A Typological Concept to Predict the Nitrogen Release from Organic Fertilizers in Farming Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Selection
2.2. Determination of net N Mineralization from Organic Fertilizers
region2(CNorg) = (y2 × (x3 − t) + y3 × (CNorg − x2))/(x3 − x2)
region3(CNorg) = (y3 × (x4 − t) + y4 × (CNorg − x3))/(x4 − x3)
N0 = if(CNorg ≤ x2; region1(CNorg); if(CNorg ≤ x3; region2(CNorg); region3(CNorg))))
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whalen, J.K.; Kernecker, M.L.; Thomas, B.W.; Sachdeva, V.; Ngosong, C. Soil food web controls on nitrogen mineralization are influenced by agricultural practices in humid temperate climates. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2013, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, E.K.; Tian, Q.; Yan, C.; Zhang, Y. Soil nitrogen dynamics and crop residues. A review. Agron. Sustain. Dev. 2014, 34, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- Webb, J.; Sørensen, P.; Velthof, G.; Amon, B.; Pinto, M.; Rodhe, L.; Salomon, E.; Hutchings, N.; Burczyk, P.; Reid, J. An Assessment of the Variation of Manure Nitrogen Efficiency throughout Europe and an Appraisal of Means to Increase Manure-N Efficiency. Adv. Agron. 2013, 119, 371–442. [Google Scholar]
- Stadler, C.; Von Tucher, S.; Schmidhalter, U.; Gutser, R.; Heuwinkel, H. Nitrogen release from plant-derived and industrially processed organic fertilizers used in organic horticulture. J. Plant Nutr. Soil Sci. 2006, 169, 549–556. [Google Scholar] [CrossRef]
- Rigby, H.; Clarke, B.O.; Pritchard, D.L.; Meehan, B.; Beshah, F.; Smith, S.R.; Porter, N.A. A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Sci. Total Environ. 2016, 541, 1310–1338. [Google Scholar] [CrossRef]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Commun. Soil Sci. Plant Anal. 2003, 34, 2441–2460. [Google Scholar] [CrossRef]
- Pansu, M.; Thuries, L. Kinetics of C and N mineralization, N immobilization and N volatilization of organic inputs in soil. Soil Biol. Biochem. 2003, 35, 37–48. [Google Scholar] [CrossRef]
- Pansu, M.; Thuries, L.; Larre-Larrouy, M.C.; Bottner, P. Predicting N transformations from organic inputs in soil in relation to incubation time and biochemical composition. Soil Biol. Biochem. 2003, 35, 353–363. [Google Scholar] [CrossRef]
- Mohanty, M.; Probert, M.E.; Reddy, K.S.; Dalal, R.C.; Rao, A.S.; Menzies, N.W. Modelling N mineralization from high C:N crop residues. Agrochimica 2011, 55, 178–192. [Google Scholar]
- Mohanty, M.; Reddy, K.S.; Probert, M.E.; Dalal, R.C.; Rao, A.S.; Menzies, N.W. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol. Model. 2011, 222, 719–726. [Google Scholar] [CrossRef]
- Probert, M.E.; Delve, R.J.; Kimani, S.K.; Dimes, J.P. Modelling nitrogen mineralization from manures: Representing quality aspects by varying C: N ratio of sub-pools. Soil Biol. Biochem. 2005, 37, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Romanenkov, V.; Belichenko, M.; Petrova, A.; Raskatova, T.; Jahn, G.; Krasilnikov, P. Soil organic carbon dynamics in long-term experiments with mineral and organic fertilizers in Russia. Geoderma Reg. 2019, 17, e00221. [Google Scholar] [CrossRef]
- Nicolardot, B.; Recous, S.; Mary, B. Simulation of C and N mineralisation during crop residue decomposition: A simple dynamic model based on the C: N ratio of the residues. Plant Soil 2001, 228, 83–103. [Google Scholar] [CrossRef]
- Corbeels, M.; Hofman, G.; Van Cleemput, O. Simulation of net N immobilisation and mineralisation in substrate-amended soils by the NCSOIL computer model. Biol. Fertil. Soils 1999, 28, 422–430. [Google Scholar] [CrossRef]
- Marschner, P.; Hatam, Z.; Cavagnaro, T.R. Soil respiration, microbial biomass and nutrient availability after the second amendment are influenced by legacy effects of prior residue addition. Soil Biol. Biochem. 2015, 88, 169–177. [Google Scholar] [CrossRef]
- Matteau, J.-P.; Gumiere, S.; Gallichand, J.; Létourneau, G.; Khiari, L.; Gasser, M.-O.; Michaud, A. Coupling of a nitrate production model with HYDRUS to predict nitrate leaching. Agric. Water Manag. 2019, 213, 616–626. [Google Scholar] [CrossRef]
- Zaman, M.; Cameron, K.; Di, H.; Inubushi, K. Changes in mineral N, microbial biomass and enzyme activities in different soil depths after surface applications of dairy shed effluent and chemical fertilizer. Nutr. Cycl. Agroecosyst. 2002, 63, 275–290. [Google Scholar] [CrossRef]
- Möller, K.; Schultheiß, U. Chemical characterization of commercial organic fertilizers. Arch. Agron. Soil Sci. 2015, 61, 989–1012. [Google Scholar] [CrossRef]
- Antil, R.S.; Janssen, B.H.; Lantinga, E.A. Laboratory and greenhouse assessment of plant availability of organic N in animal manure. Nutr. Cycl. Agroecosyst. 2009, 85, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, D.R.; John, F.; Pain, B.F.; Chambers, B.J.; Williams, J. Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: A laboratory experiment. J. Agric. Sci. 2000, 134, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Parnaudeau, V.; Nicolardot, B.; Robert, P.; Alavoine, G.; Pagès, J.; Duchiron, F. Organic matter characteristics of food processing industry wastewaters affecting their C and N mineralization in soil incubation. Bioresour. Technol. 2006, 97, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Thangarajan, R.; Bolan, N.S.; Naidu, R.; Surapaneni, A. Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Env. Sci. Pollut. Res. Int. 2015, 22, 8843–8854. [Google Scholar] [CrossRef]
- Calderon, F.J.; McCarty, G.W.; Reeves, J.B. Analysis of manure and soil nitrogen mineralization during incubation. Biol. Fertil. Soils 2005, 41, 328–336. [Google Scholar] [CrossRef]
- Sistani, K.R.; Adeli, A.; McGowen, S.L.; Tewolde, H.; Brink, G.E. Laboratory and field evaluation of broiler litter nitrogen mineralization. Bioresour. Technol. 2008, 99, 2603–2611. [Google Scholar] [CrossRef]
- Jensen, L.S.; Salo, T.; Palmason, F.; Breland, T.A.; Henriksen, T.M.; Stenberg, B.; Pedersen, A.; Lundström, C.; Esala, M. Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant Soil 2005, 273, 307–326. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Inc.: Newark, NJ, USA, 2000; Volume 68, pp. 197–319. [Google Scholar]
- Chantigny, M.H.; Angers, D.A.; Rochette, P. Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils. Soil Biol. Biochem. 2002, 34, 509–517. [Google Scholar] [CrossRef]
- Nahm, K.H. Factors influencing nitrogen mineralization during poultry litter composting and calculations for available nitrogen. Worlds Poult. Sci. J. 2005, 61, 238–255. [Google Scholar] [CrossRef]
- Morvan, T.; Nicolardot, B.; Pean, L. Biochemical composition and kinetics of C and N mineralization of animal wastes: A typological approach. Biol. Fertil. Soils 2006, 42, 513–522. [Google Scholar] [CrossRef]
- Hseu, Z.-Y.; Huang, C.-C. Nitrogen mineralization potentials in three tropical soils treated with biosolids. Chemosphere 2005, 59, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Thornley, J.H. Grassland Dynamics: An Ecosystem Simulation Model; CAB international: Wallingford, UK, 1998. [Google Scholar]
- De Neve, S. Organic matter mineralization as a source of nitrogen. In Advances in Research on Fertilization Management of Vegetable Crops; Springer: Turin, Italy, 2017; pp. 65–83. [Google Scholar]
- Hadas, A.; Kautsky, L. Feather Meal, a Semi-Slow-Release Nitrogen-Fertilizer for Organic Farming. Fertil. Res. 1994, 38, 165–170. [Google Scholar] [CrossRef]
- Chaves, B.; De Neve, S.; Boeckx, P.; Berko, C.; Van Cleemput, O.; Hofman, G. Manipulating the N release from N-15 labelled celery residues by using straw and vinasses. Soil Biol. Biochem. 2006, 38, 2244–2254. [Google Scholar] [CrossRef]
- da Silva, A.; Rossetto, R.; Bombecini, J.; Piemonte, M.; Muraoka, T. Nitrogen Mineralization from Sugarcane Vinasse. J. Plant Nutr. 2014, 37, 1227–1236. [Google Scholar] [CrossRef]
- Kornillowicz-Kowalska, T.; Bohacz, J. Biodegradation of keratin waste: Theory and practical aspects. Waste Manag. 2011, 31, 1689–1701. [Google Scholar] [CrossRef] [PubMed]
- Sabahi, H.; Schulz, R.; Müller, T.; Li, Z. Nitrogen turnover of legume seed meals as affected by seed meal texture and quality at different temperatures. Arch. Agron. Soil Sci. 2009, 55, 671–682. [Google Scholar] [CrossRef]
- Stadler, C. Nitrogen Release and Nitrogen Use Efficiency of Plant Derived Nitrogen Fertilisers in Organic Horticultural Soils under Glasshouse Conditions. Ph.D. Thesis, Chair of Plant Nutrition, Technical University of Munich (TUM), Munich, Germany, 2006. [Google Scholar]
- Li, Z.; Schulz, R.; Müller, T. Mineralization of legume seed meals as organic fertilizers affected by their quality at low temperatures. Biol. Agric. Hortic. 2014, 31, 91–107. [Google Scholar] [CrossRef]
- Parnaudeau, V.; Condom, N.; Oliver, R.; Cazevieille, P.; Recous, S. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresour. Technol. 2008, 99, 1553–1562. [Google Scholar] [CrossRef]
- Nakhone, L.N.; Tabatabai, M.A. Nitrogen mineralization of leguminous crops in soils. J. Plant Nutr. Soil Sci.-Z. Fur Pflanzenernahr. Und Bodenkd. 2008, 171, 231–241. [Google Scholar] [CrossRef]
- Chaves, B.; De Neve, S.; Hofman, G.; Boeckx, P.; Van Cleemput, O. Nitrogen mineralization of vegetable root residues and green manures as related to their (bio)chemical composition. Eur. J. Agron. 2004, 21, 161–170. [Google Scholar] [CrossRef]
- Trinsoutrot, I.; Recous, S.; Bentz, B.; Lineres, M.; Cheneby, D.; Nicolardot, B. Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Sci. Soc. Am. J. 2000, 64, 918–926. [Google Scholar] [CrossRef]
- Gordillo, R.M.; Cabrera, M.L. Mineralizable nitrogen in broiler litter: I. Effect of selected litter chemical characteristics. J. Environ. Qual. 1997, 26, 1672–1679. [Google Scholar] [CrossRef]
- Gordillo, R.M.; Cabrera, M.L. Mineralizable nitrogen in broiler litter: II. Effect of selected soil characteristics. J. Environ. Qual. 1997, 26, 1679–1686. [Google Scholar] [CrossRef]
- Ruiz Diaz, D.A.; Sawyer, J.E. Mallarino, A.P. Poultry Manure Supply of Potentially Available Nitrogen with Soil Incubation. Agron. J. 2008, 100, 1310. [Google Scholar] [CrossRef]
- Kirchmann, H. Carbon and Nitrogen Mineralization of Fresh, Aerobic and Anaerobic Animal Manures during Incubation with Soil. Swed. J. Agric. Res. 1991, 21, 165–173. [Google Scholar]
- Ajwa, H.A.; Tabatabai, M.A. Decomposition of Different Organic Materials in Soils. Biol. Fertil. Soils 1994, 18, 175–182. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Hina, M.; Khalique, A.; Khan, S.R. Mineralization of three organic manures used as nitrogen source in a soil incubated under laboratory conditions. Commun. Soil Sci. Plant Anal. 2007, 38, 1691–1711. [Google Scholar] [CrossRef]
- Sanger, A.; Geisseler, D.; Ludwig, B. C and N dynamics of a range of biogas slurries as a function of application rate and soil texture: A laboratory experiment. Arch. Agron. Soil Sci. 2014, 60, 1779–1794. [Google Scholar] [CrossRef]
- Sorensen, P.; Amato, M. Remineralisation and residual effects of N after application of pig slurry to soil. Eur. J. Agron. 2002, 16, 81–95. [Google Scholar] [CrossRef]
- Sänger, A. Application of Biogas Slurries from Energy Crops to Arable Soils and Their Impact on Carbon and Nitrogen Dynamics. Ph.D. Thesis, Faculty of Organic Agricultural Sciences, University of Kassel, Kassel, Germany, 2012. [Google Scholar]
- Bernal, M.P.; Kirchmann, H. Carbon and Nitrogen Mineralization and Ammonia Volatilization from Fresh, Aerobically and Anaerobically Treated Pig Manure during Incubation with Soil. Biol. Fertil. Soils 1992, 13, 135–141. [Google Scholar]
- Sorensen, P.; Fernandez, J.A. Dietary effects on the composition of pig slurry and on the plant utilization of pig slurry nitrogen. J. Agric. Sci. 2003, 140, 343–355. [Google Scholar] [CrossRef]
- Morvan, T.; Leterme, P.; Arsene, G.; Mary, B. Nitrogen transformations after the spreading of pig slurry on bare soil and ryegrass using 15 N-labelled ammonium. Dev. Crop Sci. 1997, 25, 237–244. [Google Scholar]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Agehara, S.; Warncke, D.D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci. Soc. Am. J. 2005, 69, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Verma, B.C.; Datta, S.P.; Rattan, R.K.; Singh, A.K. Impact of temperature and moisture regimes on carbon and nitrogen mineralization in an alluvial soil amended with organics. Agrochimica 2013, 57, 31–48. [Google Scholar]
- Katroschan, K.-U.; Uptmoor, R.; Stützel, H. Nitrogen use efficiency of organically fertilized white cabbage and residual effects on subsequent beetroot. Plant Soil 2014, 382, 237–251. [Google Scholar] [CrossRef]
- Cordovil, C.d.S.; Coutinho, J.; Goss, M.; Cabral, F. Potentially mineralizable nitrogen from organic materials applied to a sandy soil: Fitting the one-pool exponential model. Soil Use Manag. 2005, 21, 65–72. [Google Scholar] [CrossRef]
- Chaves, B.; De Neve, S.; Boeckx, P.; Van Cleemput, O.; Hofman, G. Screening organic biological wastes for their potential to manipulate the N release from N-rich vegetable crop residues in soil. Agric. Ecosyst. Environ. 2005, 111, 81–92. [Google Scholar] [CrossRef]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Modelling N mineralization from bovine manure and sewage sludge composts. Bioresour. Technol. 2011, 102, 863–871. [Google Scholar] [CrossRef]
- Noirot-Cosson, P.E.; Dhaouadi, K.; Etievant, V.; Vaudour, E.; Houot, S. Parameterisation of the NCSOIL model to simulate C and N short-term mineralisation of exogenous organic matter in different soils. Soil Biol. Biochem. 2017, 104, 128–140. [Google Scholar] [CrossRef]
- Capper, J. Should we reject animal source foods to save the planet? A review of the sustainability of global livestock production. S. Afr. J. Anim. Sci. 2013, 43, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Taube, F.; Balmann, A.; Bauhus, J.; Birner, R.; Bokelmann, W.; Christen, O.; Gauly, M.; Grethe, H.; Holm-Müller, K.; Horst, W. Amendment of the fertiliser application ordinance: Limiting nutrient surpluses effectively. Ber. Über Landwirtsch.-Z. Für Agrarpolit. Und Landwirtsch. 2013, 91, 1–12. [Google Scholar]
- Maitra, S.; Zaman, A.; Mandal, T.K.; Palai, J.B. Green manures in agriculture: A review. J. Pharmacogn. Phytochem. 2018, 7, 1319–1327. [Google Scholar]
- Nendel, C.; Reuter, S.; Kubiak, R.; Nieder, R. Nitrogen mineralization from mature bio-waste compost in vineyard soils-I. Long-term laboratory incubation experiments. J. Plant Nutr. Soil Sci.-Z. Fur Pflanzenernahr. Und Bodenkd. 2004, 167, 397–407. [Google Scholar] [CrossRef]
- Fink, M.; Scharpf, H. Workshop on Ecological Aspects of Vegetable Fertilization in Integrated Crop Production in the Field. In N-Expert-A Decision Support System for Vegetable Fertilization in the Field; Wageningen Academic Publishers: Weinstrasse, Germany, 1992; Volume 339, pp. 67–74. [Google Scholar]
Commercial Organic Fertilizers of Plant Origin (170) | Solid Farmyard Manures (67) |
Plant-based mixture (26) | Swine manure (14) |
Legume meal (77) | Biosolid (20) |
Production residues (22) | Cattle/sheep manure (33) |
Seed meal (19) | |
Vinasse (26) | Poultry manures (114) |
Poultry manure (98) | |
Poultry manure-based mixture (16) | |
Commercial organic fertilizers of animal origin (83) | Slurries (100) |
Hair, horn, and feather residues (47) | Biogas slurry (32) |
Meat bone and fish meal (21) | Wastewater (21) |
Blood meal (15) | Swine slurry (9) |
Cattle slurry (38) | |
Green manures (204) | Composts (83) |
Non-legume green manure (126) | Plant compost (20) |
Legume green manure (66) | Manure compost (52) |
Green manure mixture (12) | Compost mixture (6) |
Fungi biomass manure (5) |
Beta | SE | std. Beta | t | p | |
---|---|---|---|---|---|
(Intercept) | 0.383 | 0.247 | 1.55 | NS | |
N content | 0.211 | 0.089 | 0.164 | 2.363 | <0.05 |
C to N ratio | −0.625 | 0.094 | −0.451 | −6.648 | <0.05 |
Inkubation temperature | 0.004 | 0.002 | 0.059 | 1.883 | NS |
Soil class (LUFA) | 0.016 | 0.011 | 0.044 | 1.432 | NS |
Beta | SE | std. Beta | t | p | |
---|---|---|---|---|---|
(Intercept) | 1.298 | 0.047 | 27.459 | <0.05 | |
C to Norg ratio | −1.049 | 0.042 | −0.66 | −25.125 | <0.05 |
Beta | SE | std. Beta | t | p | |
---|---|---|---|---|---|
(Intercept) | 0.004 | 0.062 | 0.059 | NS | |
Incubation temperature | 0.012 | 0.002 | 0.194 | 4.91 | <0.05 |
Soil class (LUFA) | −0.016 | 0.012 | −0.054 | −1.374 | NS |
Name | n | RMSE | AEM | Bias |
---|---|---|---|---|
Biogas slurry | 32 | 0.131 | 0.085 | 0.017 |
Non-legume green manure | 126 | 0.43 | 0.306 | 0.185 |
Hair, horn, and feather residues | 47 | 0.186 | 0.138 | 0.035 |
Legume meal | 77 | 0.094 | 0.068 | 0.009 |
Manure-based mixture | 16 | 0.11 | 0.081 | 0.012 |
Meat bone and fish meal | 21 | 0.097 | 0.072 | 0.009 |
Manure compost | 52 | 0.097 | 0.076 | 0.009 |
Plant-based mixture | 26 | 0.251 | 0.185 | 0.063 |
Blood meal | 15 | 0.087 | 0.068 | 0.008 |
Plant compost | 20 | 0.104 | 0.066 | 0.011 |
Poultry manure | 98 | 0.187 | 0.135 | 0.035 |
Production residues | 22 | 0.16 | 0.125 | 0.026 |
Seed meal | 19 | 0.163 | 0.144 | 0.027 |
Swine manure | 14 | 0.234 | 0.149 | 0.055 |
Swine slurry | 9 | 0.192 | 0.142 | 0.037 |
Vinasse | 26 | 0.192 | 0.153 | 0.037 |
Wastewater | 21 | 0.393 | 0.323 | 0.155 |
Biosolid | 20 | 0.081 | 0.065 | 0.007 |
Cattle slurry | 38 | 0.226 | 0.138 | 0.051 |
Cattle/sheep manure | 33 | 0.331 | 0.24 | 0.11 |
Compost mixture | 6 | 0.152 | 0.149 | 0.023 |
Fungi biomass manure | 5 | 0.034 | 0.027 | 0.001 |
Legume green manure | 66 | 0.183 | 0.146 | 0.033 |
Green manure mixture | 12 | 0.144 | 0.113 | 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sradnick, A.; Feller, C. A Typological Concept to Predict the Nitrogen Release from Organic Fertilizers in Farming Systems. Agronomy 2020, 10, 1448. https://doi.org/10.3390/agronomy10091448
Sradnick A, Feller C. A Typological Concept to Predict the Nitrogen Release from Organic Fertilizers in Farming Systems. Agronomy. 2020; 10(9):1448. https://doi.org/10.3390/agronomy10091448
Chicago/Turabian StyleSradnick, André, and Carmen Feller. 2020. "A Typological Concept to Predict the Nitrogen Release from Organic Fertilizers in Farming Systems" Agronomy 10, no. 9: 1448. https://doi.org/10.3390/agronomy10091448
APA StyleSradnick, A., & Feller, C. (2020). A Typological Concept to Predict the Nitrogen Release from Organic Fertilizers in Farming Systems. Agronomy, 10(9), 1448. https://doi.org/10.3390/agronomy10091448