An Assessment of Seaweed Extracts: Innovation for Sustainable Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viets, F.G.; Lunin, J. The environmental impact of fertilizers. Crit. Rev. Env. Control 1975, 5, 423–453. [Google Scholar] [CrossRef]
- Zhou, Z. A Global Assessment of Nitrate Contamination in Groundwater; Internship Report; Wageningen University: Wageningen, The Netherlands, 2015. [Google Scholar]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villaneuva, C.M.; van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, G.K.; Bennett, E.M.; Potter, P.A.; Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil 2001, 237, 287–307. [Google Scholar] [CrossRef]
- Barker, A.V.; Pilbeam, D.J. Introduction. In Handbook of Plant Nutrition, 2nd ed.; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 3–18. [Google Scholar]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. Hortscience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, X.; Wang, H.; Dai, X.; Sun, X.; Qiu, W.; Yang, F. Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Southern China. PLoS ONE 2012, 7, e44504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; EU: Brussels, Belgium, 2020; p. 22. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 12 June 2020).
- Carillo, P.; Ciarmiello, L.F.; Woodrow, P.; Corrado, G.; Chiaiese, P.; Rouphael, Y. Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology 2020, 9, 253. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Bio-stimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy (Basel) 2019, 9, 335. [Google Scholar]
- Battacharyya, D.; Zamani, M.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant bio-stimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- El Chami, D.; Daccache, A.; El Moujabber, M. How can sustainable agriculture increase climate resilience? A systematic review. Sustainability (Basel) 2020, 12, 3119. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Chojnacka, K.; Saeid, A. Plant Growth Biostimulants, Dietary Feed Supplements and Cosmetics Formulated with Supercritical CO2 Algal Extracts. Molecules (Basel) 2017, 22, 66. [Google Scholar] [CrossRef] [PubMed]
- Mutale-joan, C.; Redouane, B.; Elmernissi, N.; Kasmi, Y.; Lyamlouli, K.; Sbabou, L.; Zeroual, Y.; El Arroussi, H. Screening of microalgae liquid extracts for their bio-stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci. Rep. 2020, 10, 2820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Front. Plant Sci. 2019, 29, 655. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Górka, B.; Wieczorek, P.P.; Rój, E.; Lipok, J.; Łęska, B.; Messyasz, B.; Wilk, R.; Schroeder, G.; Dobrzyńska-Inger, A.; et al. Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. Eur. J. Phycol. 2016, 51, 243–252. [Google Scholar] [CrossRef]
- FAOSTAT. Crop Production Data; The United Nations Food and Agricultural Organisation (FAO): Rome, Italy, 2020; Available online: http://www.fao.org/faostat/en/#data (accessed on 12 June 2020).
- Eurostat. Database—Agricultural Production; European Statistics (Eurostat): Brussels, Belgium, 2020; Available online: https://ec.europa.eu/eurostat/data/database (accessed on 12 June 2020).
- Elzebroek, A.T.G.; Wind, K. Edible fruits and nuts. In Guide to Cultivated Plants; Elzebroek, A.T.G., Wind, K., Eds.; CAB International: Wallingford, UK; Boston, MA, USA, 2008; pp. 25–131. [Google Scholar]
- Eccher, T.; Pontiroli, R. Old pear varieties in Northern Italy. Acta Hortic. 2005, 671, 243–246. [Google Scholar] [CrossRef]
- Istat. The 2010 Agricultural Census; The National Institute of Statistics (Istat): Rome, Italy, 2020; Available online: https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/agricoltura/agricoltura-2010 (accessed on 12 June 2020).
- Harris, I.C.; Jones, P.D. CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) Version 4.01 of High-Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901–Dec. 2016); University of East Anglia, Climatic Research Unit, Centre for Environmental Data Analysis: Norwich, UK, 2017. [Google Scholar]
- Google Earth. Navarra Foundation and Weather station in Ferrara (44.857 N, 11.653 E and 44.861 N, 11.656 E). Google Earth Pro. v. 7.3, 3 D Map, Building Data Layer. 2020. Available online: http://www.google.com/earth/index.html (accessed on 12 June 2020).
- Essenberg, C.J. Explaining Variation in the Effect of Floral Density on Pollinator Visitation. Am. Nat. 2012, 180, 153–166. [Google Scholar] [CrossRef]
- Alburquerque, N.; Burgos, L.; Egea, J. Influence of flower bud density, flower bud drop and fruit set on apricot productivity. Sci. Hortic. 2004, 102, 397–406. [Google Scholar] [CrossRef]
- Balkic, R.; Gunes, E.; Altinkaya, L.; Gubbuk, H. Effect of male bud flower removal on yield and quality of ‘Dwarf Cavendish’ banana. Acta Hortic. 2016, 1139, 587–590. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, D.; Tang, W.; Li, W.; Li, Z. Effects of planting system, plant density and flower removal on yield and quality of hybrid seed in cotton. Field Crop. Res. 2005, 93, 74–84. [Google Scholar] [CrossRef]
- Daugaard, H. The effect of flower removal on the yield and vegetative growth of A+ frigo plants of strawberry (Fragaria×ananassa Duch). Sci. Hortic.-Amsterdam 1999, 82, 153–157. [Google Scholar] [CrossRef]
- An, J.; Althiab Almasaud, R.; Bouzayen, M.; Zouine, M.; Chervin, C. Auxin and ethylene regulation of fruit set. Plant Sci. 2020, 292, 110381. [Google Scholar] [CrossRef]
- Bons, H.K.; Kaur, M. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: A review. J. Hortic. Sci. Biotechnol. 2019, 95, 137–146. [Google Scholar] [CrossRef]
- Lāce, B.; Lācis, G.; Blukmanis, M. Average fruit weight variability of Pear cultivars under growing conditions of Latvia. Acta Hortic. 2015, 1094, 189–195. [Google Scholar] [CrossRef]
- Zhang, C.; Tanabe, K.; Wang, S.; Tamura, F.; Yoshida, A.; Matsumoto, K. The Impact of Cell Division and Cell Enlargement on the Evolution of Fruit Size in Pyrus pyrifolia. Ann. Bot.-London 2006, 98, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Craswell, E.T.; Godwin, D.C. The efficiency of nitrogen fertilisers applied to cereals in different climates. Adv. Plant. Nutr. 1984, 1, 1–55. [Google Scholar]
- Novoa, R.; Loomis, R.S. Nitrogen and plant production. Plant Soil 1981, 58, 177–204. [Google Scholar] [CrossRef]
- Casanova, E.F. Agronomic evaluation of fertilisers with special reference to natural and modified phosphate rock. Fertil. Res. 1995, 41, 211–218. [Google Scholar] [CrossRef]
- De Koeijer, T.J. Efficiency Improvement for a Sustainable Agriculture: The Integration of Agronomic and Farm Economics Approaches; Thesis Wageningen University: Wageningen, The Netherlands, 2002; p. 143. [Google Scholar]
- Shepherd, J.G.; Kleemann, R.; Bahri-Esfahani, J.; Hudek, L.; Suriyagoda, L.; Vandamme, E.; van Dijk, K.C. The future of phosphorus in our hands. Nutr. Cycl. Agroecosyst. 2016, 104, 281–287. [Google Scholar] [CrossRef]
- Herring, J.R.; Fantel, R.J. Phosphate rock demand into the next century: Impact on world food supply. Nat. Resour. Res. 1993, 2, 226–246. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy (Basel) 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Dicenta, F.; Ortega, E.; Egea, J. Influence of flower density on fruit set rate and production in almond. Acta Hortic. 2006, 726, 307–310. [Google Scholar] [CrossRef]
- Wally, O.S.D.; Critchley, A.T.; Hiltz, D.; Craigie, J.S.; Han, X.; Zaharia, L.I.; Abrams, S.R.; Prithiviraj, B. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. J. Plant Growth Regul. 2013, 32, 324–339. [Google Scholar] [CrossRef]
- Mancuso, S.; Azzarello, E.; Mugnai, S.; Briand, X. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hort. Sci. 2006, 20, 156–161. [Google Scholar]
- Fan, D.; Hodges, D.M.; Zhang, J.; Kirby, C.W.; Ji, X.; Locke, S.J.; Critchley, A.T.; Prithiviraj, B. Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem. 2011, 124, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Hussain, S.; Matloob, A.; Khan, F.A.; Khaliq, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.; Ullah, N.; et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 2015, 75, 391–404. [Google Scholar] [CrossRef]
- El Chami, D.; Daccache, A. Assessing sustainability of winter wheat production under climate change scenarios in a humid climate—An integrated modelling framework. Agric. Syst. 2015, 140, 19–25. [Google Scholar] [CrossRef]
Region | Area Harvested | Number of Farms | ||
---|---|---|---|---|
(ha) | (%) | (N) | (%) | |
Emilia Romagna (EMR) | 67,454.3 | 15.9 | 18,355 | 7.8 |
Campania (CAM) | 58,836.7 | 13.9 | 32,133 | 13.6 |
Sicily (SIC) | 54,295.5 | 12.8 | 36,055 | 15.3 |
Piedmont (PIE) | 43,673.3 | 10.3 | 20,168 | 8.5 |
Lazio (LAZ) | 36,318.8 | 8.6 | 15,323 | 6.5 |
Sum of top 5 regions | 260,578.5 | 61.4 | 122,034 | 51.7 |
Other regions | 163,725 | 38.6 | 114,206 | 48.3 |
Total Italian fruit farms | 424,303.5 | 100 | 236,240 | 100 |
Average Italian fruit farm size | 1.8 ha | |||
Average fruit farm size in EMR | 3.7 ha | |||
Farm size | Area Harvested | Number of Farms | ||
(ha) | (%) | (N) | (%) | |
Small (<10 ha) | 222,270.4 | 52.4 | 201,324 | 85.2 |
Medium (10–50 ha) | 150,171.9 | 35.4 | 30,674 | 13.0 |
Large (>50 ha) | 51,861.5 | 12.2 | 4242 | 1.8 |
Total Italian fruit farms | 424,303.8 | 100 | 236,240 | 100 |
Source: Istat [23] |
Location | Latitude | Longitude | Altitude |
---|---|---|---|
Experimental field | 44.857 N | 11.653 E | 5 m |
Weather station | 44.861 N | 11.656 E | 4 m |
Source: [24,25]. |
Type | Element | 2018 FU ha−1 | 2019 FU ha−1 | ||||
---|---|---|---|---|---|---|---|
CF | TIMAC | CF | TIMAC | ||||
Primary Nutrients | Nitrogen (N) | 205.1 | 141.3 | 68.9% | 174.9 | 120.7 | 69.0% |
Phosphorus (P2O5) | 184.4 | 79.0 | 42.8% | 103.1 | 77.6 | 75.3% | |
Potassium (K2O) | 292.7 | 145.1 | 49.6% | 246.0 | 140.8 | 57.2% | |
Total Primary Nutrients | 682.2 | 365.4 | 53.6% | 524 | 339.1 | 64.7% | |
Secondary Nutrients | Calcium (CaO) | 42.5 | 46.4 | 109.2% | 4.8 | 43.2 | 900.0% |
Magnesium (MgO) | 21.6 | 24.1 | 111.6% | 3.0 | 35.8 | 1193.3% | |
Sulphur (SO3) | 109 | 200.2 | 183.7% | 49.5 | 197.6 | 399.2% | |
Total Secondary Nutrients | 173.1 | 270.7 | 156.4% | 57.3 | 276.6 | 482.7% | |
Micro-Nutrients | Boron (B) | 0.45 | 0.88 | 197.5% | 0 | 1.45 | – |
Copper (Cu) | 0.43 | 0.06 | 13.9% | 0 | 0.05 | – | |
Iron (Fe) | 5.83 | 3.90 | 66.9% | 2.25 | 1.50 | 66.7% | |
Manganese (Mn) | 0.24 | 0 | – | 0.03 | 0.07 | 233.3% | |
Molybdenum (Mo) | 0.01 | 0.04 | 655.7% | 0 | 0.30 | – | |
Zinc (Zn) | 0.31 | 0.10 | 32.3% | 0.02 | 0.11 | 550.0% | |
Total Micro-Nutrients | 7.26 | 4.98 | 68.6% | 2.30 | 3.48 | 151.3% | |
OM | Total Organic Matter | 43.8 | 44.4 | 101.3% | 48.7 | 41.2 | 106.1% |
Technology | Quantity (L ha−1) | Growth Stage |
---|---|---|
Fertiactyl® | 8 | Vegetative growth |
NMX® | 3 | |
Seactiv® | 3 | |
NMX® | 6 | Fruit set |
Seactiv® | 6 | |
Seactiv® | 3 | Post-harvest |
Indicator | Treatment | First Year, 2018 | Second Year, 2019 | ||||
---|---|---|---|---|---|---|---|
Mean | Std Dev. | Variance | Mean | Std Dev. | Variance | ||
Flower Density | Control | 223.5 a | 25.4 | 681.1 | 61.0 a | 33.9 | 1211.0 |
CF | 219.4 a | 28.7 | 865.8 | 53.1 a | 28.3 | 844.6 | |
TIMAC | 223.6 a | 27.7 | 807.6 | 74.0 a | 36.3 | 1384.2 | |
Fruit Density | Control | 38.2 a | 10.5 | 115.4 | 11.1 a | 6.1 | 39.8 |
CF | 42.4 a,b | 18.1 | 343.2 | 13.9 a | 9.4 | 93.7 | |
TIMAC | 50.4 b | 17.1 | 308.4 | 25.1 b | 11.4 | 136.2 | |
Fruit Set | Control | 17.4 a | 5.3 | 29.4 | 25.2 a | 22.9 | 551.6 |
CF | 20.1 a | 10.2 | 109.5 | 30.1 a | 17.7 | 328.1 | |
TIMAC | 22.3 a | 6.2 | 40.9 | 37.9 a | 18.7 | 368.0 | |
Fruit Weight | Control | 238.9 a | 29.0 | 882.9 | 225.2 a | 25.5 | 684.6 |
CF | 237.1 a | 31.8 | 1064.4 | 228.6 a | 24.7 | 643.9 | |
TIMAC | 242.7 a | 24.5 | 633.8 | 230.6 a | 30.1 | 952.4 | |
Total Harvest | Control | 47.5 a | 13.1 | 180.7 | 13.5 a | 8.1 | 69.7 |
CF | 51.6 a,b | 19.8 | 413.5 | 16.1 a | 9.9 | 104.0 | |
TIMAC | 63.3 b | 19.1 | 384.6 | 29.8 b | 12.7 | 169.3 |
Year | Treatment | |||
---|---|---|---|---|
2018 | CF | 20.1 | 22.3 | 4.8 |
TIMAC | 112.1 | 200.4 | 24.7 | |
TIMAC/CF | 5.58 | 8.98 | 5.18 | |
2019 | CF | 14.4 | 24.4 | 4.3 |
TIMAC | 134.9 | 209.8 | 26.3 | |
TIMAC/CF | 9.37 | 8.59 | 6.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chami, D.E.; Galli, F. An Assessment of Seaweed Extracts: Innovation for Sustainable Agriculture. Agronomy 2020, 10, 1433. https://doi.org/10.3390/agronomy10091433
Chami DE, Galli F. An Assessment of Seaweed Extracts: Innovation for Sustainable Agriculture. Agronomy. 2020; 10(9):1433. https://doi.org/10.3390/agronomy10091433
Chicago/Turabian StyleChami, Daniel El, and Fabio Galli. 2020. "An Assessment of Seaweed Extracts: Innovation for Sustainable Agriculture" Agronomy 10, no. 9: 1433. https://doi.org/10.3390/agronomy10091433
APA StyleChami, D. E., & Galli, F. (2020). An Assessment of Seaweed Extracts: Innovation for Sustainable Agriculture. Agronomy, 10(9), 1433. https://doi.org/10.3390/agronomy10091433