Scholar] [CrossRef]
- Opperman, C.H.; Chang, S. Plant-parasitic nematode acetylcholinesterase inhibition by carbamate and organophosphate nematicides. J. Nematol. 1990, 22, 481–488. [Google Scholar]
- McLeod, R.W.; Khair, G.T. Effect of oximecarbamates, organophosphates and benzimidazole nematicides on life cycle stages of root-knot nematodes, Meloidogyne spp. Ann. App. Biol. 1975, 79, 329–341. [Google Scholar] [CrossRef]
- McGarvey, B.D.; Potter, J.W.; Chiba, M. Nematostatic activity of oxamyl and N,N-dimethyl-1-cyanoformamide (DMCF) on Meloidogyne incognita juveniles. J. Nematol. 1984, 16, 328–332. [Google Scholar]
- Gourd, T.R.; Schmitt, D.P.; Barker, K.R. Differential sensitivity of Meloidogyne spp. and Heterodera glycines to selected nematicides. Suppl. J. Nematol. 1993, 25, 746–751. [Google Scholar]
- Bunt, J.A. Effect and mode of action of some systemic nematicides. Meded. Landbouwhogesch. Wagening. 1975, 75–10, 1–127. [Google Scholar]
- Voss, G.; Speici, J. Some properties of cholinesterase of the plant nematode Aphelenchoides ritzemabosi. Experientia 1976, 32, 1498–1499. [Google Scholar] [CrossRef]
- Lee, Y.B.; Park, J.S.; Han, S.C. Studies on the chemical control of white-tip nematode, Aphelenchoides besseyi Christie, before transplanting. Kor. J. Plant. Protect. 1972, 11, 37–40. [Google Scholar]
- LaMondia, J.A. Efficacy of insecticides for control of Aphelenchoides fragariae and Ditylenchus dipsaci in flowering perennial ornamentals. J. Nematol. 1999, 31, 644–649. [Google Scholar] [PubMed]
- Ogura, N. Inhibitory effect of several insecticides on in vitro propagation of the pinewood nematode, Bursaphelenchus xylophilus. Jpn. J. Nematol. 2004, 34, 99–102. [Google Scholar] [CrossRef]
- Wada, S.; Toyota, K. Effect of three organophosphorous nematicides on non-target nematodes and soil microbial community. Microbes Environ. 2008, 23, 331–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawanobe, M.; Toyota, K.; Fujita, T.; Hatta, D. Evaluation of nematicidal activity of fluensulfone against non-target free-living nematodes under field conditions. Agronomy 2019, 9, 853. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Moreno, S.; Jiménez, L.; Alonso-Prados, J.L.; García-Baudin, J.M. Nematodes as indicators of fumigant effects on soil food webs in strawberry crops in southern Spain. Ecol. Indic. 2010, 10, 148–156. [Google Scholar] [CrossRef]
- IPCS. Aldicarb. INCHEM, WHO, Geneva. 1991. Available online: http://www.inchem.org/documents/ehc/ehc/ehc121.htm (accessed on 2 June 2020).
- Goldman, L.R.; Beller, M.; Jackson, R.J. Aldicarb food poisonings in California, 1985–1988: Toxicity estimates for humans. Arch. Environ. Health 1990, 45, 141–147. [Google Scholar] [CrossRef]
- PubChem. National Library of Medicine, National Center for Biotechnology Information, Bethesda, MD, USA. 2019. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 2 June 2020).
- Rousidou, C.; Karaiskos, D.; Myti, D.; Karanasios, E.; Karas, P.A.; Tourna, M.; Tzortzakakis, E.A.; Karpouzas, D.G. Distribution and function of carbamate hydrolase genes cehA and mcd in soils: The distinct role of soil pH. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef] [Green Version]
- AJCSD. Chemical Management Center, National Institute of Technology and Evaluation, Tokyo, Japan. 2016. Available online: https://www.ajcsd.org/chrip_search/dt/pdf/CI_01_202/W01W0109-0691JGHEEN.PDF (accessed on 2 June 2020).
- Davis, R.F.; Johnson, A.W.; Wauchope, R.D. Accelerated degradation of fenamiphos and its metabolites in soil previously treated with fenamiphos. J. Nematol. 1993, 25, 679–685. [Google Scholar]
- Ou, L.T.; Thomas, J.E.; Dickson, D.W. Degradation of fenamiphos in soil with a history of continuous fenamiphos applications. Soil Sci. Soc. Am. J. 1994, 58, 1139–1147. [Google Scholar] [CrossRef]
- Suett, D.L.; Jukes, A.A. Accelerated degradation of aldicarb and its oxidation products in previously treated soils. Crop. Prot. 1988, 7, 147–152. [Google Scholar] [CrossRef]
- Smelt, J.H.; Van De Peppel-Groen, A.E.; van der Pas, L.J.T.; Dijksterhuis, A. Development and duration of accelerated degradation of nematicides in different soils. Soil Biol. Biochem. 1996, 28, 1757–1765. [Google Scholar] [CrossRef]
- Anderson, J.P.E.; Nevermann, K.; Haidt, H. Accelerated microbial degradation of nematicides in soils: Problem and its management. In Proceedings of the XIII Acorbat Meeting, Guayaquil, Ecuador, 23–29 November 1998; ACORBAT: Guayaquil, Ecuador, 1998; pp. 568–579. [Google Scholar]
- Cabrera, J.A.; Kurz, A.; Sikora, R.A.; Schouten, A. Isolation and characterization of fenamiphos degrading bacteria. Biodegradation 2010, 21, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Smelt, J.H.; Crum, S.J.H.; Teunissen, W.; Leistra, M. Accelerated transformation of aldicarb, oxamyl, and ethoprophos after repeated soil treatments. Crop. Prot. 1987, 6, 295–303. [Google Scholar] [CrossRef]
- Jones, R.L.; Norris, F.A. Factors affecting degradation of aldicarb and ethoprop. J. Nematol. 1998, 30, 45–55. [Google Scholar]
- Singh, B.K.; Walker, A.; Morgan, A.W.; Wright, D.J. Role of pH in the development of enhanced biodegradation of fenamiphos. Appl. Environ. Microbiol. 2003, 69, 7035–7043. [Google Scholar] [CrossRef] [Green Version]
- Pantelelis, I.; Karpouzas, D.G.; Menkissoglu-Spiroudi, U.; Tsiropoulos, N. Influence of soil physicochemical and biological properties on the degradation and adsorption of the nematicide fosthiazate. J. Agric. Food Chem. 2006, 54, 6783–6789. [Google Scholar] [CrossRef]
- Karpouzas, D.G.; Fotopoulou, A.; Menkissoglu-Spiroudi, U.; Singh, B.K. Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol. Ecol. 2005, 53, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.K.; Walker, A.; Wright, D.J. Cross-enhancement of accelerated biodegradation of organophosphorus compounds in soils: Dependence on structural similarity of compounds. Soil Biol. Biochem. 2005, 37, 1675–1682. [Google Scholar] [CrossRef]
- Moens, M.; Hendrickx, G. Effect of long term aldicarb applications on the development of field populations of some endoparasitic nematodes. Fundam. Appl. Nematol. 1998, 21, 199–204. [Google Scholar]
- Wolstenholme, A.J.; Fairweather, I.; Prichard, R.; von Samson-Himmelstjerna, G.; Sangster, N.C. Drug resistance in veterinary helminths. Trends Parasitol. 2004, 20, 469–476. [Google Scholar] [CrossRef]
- Sabljic, A.; Güsten, H.; Verhaar, H.; Hermens, J. Qsar modelling of soil sorption. Improvements and systematics of logKOC vs. logKOW correlations. Chemosphere 1995, 31, 4489–4514. [Google Scholar] [CrossRef]
- Ran, Y.; He, Y.; Yang, G.; Johnson, J.L.H.; Yalkowsky, S.H. Estimation of aqueous solubility of organic compounds by using the general solubility equation. Chemosphere 2002, 48, 487–509. [Google Scholar] [CrossRef]
- Benfenati, E.; Gini, G.; Piclin, N.; Roncaglioni, A.; Varì, M.R. Predicting logP of pesticides using different software. Chemosphere 2003, 53, 1155–1164. [Google Scholar] [CrossRef]
- Smelt, J.H.; Leistra, M. Availability, movement and transportation of soil-applied nematicides. In Nematology: From Molecule to Ecosystem; Gommers, F.J., Maas, P.W.T., Eds.; European Society of Nematologists: Invergowrie, Scotland, 1992; pp. 266–280. [Google Scholar]
- Mordor Intelligence. Global Nematicides Market: Growth, Trends and Forecast (2020–2025); Mordor Intelligence: Hyderabad, India, 2020; p. 188. [Google Scholar]
- Charlier, J.-B.; Cattan, P.; Voltz, M.; Moussa, R. Transport of a nematicide in surface and groundwaters in a tropical volcanic catchment. J. Environ. Qual. 2009, 38, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Smiley, R.W.; Marshall, J.M.; Yan, G.P. Effect of foliarly applied spirotetramat on reproduction of Heterodera avenae on wheat roots. Plant Dis. 2011, 95, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Vang, L.E.; Opperman, C.H.; Schwarz, M.R.; Davis, E.L. Spirotetramat causes an arrest of nematode juvenile development. Nematology 2016, 18, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Baidoo, R.; Mengistu, T.; McSorley, R.; Stamps, R.; Brito, J.; Row, W. Management of root-knot nematode (Meloidogyne incognita) on Pittosporum tobira under greenhouse, field, and on-farm conditions in Florida. J. Nematol. 2017, 49, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Chałańska, A.; Bogumił, A.; Łabanowski, G. Management of foliar nematode Aphelenchoides ritzemabosi on Anemone hupehensis using plant extracts and pesticides. J. Plant. Dis. Protect. 2017, 124, 437–443. [Google Scholar] [CrossRef]
- Faske, T.R.; Brown, K.; Emerson, M. Toxicity of tioxazafen to Meloidogyne incognita. In Proceedings of the Program & Abstracts, 58th Annual Meeting Society of Nematologists, Raleigh, NC, USA, 7–10 July 2019; p. 93. [Google Scholar]
- Giannakou, I.O.; Panopoulou, S. The use of fluensulfone for the control of root-knot nematodes in greenhouse cultivated crops: Efficacy and phytotoxicity effects. Cogent Food Agric. 2019, 5, 1643819. [Google Scholar] [CrossRef]
- Norshie, P.M.; Grove, I.G.; Back, M.A. Sorption of the nematicide fluensulfone in six UK arable soils—Implications for control of the potato cyst nematode Globodera pallida. Nematology 2018, 20, 111–118. [Google Scholar] [CrossRef]
- Benjamin, W.; Zane, G.; Tesfamariam, M.; William, C. Nematicide effects on non-target nematodes in bermudagrass. J. Nematol. 2019, 51, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kearn, J.; Ludlow, E.; Dillon, J.; O’Connor, V.; Holden-Dye, L. Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones. Pestic. Biochem. Phys. 2014, 109, 44–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearn, J.; Lilley, C.; Urwin, P.; O’Connor, V.; Holden-Dye, L. Progressive metabolic impairment underlies the novel nematicidal action of fluensulfone on the potato cyst nematode Globodera pallida. Pestic. Biochem. Phys. 2017, 142, 83–90. [Google Scholar] [CrossRef]
- Oka, Y. Sensitivity to fluensulfone of inactivated Meloidogyne spp. second-stage juveniles. Pest. Manag. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Oka, Y.; Shuker, S.; Tkachi, N. Nematicidal efficacy of MCW-2, a new nematicide of the fluoroalkenyl group, against the root-knot nematode Meloidogyne javanica. Pest. Manag. Sci. 2009, 65, 1082–1089. [Google Scholar] [CrossRef]
- Oka, Y.; Saroya, Y. Effect of fluensulfone and fluopyram on the mobility and infection of second-stage juveniles of Meloidogyne incognita and M. javanica. Pest. Manag. Sci. 2019, 75, 2095–2106. [Google Scholar] [CrossRef]
- Oka, Y. Nematicidal activity of fluensulfone against some migratory nematodes. Pest. Manag. Sci. 2014, 70, 1850–1858. [Google Scholar] [CrossRef]
- Shirley, A.M.; Noe, J.P.; Nyczepir, A.P.; Brannen, P.M.; Shirley, B.J.; Jagdale, G.B. Effect of spirotetramat and fluensulfone on population densities of Mesocriconema xenoplax and Meloidogyne incognita on peach. J. Nematol. 2019, 51, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Feist, E.; Kearn, J.; Gaihre, Y.; O’Connor, V.; Holden-Dye, L. The distinct profiles of the inhibitory effects of fluensulfone, abamectin, aldicarb and fluopyram on Globodera pallida hatching. Pestic. Biochem. Phys. 2020, 165, 104541. [Google Scholar] [CrossRef]
- Oka, Y.; Shuker, S.; Tkachi, N. Systemic nematicidal activity of fluensulfone against the root-knot nematode Meloidogyne incognita on pepper. Pest. Manag. Sci. 2012, 68, 268–275. [Google Scholar] [CrossRef]
- Morris, K.; Langston, D.; Davis, R.; Noe, J.P.; Dickson, D.W.; Timper, P. Efficacy of various application methods of fluensulfone for managing root-knot nematodes in vegetables. J. Nematol. 2016, 48, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, J.O.; Ploeg, A.; Nuñez, J.J. Multi-year field evaluation of fluorinated nematicides against Meloidogyne incognita in carrots. Plant. Dis. 2019, 103, 2392–2396. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.G.; Kleczewski, N.M.; Desaeger, J.; Meyer, S.L.F.; Johnson, G.C. Evaluation of nematicides for southern root-knot nematode management in lima bean. Crop. Prot. 2017, 96, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Morris, K.A.; Langston, D.B.; Dickson, D.W.; Davis, R.F.; Timper, P.; Noe, J.P. Efficacy of fluensulfone in a tomato-cucumber double cropping system. J. Nematol. 2015, 47, 310–315. [Google Scholar]
- Desaeger, J.A.; Watson, T.T. Evaluation of new chemical and biological nematicides for managing Meloidogyne javanica in tomato production and associated double-crops in Florida. Pest. Manag. Sci. 2019, 75, 3363–3370. [Google Scholar] [CrossRef]
- Ploeg, A.; Stoddard, S.; Becker, J.O. Control of Meloidogyne incognita in sweetpotato with fluensulfone. J. Nematol. 2019, 51, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Norshie, P.M.; Grove, I.G.; Back, M.A. Field evaluation of the nematicide fluensulfone for control of the potato cyst nematode Globodera pallid. Pest. Manag. Sci. 2016, 72, 2001–2007. [Google Scholar] [CrossRef] [Green Version]
- Grabau, Z.J.; Noling, J.W.; Navia Gine, P.A. Fluensulfone and 1,3-dichloroprene for plant-parasitic nematode management in potato production. J. Nematol. 2019, 51, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Oka, Y.; Shuker, S.; Tkachi, N. Influence of some soil environments on the nematicidal activity of fluensulfone against Meloidogyne javanica. Pest. Manag. Sci. 2013, 69, 1225–1234. [Google Scholar] [CrossRef]
- Morris, K.A.; Li, X.; Langston, D.B.; Davis, R.F.; Timper, P.; Grey, T.L. Fluensulfone sorption and mobility as affected by soil type. Pest. Manag. Sci. 2018, 74, 430–437. [Google Scholar] [CrossRef]
- Fought, L.; Musson, G.H.; Bloomberg, J.R.; Young, H. Fluopyram—A new active ingredient from Bayer CropScience. Phytopathology 2009, 99, S36. [Google Scholar]
- Veloukas, T.; Karaoglanidis, G.S. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest. Manag. Sci. 2012, 68, 858–864. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance fluopyram. EFSA J. 2013, 11, 3052. [Google Scholar] [CrossRef]
- EPA. Fluopyram; pesticide tolerance. Fed. Regist. 2016, 81, 12015–12024. [Google Scholar]
- Grabau1, Z.J.; Mauldin, M.D.; Habteweld, A.; Carter, E.T. Nematicide efficacy at managing Meloidogyne arenaria and non-target effects on free-living nematodes in peanut production. J. Nematol. 2020, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, J.; Dong, F.; Liu, X.; Wu, X.; Zheng, Y. Response of microbial community to a new fungicide fluopyram in the silty-loam agricultural soil. Ecotox. Environ. Safe. 2014, 108, 273–280. [Google Scholar] [CrossRef]
- Sun, T.; Li, M.; Saleem, M.; Zhang, X.; Zhang, Q. The fungicide “fluopyram” promotes pepper growth by increasing the abundance of P-solubilizing and N-fixing bacteria. Ecotox. Environ. Safe. 2020, 188. [Google Scholar] [CrossRef]
- Gergon, E.B.; Prot, J.C. Effect of benomyl and carbofuran on Aphelenchoides besseyi on rice. Fund. Appl. Nematol. 1993, 16, 563–566. [Google Scholar]
- Wram, C.L.; Zasada, I.A. Short-term effects of sublethal doses of nematicides on Meloidogyne incognita. Phytopathology 2019, 109, 1605–1613. [Google Scholar] [CrossRef]
- Heiken, J.A. The Effects of Fluopyram on Nematodes. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2017; p. 75. [Google Scholar]
- Beeman, A.Q.; Tylka, G.L. Assessing the effects of ILeVO and VOTiVO seed treatments on reproduction, hatching, motility, and root penetration of the soybean cyst nematode, Heterodera glycines. Plant Dis. 2018, 102, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Beeman, A.Q.; Njus, Z.L.; Pandey, S.; Tylka, G. Effects of ILeVO and VOTiVO on root penetration and behavior of the soybean cyst nematode, Heterodera glycines. Plant Dis. 2019, 103, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laleve, A.; Walker, A.S.; Gamet, S.; Toquin, V.; Debieu, D.; Fillinger, S. From enzyme to fungal development or how sdhB mutations impact respiration, fungicide resistance and fitness in the grey mold agent Botrytis cinerea. In Proceedings of the 17th International Reinhardsbrunn Symposium on Modern Fungicides and Antifungal Compounds, Friedrichroda, Germany, 21–25 April 2013; p. 80. [Google Scholar]
- Kandel, Y.R.; Wise, K.A.; Bradley, C.A.; Chilvers, M.I.; Byrne, A.M.; Tenuta, A.U.; Faghihi, J.; Wiggs, S.N.; Mueller, D.S. Effect of soybean cyst nematode resistance source and seed treatment on population densities of Heterodera glycines, sudden death syndrome, and yield of soybean. Plant Dis. 2017, 101, 2137–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, M.G.; Jacobs, J.L.; Napieralski, S.; Byrne, A.M.; Stouffer-Hopkins, A.; Warner, F.; Chilvers, M.I. Fluopyram suppresses population densities of Heterodera glycines in field and greenhouse studies in Michigan. Plant Dis. 2020, 104, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, P.; Edera, R.; Consolia, E.; Kraussb, J.; Kiewnickac, S. Integrated control of Meloidogyne incognita in tomatoes using fluopyram and Purpureocillium lilacinum strain 251. Crop. Prot. 2019, 14, 119–124. [Google Scholar] [CrossRef]
- Watson, T.T.; Desaeger, J.A. Evaluation of non-fumigant chemical and biological nematicides for strawberry production in Florida. Crop. Prot. 2019, 117, 100–107. [Google Scholar] [CrossRef]
- Hawk, T. The Effects of Seed-Applied Fluopyram on Root Penetration and Development of Meloidogyne Incognita on Cotton and Soybean. Ph.D. Theis, University of Arkansas, Fayetteville, AR, USA, 2019; p. 47. [Google Scholar]
- Faske, T.R.; Brown, K. Movement of seed- and soil-applied fluopyram in soil columns. J. Nematol. 2019, 51, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.Z.; Hu, J.Y. Dissipation and residue determination of fluopyram and tebuconazole residues in watermelon and soil by GC-MS. Int. J. Environ. Anal. Chem. 2014, 94, 493–505. [Google Scholar] [CrossRef]
- Wei, P.; Liu, Y.; Li, W.; Qian, Y.; Nie, Y.; Kim, D.; Wang, M. Metabolic and dynamic profiling for risk assessment of fluopyram, a typical phenylamide fungicide widely applied in vegetable ecosystem. Sci. Rep. 2016, 6, 33898. [Google Scholar] [CrossRef]
- Thoden, T.C.; Wiles, J.A. Biological attributes of Salibro™, a novel sulfonamide nematicide. Part 1: Impact on the fitness of Meloidogyne incognita, M. hapla and Acrobeloides buetschlii. Nematology 2019, 21, 625–639. [Google Scholar] [CrossRef]
- Thoden, T.; Pardavella, I.V.; Tzortzakakis, E. In vitro sensitivity of different populations of Meloidogyne javanica and M. incognita to the nematicides SalibroTM and Vydate®. Nematology 2019, 21, 889–893. [Google Scholar] [CrossRef]
- Hajihassani, A.; Davis, R.F.; Timper, P. Evaluation of selected nonfumigant nematicides on increasing inoculation densities of Meloidogyne incognita on cucumber. Plant Dis. 2019, 103, 3161–3165. [Google Scholar] [CrossRef] [PubMed]
- Regmi, H.; Desaeger, J. Integrated management of root-knot nematode (Meloidogyne spp.) in Florida tomatoes combining host resistance and nematicides. Crop. Prot. 2020, 134. [Google Scholar] [CrossRef]
Fluensulfone | Fluopyram | Fluazaindolizine | |
---|---|---|---|
Chemical group | Fluoroalkenyl sulfone | Pyridinyl-ethyl-benzamide | Imidazopyridine |
Commercial name | Nimitz | Velum, Verango, ILeVo, Indemnify, etc. | Salibro |
Manufacturer | Adama | Bayer CropScience | Corteva Agriscience |
Discovery (year) | 2004 | 2009 (as nematicide) | 2017 (reported) |
Release (year) | 2014 | 2014 (as nematicide) | 2020 (expected) |
LD50 (mg/kg) a) | 671 [12] * | >2000 [13] | >1187 [14] |
DT50 (day) b) | 7–17 [12] | 4–25 [13,15] | About 35 [16,17] |
log P c) | 1.96 [12] | 3.3 [13] | Not available |
Mode of action | Unknown | Succinate dehydrogenase inhibitor [18,19] | Unknown |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oka, Y. From Old-Generation to Next-Generation Nematicides. Agronomy 2020, 10, 1387. https://doi.org/10.3390/agronomy10091387
Oka Y. From Old-Generation to Next-Generation Nematicides. Agronomy. 2020; 10(9):1387. https://doi.org/10.3390/agronomy10091387
Chicago/Turabian StyleOka, Yuji. 2020. "From Old-Generation to Next-Generation Nematicides" Agronomy 10, no. 9: 1387. https://doi.org/10.3390/agronomy10091387
APA StyleOka, Y. (2020). From Old-Generation to Next-Generation Nematicides. Agronomy, 10(9), 1387. https://doi.org/10.3390/agronomy10091387