Additive Type Affects Fermentation, Aerobic Stability and Mycotoxin Formation during Air Exposure of Early-Cut Rye (Secale cereale L.) Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ensiling
2.2. Dry Matter Determination
2.3. Chemical and Microbiological Analysis
2.4. Aerobic Stability Measurement
2.5. Mycotoxin Analysis
2.6. Statistical Analysis
3. Results
3.1. Wilted Forage
3.2. Silage
3.3. Mycotoxin Formation
4. Discussion
4.1. Wilted Forage
4.2. Fermentation Characteristics and Aerobic Deterioration
4.3. Relationships between Silage Variables
4.4. Mycotoxin Formation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Orosz, S.; Kruppa, J.; Kruppa, J., Jr.; Szemethy, D.; Piskerne Fülöp, E.; Futo, Z.; Hoffmann, R. Harvest window: Comparison of whole crop rye and whole crop triticale in an early cut system. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, 24–26 July 2018; Gerlach, K., Südekum, K.-H., Eds.; University of Bonn: Bonn, Germany, 2018; pp. 516–517. [Google Scholar]
- Everett, L.A.; Wilson, M.L.; Pepin, R.R.; Coulter, J.A. Winter rye cover crop with liquid manure injection reduces spring soil nitrate but not maize yield. Agronomy 2019, 9, 852. [Google Scholar] [CrossRef] [Green Version]
- Ranck, E.J.; Holden, L.A.; Dillon, J.A.; Rotz, C.A.; Soder, K.J. Economic and environmental effects of double cropping winter annuals and corn using the Integrated Farm System Model. J. Dairy Sci. 2020, 103, 3804–3815. [Google Scholar] [CrossRef]
- Jeroch, H.; Flachowsky, G.; Weissbach, F. Futtermittelkunde, 1st ed.; Gustav Fischer Verlag: Jena, Germany, 1993; pp. 74–154. [Google Scholar]
- Tabacco, E.; Comino, L.; Borreani, G. Production efficiency, costs and environmental impacts of conventional and dynamic forage systems for dairy farms in Italy. Europ. J. Agron. 2018, 99, 1–12. [Google Scholar] [CrossRef]
- Bader, S. Möglichkeiten zur Steuerung des Gärungsverlaufes bei der Grünfuttersilierung durch kombinierte Anwendung biologischer und chemischer Zusätze (Possibilities to control the course of fermentation of forages by the combined use of biological and chemical additives). Landbauforsch. Völkenrode 1997, 176, 1–110. [Google Scholar]
- Auerbach, H.; Weiss, K.; Theobald, P.; Nadeau, E. Effects of inoculant type on dry matter losses, fermentation pattern, yeast count and aerobic stability of green rye silages. In Proceedings of the 12. BOKU-Symposium Tierernährung, Vienna, Austria, 11 April 2013; Mair, C., Kraft, M., Wetscherek, W., Schedle, K., Eds.; University of Natural Resources and Life Sciences: Vienna, Austria, 2013; pp. 179–185. [Google Scholar]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factor affecting dry matter and qualitative losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Auerbach, H.; Nadeau, E. Effects of additive type on fermentation characteristics, yeast count and aerobic stability and changes in nutritive value of grass silage exposed to air. Agronomy 2020, 10, 1229. [Google Scholar] [CrossRef]
- Auerbach, H.; Oldenburg, E.; Weissbach, F. Incidence of Penicillium roqueforti and roquefortine C in silages. J. Sci. Food Agric. 1998, 76, 565–572. [Google Scholar] [CrossRef]
- Schneweis, I.; Meyer, K.; Hoermansdorfer, S.; Bauer, J. Mycophenolic acid in silage. Appl. Environm. Microbiol. 2000, 66, 3639–3641. [Google Scholar] [CrossRef] [Green Version]
- Scudamore, K.A.; Livesey, C.T. Occurrence and significance of mycotoxins in forage crops and silage: A review. J. Sci. Food Agric. 1998, 77, 1–17. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef] [PubMed]
- Fink-Gremmels, J. Mycotoxins in cattle feeds and carry-over to dairy milk: A review. Food Add. Contam. 2008, 25, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, A.; Giuberti, G.; Bertuzzi, T.; Moschini, M.; Masoero, F. Study on the effects of PR toxin, mycophenolic acid and roquefortine C on in vitro gas production parameters and their stability in the rumen environment. J. Agric. Sci. 2015, 153, 163–176. [Google Scholar] [CrossRef]
- Alonso, V.A.; Pereyra, C.M.; Keller, L.A.M.; Dalcero, A.M.; Rosa, C.A.R.; Chiaccheria, S.M.; Cavaglieri, L.R. Fungi and mycotoxins in silage: An overview. J. Appl. Microbiol. 2013, 115, 637–643. [Google Scholar] [CrossRef]
- Pelhate, J. Maize silage: Incidence of moulds during conservation. Folia Vet. Lat. 1977, 7, 1–16. [Google Scholar] [PubMed]
- Auerbach, H. Mould growth and mycotoxin contamination of silages: Sources, types and solutions. In Nutritional Biotechnology in the Feed and Food Industries, Proceedings of Alltech‘s Nineteenth Annual Symposium, Lexington, KY, USA, 13–14 May 2003; Jacques, K., Lyons, T.P., Eds.; Nottingham University Press: Nottingham, UK, 2003; pp. 247–265. [Google Scholar]
- Boysen, M.E.; Jacobsson, K.-G.; Schnürer, J. Molecular identification of species from the Penicillium roqueforti group associated with spoiled animal feed. Appl. Environm. Microbiol. 2000, 66, 1523–1526. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.; Nielsen, K.F.; O’Kiely, P.; Forristal, P.D.; Fuller, H.T.; Frisvad, J.C. Mycotoxins and other metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J. Agric. Food Chem. 2006, 54, 9268–9276. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.; Ostertag, J.; Richter, W.; Spiekers, H.; Bauer, J. Toxins from Aspergillus fumigatus in silages. In Proceedings of the XVth International Silage Conference, Madison, WI, USA, 27–29 July 2009; Broderick, G.A., Adesogan, A.T., Bocher, L.W., Bolsen, K.K., Contreras-Govea, F.E., Harrison, J.H., Muck, R.E., Eds.; University of Wisconsin-Madison: Madison, WI, USA, 2009; pp. 159–160. [Google Scholar]
- McElhinney, C.; Danahert, M.; Elliott, C.T.; O’Kiely, P. Mycotoxins in farm silages—A 2-year Irish national survey. Grass Forage Sci. 2015, 71, 1–14. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Stokes, M.R.; Lin, C.J. Silage additives. In Silage Science and Technology; Agronomy Series 42; Buxton, D.R., Muck, R.E., Holmes, H.J., Eds.; American Society of Agronomy, Inc. Publishers: Madison, WI, USA, 2003; pp. 305–360. [Google Scholar]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Kroschewski, B.; Auerbach, H.; Weiss, K. Statistics and experimental design in silage research: Some comments on design and analysis of comparative silage experiments. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, Germany 24–26 July 2018; Gerlach, K., Südekum, K.-H., Eds.; University of Bonn: Bonn, Germany, 2018; pp. 554–560. [Google Scholar]
- Jungbluth, K.H.; Trimborn, M.; Maack, G.-C.; Büscher, W.; Li, M.; Cheng, H.; Cheng, Q.; Sun, Y. Effects of three additives and two bulk densities on maize silage characteristics, temperature profiles, CO2 and O2-dynamics in small scale silos during aerobic exposure. Appl. Sci. 2017, 7, 545. [Google Scholar] [CrossRef] [Green Version]
- Weissbach, F.; Strubelt, C. Correcting the dry matter content of grass silages as a substrate for biogas production. Landtechnik 2008, 63, 210–211, 246. [Google Scholar]
- Weissbach, F.A. Simple method for the correction of fermentation losses measured in laboratory silos. In Proceedings of the XIVth International Silage Conference, Belfast, UK, 30 July 2005; Park, R.S., Strong, M.D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; p. 278. [Google Scholar]
- Naumann, C.; Bassler, R. Methodenbuch des VDLUFA: Die chemische Untersuchung von Futtermitteln (Book of methods of VDLUFA: The chemical analysis of feeds), Volume III, Ergänzungslieferung [supplementary supply] 1993; VDLUFA Verlag: Darmstadt, Germany, 1976. (In German) [Google Scholar]
- Committee for Requirement Standards of the Society of Nutrition Physiology. New Equations for Predicting Metabolizable Energy of Grass and Maize Products; DLG-Verlag: Frankfurt am Main, Germany, 2008; pp. 191–198. [Google Scholar]
- Schmidt, L.; Weissbach, F.; Wernecke, K.D.; Hein, E. Erarbeitung von Parametern für die Vorhersage und Steuerung des Gärungsverlaufes bei der Grünfuttersilierung zur Sicherung einer hohen Silagequalität [Suitable Parameters to Predict and Control the Fermentation Process of Silages with High Quality]; Forschungsbericht der Akademie der Landwirtschaftswissenschaften der DDR: Rostock, Germany, 1971. [Google Scholar]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, K.; Kaiser, E. Milchsäurebestimmung in Silageextrakten mit Hilfe der HPLC [Lactic acid determination in silage extracts by HPLC]. Das wirtschaftseigene Futter 1995, 41, 69–80. [Google Scholar]
- Von Lengerken, J.; Zimmermann, K. Handbuch Futtermittelprüfung (Handbook Feed Evaluation), 1st ed.; Deutscher Landwirtschaftsverlag: Berlin, Germany, 1991; pp. 206–267. [Google Scholar]
- ISO 15214. Microbiology of Food and Animal Feedingstuffs–Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria–Colony-Count Technique at 30 °C, 1st ed.; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- ISO 21527-1. Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Enumeration of Yeasts and Moulds-Part 1: Colony Count Technique in Products with Water Activity Greater Than 0.95; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- Honig, H. Evaluation of aerobic stability. In Proceedings of the EUROBAC Conference, Uppsala, Sweden, 12–16 August 1986; Lindgren, S., Pettersson, K.L., Eds.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1990; pp. 76–82. [Google Scholar]
- Tabacco, E.; Righi, F.; Quarantelli, A.; Borreani, G. Dry matter und nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. J. Dairy Sci. 2011, 94, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Weissbach, F.; Honig, H. Über die Vorhersage und Steuerung des Gärungsverlaufs bei der Silierung von Grünfutter aus extensivem Anbau [Prediction and control of the fermentation process in silages made from extensively grown crops]. Landbauforsch. Völkenrode 1996, 46, 10–17. [Google Scholar]
- Chen, Y.; Weinberg, Z.G. Changes during aerobic exposure of wheat silages. Anim. Feed Sci. Technol. 2009, 154, 76–82. [Google Scholar] [CrossRef]
- Chulze, S.; Ramirez, M.L.; Farnochi, M.C.; Pascale, M.; Visconti, A.; March, G. Fusarium and fumonisin occurrence in Argentinian corn at different ear maturity stages. J. Agric. Food Chem. 1996, 44, 2797–2801. [Google Scholar] [CrossRef]
- Matthäus, K.; Dänicke, S.; Vahjen, W.; Simon, O.; Wang, J.; Valenta, H.; Meyer, K.; Strumpf, A.; Ziesenib, H.; Flachowsky, G. Progression and mycotoxin and nutrient concentrations in wheat after inoculation with Fusarium culmorum. Arch. Anim. Nutr. 2004, 58, 19–35. [Google Scholar] [CrossRef]
- Rooke, J.A.; Hatfield, R.D. Biochemistry of ensiling. In Silage Science and Technology; Agronomy 42; Buxton, D.R., Muck, R.E., Holmes, H.J., Eds.; American Society of Agronomy, Inc. Publishers: Madison, WI, USA, 2003; pp. 95–139. [Google Scholar]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.P.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.M.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [Green Version]
- Kleinschmit, D.H.; Kung, L., Jr. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 2006, 89, 4005–4013. [Google Scholar] [CrossRef]
- Auerbach, H.; Weiss, K.; Theobald, P. Additive type and composition affect fermentation pattern, yeast count, aerobic stability and formation of volatile organic compounds in whole-crop rye silage. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, 24–26July 2018; Gerlach, K., Südekum, K.-H., Eds.; University of Bonn: Bonn, Germany, 2018; pp. 212–213. [Google Scholar]
- Rabelo, C.H.S.; Härter, C.J.; da Silva Avila, C.L.; Reis, R.A. Meta-analysis of the effects of Lactobacillus plantarum and Lactobacillus buchneri on fermentation, chemical composition and aerobic stability of sugarcane silage. Grassl. Sci. 2019, 65, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.L.M.; Bolsson, D.C.; Jacovaci, F.A.; Nussio, L.G.; Jobim, C.C.; Daniel, J.L.P. Effects of light wilting and heterolactic inoculant on the formation of volatile organic compounds, fermentative losses and aerobic. stability of oat silage. Anim. Feed Sci. Technol. 2019, 247, 194–198. [Google Scholar] [CrossRef]
- Oude-Elferink, S.J.W.H.; Krooneman, J.; Gotschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F. Anaerobic degradation of lactic acid to acetic acid and 1,2-propandediol by Lactobacillus buchneri. Appl. Environm. Microbiol. 2001, 67, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Condon, M. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 1987, 46, 269–280. [Google Scholar] [CrossRef]
- Krooneman, J.; Faber, F.; Alderkamp, A.C.; Oude-Elferink, S.J.H.W.; Driehuis, F.; Cleenwerck, I.; Swings, J.; Gottschal, J.C.; Vancanneyt, M. Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int. J. Syst. Evol. Microbiol. 2002, 52, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, K.; Fabiszewska, A.; Świątek, M.; Szymanowska-Powałowska, D. Evaluation of the ability to metabolize 1,2-propanediol by heterofermentative bacteria of the genus Lactobacillus. Electronic J. Biotechnol. 2017, 26, 60–63. [Google Scholar] [CrossRef]
- Auerbach, H.; Nadeau, E. Effects of storage conditions and additive type on fermentation quality, aerobic stability and nutritional value of grass-clover silage. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, 24–26July 2018; Gerlach, K., Südekum, K.-H., Eds.; University of Bonn: Bonn, Germany, 2018; pp. 250–251. [Google Scholar]
- Woolford, M.K. Microbiological screening of food preservatives, cold sterilants and specific antimicrobial antimicrobial agents as potential silage additives. J. Sci. Food Agric. 1975, 26, 229–237. [Google Scholar] [CrossRef]
- Teller, R.S.; Schmidt, R.J.; Whitlow, L.W.; Kung, L., Jr. Effect of physical damage to ears of corn before harvest and treatment with various additives on the concentration of mycotoxins, silage fermentation, and aerobic stability of corn silage. J. Dairy Sci. 2012, 95, 1428–1436. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, T.F.; de Oliveira, I.L.; Lara, M.A.S.; Casagrande, D.R.; Avila, C.L.S.; Pereira, O.G. Effects of potassium sorbate and sodium benzoate at two application rates on fermentation and aerobic stability of maize silage. Grass Forage Sci. 2014, 70, 491–498. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Robinson, J.R.; Ranjit, N.K.; Chen, J.H.; Golt, C.M.; Pesek, J.D. Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. J. Dairy Sci. 2000, 83, 1479–1486. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Kung, L., Jr. The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations. J. Dairy Sci. 2010, 93, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, H.; Nadeau, E. Chemical additives for silages: When to use it and what are the options? In Proceedings of the VIth International Symposium on Forage Quality and Conservation, Piracicaba, Brazil, 7–8 November 2019; Nussio, L.G., da Silva, E.B., Oliveira, K.S., Gritti, V.C., Salvo, P.A.R., Salvati, G.G., de Sousa, D.O., Eds.; University of Sao Paulo: Piracicaba, Brazil, 2019; pp. 49–88. [Google Scholar]
- Reich, L.J.; Kung, L., Jr. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Technol. 2010, 159, 105–109. [Google Scholar] [CrossRef]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Formation of volatile organic compounds during the fermentation of maize as affected by sealing time and silage additive use. Arch. Anim. Nutr. 2020, 74, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude-Elferink, S.J.W.E.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Agronomy Series 42; Buxton, D.R., Muck, R.E., Holmes, H.J., Eds.; American Society of Agronomy, Inc. Publishers: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Pitt, R.E.; Muck, R.E.; Pickering, N.B. A model of aerobic fungal growth in silage. 2. Aerobic stability. Grass Forage Sci. 1991, 46, 301–312. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Salawu, M.B.; Ross, A.B.; Davies, D.R.; Brooks, A.E. Effect of Lactobacillus buchneri, Lactobacillus fermentum, Leuconostoc mesenteroides inoculants, or a chemical additive on the fermentation, aerobic stability, and nutritive value of crimped wheat grains. J. Dairy Sci. 2003, 86, 1789–1796. [Google Scholar] [CrossRef] [Green Version]
- Tüller, G.; Armbruster, A.; Wiedenmann, S.; Hänichen, T.; Schams, D.; Bauer, J. Occurrence of roquefortine C in silage–Toxicological relevance to sheep. J. Anim. Physiol. Anim. Nutr. 1998, 80, 246–249. [Google Scholar] [CrossRef]
- Boysen, M.E.; Skuboe, P.; Frivad, J.; Rossen, L. Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profile. Microbiology 1996, 142, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, R.J.; Hocking, A.D. The ecology of fungal food spoilage. In Fungi and Food Spoilage, 2nd ed.; Pitt, J.I., Hocking, A.D., Eds.; Academic Press: Sydney, NSW, Australia, 1997; pp. 3–12. [Google Scholar]
- Tagni, E.K.; Pussemier, L.; Bastiaanse, H.; Haesaert, G.; Foucart, G.; van Hove, F. Presence of mycophenolic acid, roquefortine C, citrinin and ochratoxin A in maize and grass silages supplied to dairy cattle in Belgium. J. Anim. Sci. Adv. 2013, 3, 598–612. [Google Scholar]
- Müller, H.-M.; Amend, R. Formation and disappearance of mycophenolic acid, patulin, penicillic acid and PR Toxin in maize silage inoculated with Penicillium roqueforti. Arch. Anim. Nutr. 1997, 50, 213–225. [Google Scholar] [CrossRef]
- Driehuis, F.; Spanjer, M.C.; Scholten, J.F.; te Griffel, M.C. Occurrence of mycotoxins in feedstuffs of dairy cows and estimation of total dietary intakes. J. Dairy Sci. 2008, 91, 4261–4271. [Google Scholar] [CrossRef]
- Cavallarin, L.; Tabacco, E.; Antoniazzi, S.; Borreani, G. Aflatoxin accumulation in whole crop maize silage as a result of aerobic exposure. J. Sci. Food Agric. 2011, 91, 2419–2425. [Google Scholar] [CrossRef] [PubMed]
Parameter | n | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|
Dry matter, g kg−1 | 657 | 281 | 61 | 172 | 584 |
Crude ash | 657 | 75 | 19 | 29 | 166 |
Crude protein | 657 | 129 | 27 | 53 | 225 |
Crude fibre | 657 | 287 | 37 | 186 | 425 |
ADL | 657 | 30 | 10 | 3 | 70 |
Sugar * | 657 | 36 | 38 | 0 | 230 |
Metabolisable energy, MJ kg−1 DM | 657 | 10.6 | 0.7 | 7.9 | 12.0 |
Net-Energy-Lactation, MJ NEL kg−1 DM | 657 | 6.4 | 0.5 | 4.5 | 7.5 |
pH | 559 | 4.2 | 0.4 | 3.3 | 5.3 |
Ammonia-N, g kg−1 total N) | 657 | 86 | 29 | 19 | 230 |
Lactic acid | 52 | 75.9 | 45.8 | 4.1 | 152.2 |
Acetic acid ‡ | 52 | 25.9 | 21.9 | 2.6 | 84.2 |
Butyric acid † | 52 | 1.4 | 5.1 | 0 | 25.2 |
Parameter | Mean | Standard Deviation |
---|---|---|
Dry matter, g/kg | 250 | 1.4 |
Crude ash | 56 | 0.4 |
Crude protein | 101 | 2.4 |
Crude fibre | 326 | 9.4 |
Sugar * | 166 | 1.6 |
Water-soluble carbohydrates † | 188 | 1.3 |
Buffering capacity, g lactic acid kg−1 DM | 43 | 0.7 |
Fermentability coefficient | 60 | 0.4 |
Metabolizable energy, MJ kg−1 DM | 9.6 | 0.1 |
Net-Energy-Lactation, MJ NEL kg−1 DM | 5.7 | 0 |
Lactic acid bacteria, log10 cfu g−1 | 5.9 | 0.2 |
Yeasts, log10 cfu g−1 | 5.3 | 0.1 |
Moulds, log10 cfu g−1 | 5.0 | 0.6 |
Total fungi, log10 cfu g−1 | 5.5 | 0.3 |
Parameter | CON | LABho | LABheho | SNHE | SNHEPS | SEM | p |
---|---|---|---|---|---|---|---|
DM loss, % | 7.0 c | 6.4 b | 9.4 d | 5.9 a | 5.9 a | 0.03 | <0.001 |
pH | 4.08 b | 3.96 a | 4.33 d | 4.31 d | 4.12 c | 0.007 | <0.001 |
Lactic acid | 78.4 d | 89.0 e | 39.5 a | 57.0 b | 66.4 c | 0.60 | <0.001 |
Acetic acid | 19.5 b | 15.5 a | 52.7 c | 18.8 ab | 20.6 b | 0.81 | <0.001 |
Propionic acid | 0.3 y | 0 x | 4.1 z | 0 x | 0 x | 0–0.31 | <0.001 |
Ethanol | 8.6 c | 6.9 b | 13.9 d | 2.2 a | 2.3 a | 0.24 | <0.001 |
n-propanol | 0.5 y | 0 x | 3.9 z | 0 x | 0 x | 0–0.42 | <0.001 |
1,2-propanediol | 2.9 a | 2.2 a | 24.0 b | 1.3 a | 1.2 a | 0.93 | <0.001 |
Ammonia-N, gkg−1 total N | 26 ab | 24 a | 33 c | 32 c | 30 bc | 0.9 | <0.001 |
WSC * | 15.2 a | 20.1 ab | 11.2 a | 59.2 c | 36.9 b | 4.12 | <0.001 |
Yeast count, log10 cfu g−1 | 3.6 y | 3.6 y | <2.0 x | <2.0 x | <2.0 x | 0–0.39 | <0.05 |
Mould count, log10 cfu g−1 | 4.0 z | 3.6 yz | <2.0 x | 2.5 y | <2.0 x | 0–0.25 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auerbach, H.; Theobald, P. Additive Type Affects Fermentation, Aerobic Stability and Mycotoxin Formation during Air Exposure of Early-Cut Rye (Secale cereale L.) Silage. Agronomy 2020, 10, 1432. https://doi.org/10.3390/agronomy10091432
Auerbach H, Theobald P. Additive Type Affects Fermentation, Aerobic Stability and Mycotoxin Formation during Air Exposure of Early-Cut Rye (Secale cereale L.) Silage. Agronomy. 2020; 10(9):1432. https://doi.org/10.3390/agronomy10091432
Chicago/Turabian StyleAuerbach, Horst, and Peter Theobald. 2020. "Additive Type Affects Fermentation, Aerobic Stability and Mycotoxin Formation during Air Exposure of Early-Cut Rye (Secale cereale L.) Silage" Agronomy 10, no. 9: 1432. https://doi.org/10.3390/agronomy10091432
APA StyleAuerbach, H., & Theobald, P. (2020). Additive Type Affects Fermentation, Aerobic Stability and Mycotoxin Formation during Air Exposure of Early-Cut Rye (Secale cereale L.) Silage. Agronomy, 10(9), 1432. https://doi.org/10.3390/agronomy10091432