Evolution of Smart Strategies and Machines Used for Conservative Management of Herbaceous and Horticultural Crops in the Mediterranean Basin: A Review
Abstract
:1. Introduction
2. Smart Strategies and Innovative Agricultural Machinery for a Conservation Management of Herbaceous and Horticultural Crops
2.1. From Conservation Agriculture to Precision Conservation Management
2.2. Tillage and Planting
2.3. Weed Control
2.4. Cover Cropping
3. Evaluation of the Agronomic Performance of the Application of the Smart Strategies and Innovative Agricultural Machinery Used for Conservation Agriculture (CA)
3.1. Crop Yield
3.2. Economic Feasibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Transforming our World. The 2030 Agenda for Sustainable Development, General Assembly. 21 October 2015. Available online: https://sustainabledevelopment.un.org (accessed on 27 December 2020).
- Govers, G.; Roel, M.; van Bas, W.; Van Kristof, O. Soil conservation in the 21st century: Why we need smart agricultural intensification. SOIL 2017, 3, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Joint Research Centre, European Commission. Soil Threats in Europe: Status, Methods, Drivers and Effects on Ecosystem Services. 2015. Available online: https://ec.europa.eu/jrc (accessed on 27 December 2020).
- European Environment Agency. State of the Environment Report; Copenhagen. 2010. Available online: www.eea.europa.eu (accessed on 27 December 2020).
- European Commission. COM 571 fin, Roadmap to a Resource and Efficient Europe; Brussels, 20 September 2011. Available online: https://www.europarl.europa.eu/meetdocs/2009_2014/documents/com/com_com(2011)0571_/com_com(2011)0571_en.pdf (accessed on 27 December 2020).
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Stach, A.; Podsiadłowski, S. Pulverizing and wind erosion as influenced by spatial variability of soils texture. Quaest. Geogr. 2002, 22, 67–78. [Google Scholar]
- Food and Agriculture Organization (FAO). The Economics of Conservation Agriculture. Rome. 2001. Available online: http://www.fao.org/3/y2781e/y2781e00.htm (accessed on 27 December 2020).
- Food and Agriculture Organization (FAO). What is Conservation Agriculture? Rome. 2011. Available online: http://fao.org/ag/ca/6c.html (accessed on 27 December 2020).
- Civil Society Organizations (CSO) Panel. Land Rights for Sustainable Life on Land. UNCCD (United Nations Convention to Combat Desertification) Publications. 2017. Available online: https://www.unccd.int/sites/default/files/documents/2017-07/CSO%20Panel%20-%20Land%20Rights.pdf (accessed on 27 December 2020).
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1,5 °C., Special Report. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 27 December 2020).
- United Nations Environment Programme (UNEP). Global Environment Outlook GEO4 Environment for Development. ISBN: 978-92-807-2836-1 (UNEP paperback) DEW/0962/NA. 2007. Available online: https://wedocs.unep.org (accessed on 27 December 2020).
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.J.; Saxton, K.E.; Ritchie, W.R.; Chamen, W.C.T.; Reicosky, D.C.; Ribeiro, M.F.S.; Justice, S.E.; Hobbs, P.R. No-tillage Seeding in Conservation Agriculture, 2nd ed.; FAO and CAB International: Rome, Italy, 2007. [Google Scholar]
- Marandola, D.; Belliggiano, A.; Romagnoli, L.; Ievoli, C. The spread of no-till in conservation agriculture systems in Italy: Indications for rural development policy-making. Agric. Food Econ. 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.R. Conservation agriculture: What is it and why is it important for future sustainable food production. J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Olawuyi, S.O.; Mushunje, A. Social Capital and Adoption of Alternative Conservation Agricultural Practices in South-Western Nigeria. Sustainability 2019, 11, 716. [Google Scholar] [CrossRef] [Green Version]
- De Lucas, A.I.; Molari, G.; Seddaiu, G.; Toscano, A.; Bombino, G.; Ledda, L.; Milani, M.; Vittuari, M. Multidisciplinary and Innovative Methodologies for Sustainable Management in Agricultural Systems. Environ. Eng. Manag. J. 2015, 14, 1571–1581. [Google Scholar]
- Deligios, P.A.; Chergia, P.A.; Sanna, G.; Solinas, S.; Todde, G.; Narvarte, L.; Ledda, L. Climate change adaptation and water saving by innovation irrigation management applied on open field globe artichoke. Sci. Total Environ. 2019, 649, 461–472. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Acevedo, M.F. Interdisciplinary progress in food production, food security and environment research. Environ. Conserv. 2011, 38, 151–171. [Google Scholar] [CrossRef] [Green Version]
- Nhamo, N.; Chikoye, D. Smart Technologies for Sustainable Smallholder Agriculture; Academic Press: Cambridge, MA, USA, 2017; pp. 1–20. [Google Scholar]
- European Commission, COM 179 fin. Towards a Thematic Strategy for Soil Protection, Brussels, Belgium, 16 April 2002. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2002:0179:FIN:EN:PDF (accessed on 27 December 2020).
- Berge, H.F.M.; Schroder, J.J.; Olesen, J.E.; Giraldez Cervera, J.V. Research for AGRI Committee—Preserving Agricultural Soils in the EU, European Parliament, Policy Department for Structural and Cohesion Policies, Brussels 2017. Available online: http://www.europarl.europa.eu (accessed on 27 December 2020).
- Frelih-Larsen, A.; Bowyer, C.; Albrecht, S.; Keenleyside, C.; Kemper, M.; Nanni, S.; Naumann, S.; Mottershead, D.; Landgrebe, R.; Andersen, E.; et al. Updated Inventory and Assessment of Soil Protection Policy Instruments in Eu Member States; Final Report to DG Environment; Ecologic Institute: Berlin, Germany, 2016. [Google Scholar]
- European Parliament. Decision No 529/2013/Eu Of The European Parliament And Of The Council of 21 May 2013 on Accounting Rules on Greenhouse gas Emissions and Removals Resulting from Activities Relating to Land Use, Land-Use Change and Forestry and on Information Concerning Actions Relating to Those Activities. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN (accessed on 27 December 2020).
- European Environment Agency. The Impact of EU Economic Sectors on land, Report n. 8. 2016. Available online: www.eea.europa.eu (accessed on 27 December 2020).
- Lal, R. Managing world soils for food security and environmental quality. Adv. Agron. 2001, 74, 155–192. [Google Scholar]
- Berry, J.K.; Delgado, J.A.; Khosla, R.; Pierce, F.J. Precision conservation for environmental sustainability. J. Soil Water Conserv. 2003, 58, 332–339. [Google Scholar]
- Berry, J.K.; Delgado, J.A.; Pierce, F.J.; Khosla, R. Applying spatial analysis for precision conservation across the landscape. J. Soil Water Conserv. 2005, 60, 363–370. [Google Scholar]
- Knight, B.I. Precision conservation. J. Soil Water Conserv. 2005, 60, 137A. [Google Scholar]
- Kitchen, N.R.; Sudduth, K.A.; Myers, D.B.; Massey, R.E.; Sadler, E.J.; Lerch, R.N.; Hummel, J.W.; Palm, H.L. Development of a conservation-oriented precision agriculture system: Crop production assessment and plan implementation. J. Soil Water Conserv. 2005, 60, 421–430. [Google Scholar]
- Basso, B.; Sartori, L.; Bertocco, M.; Cammarano, D.; Martin, E.C.; Grace, P.R. Economic and environmental evaluation of site-specific tillage in a maize crop in NE Italy. Eur. J. Agron. 2011, 35, 83–92. [Google Scholar] [CrossRef]
- Kitchen, N.R. Emerging technologies for real-time and integrated agriculture decisions. Comput. Electron. Agric. 2008, 61, 1–3. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J. Seedbed preparation for arable crops: Environmental impact of alternative mechanical solutions. Soil Tillage Res. 2017, 174, 156–168. [Google Scholar] [CrossRef]
- Carter, M.R. Conservation Tillage. Encycl. Soils Environ. 2005, 306–311. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Vincent-Caboud, L.; Peigné, J.; Casagrande, M.; Silva, E. Overview of organic cover crop-based no-tillage technique in Europe: Farmers’ practices and research challenges. Agriculture 2017, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Yezekyan, T.; Marinello, F.; Armentano, G.; Trestini, S.; Sartori, L. Definition of Reference Models for Power, Weight, Working Width, and Price for Seeding Machines. Agriculture 2018, 8, 186. [Google Scholar] [CrossRef] [Green Version]
- Pezzuolo, A.; Dumont, B.; Sartori, L.; Marinello, F.; De Antoni Migliorati, M.; Basso, B. Evaluating the impact of soil conservation measures on soil organic carbon at the farm scale. Comput. Electron. Agric. 2017, 135, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Frasconi, C.; Martelloni, L.; Raffaelli, M.; Fontanelli, M.; Abou Chehade, L.; Peruzzi, A.; Antichi, D. A field vegetable transplanter for use in both tilled and no-till soils. Trans. Asabe 2019, 62, 593–602. [Google Scholar] [CrossRef]
- Conceição, L.A.; Barreiro, P.; Dias, S.; Garrido, M.; Valero, C.; da Silva, J.R.M. A partial study of vertical distribution of conventional no-till seeders and spatial variability of seed depth placement of maize in the Alentejo region, Portugal. Precis. Agric. 2016, 17, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Canakci, M.; Karayel, D.; Topakci, M.; Koc, A. Performance of a no-till seeder under dry and wet soil conditions. Appl. Eng. Agric. 2009, 25, 459–465. [Google Scholar] [CrossRef]
- Afify, M.T.; Kushwaha, R.L.; Gerein, M.A. Effect of combined disc angles on soil forces of coulter discs. In Proceedings of the ASAE Annual Meeting, Sacramento, CA, USA, 29 July–1 August 2001; pp. 1–14. [Google Scholar]
- Becker, F.; Voß, T.; Mohr, A.; Mehdorn, A.-S.; Schütte-Nütgen, K.; Reuter, S.; Kabar, I.; Bormann, E.; Vowinkel, T.; Palmes, D.; et al. Impact of nighttime procedures on outcomes after liver transplantation. PLoS ONE 2019, 14, e0220124. [Google Scholar] [CrossRef] [Green Version]
- Karayel, D.; Šarauskis, E. Effect of down force on the performance of no-till disc furrow openers for clay-loam and loamy soils. Agric. Eng. 2011, 43, 16–24. [Google Scholar]
- Malasli, M.Z.; Celik, A. Disc angle and tilt angle effects on forces acting on a single-disc type no-till seeder opener. Soil Tillage Res. 2019, 194, 104304. [Google Scholar] [CrossRef]
- Altikat, S.; Celik, A.; Gozubuyuk, Z. Effects of various no-till seeders and stubble conditions on sowing performance and seed emergence of common vetch. Soil Tillage Res. 2013, 126, 72–77. [Google Scholar] [CrossRef]
- Aikins, K.A.; Antille, D.L.; Jensen, T.A.; Blackwell, J. Performance comparison of residue management units of no-tillage sowing systems: A review. Eng. Agric. Environ. Food 2019, 12, 181–190. [Google Scholar] [CrossRef]
- Morse, R. No-till vegetable production: Its time is now. HortTech 1999, 9, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Yoder, D.C.; Cope, T.L.; Wills, J.B.; Denton, H.P. No-till transplanting of vegetables and tobacco to reduce erosion and nutrient surface runoff. J. Soil Water Cons. 2005, 60, 68–72. [Google Scholar]
- Mitchell, J.P.; Klonsky, K.M.; Miyao, E.M.; Aegerter, B.J.; Shrestha, A.; Munk, D.S.; Hembree, K.; Madden, N.M.; Turini, T.A. Evolution of conservation tillage systems for processing tomato in California’s Central Valley. HortTech 2012, 22, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Morse, R.D.; Vaughan, D.H.; Belcher, L.W. Evaluation of conservation tillage systems for transplanting crops—Potential role of the subsurface tillage transplanter. The Evolution of Conservation Tillage Systems. In Proceedings of the Conservation Tillage Conference for Sustainable Agriculture, Monroe, LA, USA, 15–17 June 1993. [Google Scholar]
- Fedele. “Fast” Transplanter. Lanciano, Italy: Fedele Costruzioni Meccaniche. 2017. Available online: http://www.fedelemario.com/trapiantatrice%20fast.html (accessed on 27 December 2020).
- Kornecki, T.S.; Price, A.J. Management of High-Residue Cover Crops in a Conservation Tillage Organic Vegetable On-Farm Setting. Agronomy 2019, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Barut, Z.B.; Ertekin, C.; Karaagac, H.A. Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey Zeliha. Energy 2011, 36, 5466–5475. [Google Scholar] [CrossRef]
- Gemtos, T.A.; Cavalaris, C.C.; Karamoutis, C.; Fountas, S. Evaluation of strip tillage for cotton production in Greece. In Proceedings of the International Conference on Agricultural Engineering, Hersonissos, Crete, Greece, 23–25 June 2008. [Google Scholar]
- Stathakos, T.D.; Gemtos, T.A.; Tsatsarelis, C.A.; Galanopoulou, S. Evaluation of three cultivation practices for early cotton establishment and improving crop profitability. Soil Tillage Res. 2006, 87, 135–145. [Google Scholar] [CrossRef]
- Sessiz, A.; Sogut, T.; Alp, A.; Esgici, R. Tillage effects on sunflower (Helianthus annuus) emergence, yield, quality and fuel consumption in double cropping system. J. Cent. Eur. Agric. 2008, 9, 697–710. [Google Scholar]
- Altikat, S. Effects of strip width and tractor forward speed on sowing uniformity of maize and sunflower. Bulg. J. Agric. Sci. 2012, 18, 375–382. [Google Scholar]
- Trevini, M.; Benincasa, P.; Guiducci, M. Strip tillage effect on seedbed tilth and maize production in Northern Italy as case-study for the Southern Europe environment. Eur. J. Agron. 2013, 48, 50–56. [Google Scholar] [CrossRef]
- Benincasa, P.; Zorzi, A.; Panella, F.; Tosti, G.; Trevini, M. Strip tillage and sowing: Is precision planting indispensable in silage maize? Int. J. Plant Prod. 2017, 11, 1735–1804. [Google Scholar]
- Silva, L.L. Are basin and reservoir tillage effective techniques to reduce runoff under sprinkler irrigation in Mediterranean conditions? Agric. Water Manag. 2017, 191, 50–56. [Google Scholar] [CrossRef]
- Brainard, D.C.; Noyes, D.C. Strip tillage and compost influence carrot quality, yield, and net returns. Hortic. Sci. 2012, 47, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Haramoto, E.R.; Brainard, D.C. Strip tillage and oat cover crops increase soil moisture and influence N mineralization patterns in cabbage. Hortic. Sci. 2012, 47, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Licht, M.A.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Tillage Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Overstreet, L.F.; Hoyt, G.D. Effects of strip tillage and production inputs on soil biology across a spatial gradient. Soil Sci. Soc. Am. J. 2008, 72, 1454–1463. [Google Scholar] [CrossRef] [Green Version]
- Tillman, J.; Nair, A.; Gleason, M.; Batzer, J. Evaluating strip tillage and rowcover use in organic and conventional muskmelon production. Hortic. Technol. 2015, 25, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Jokela, D.L. Organic No-Till and Strip-Till Systems for Broccoli and Pepper Production. Master’s Thesis, Iowa State University, Ames, Iowa, 2016. [Google Scholar]
- Fracchiolla, M.; Stellacci, A.M.; Cazzato, E.; Tedone, L.; Alhajj Ali, S.; De Mastro, G. Effects of Conservative Tillage and Nitrogen Management on Weed Seed Bank after a Seven-Year Durum Wheat-Faba Bean Rotation. Plants 2018, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Antichi, D.; Sbrana, M.; Martelloni, L.; Chehade, L.A.; Fontanelli, M.; Raffaelli, M.; Mazzoncini, M.; Peruzzi, A.; Frasconi, C. Agronomic performances of organic field vegetables managed with conservation agriculture techniques: A study from central Italy. Agronomy 2019, 9, 810. [Google Scholar] [CrossRef] [Green Version]
- Frasconi, C.; Martelloni, L.; Antichi, D.; Raffaelli, M.; Fontanelli, M.; Peruzzi, A.; Benincasa, P.; Tosti, G. Combining roller crimpers and flaming for the termination of cover crops in herbicide-free no-till cropping systems. PLoS ONE 2019, 14, e0211573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peruzzi, A.; Martelloni, L.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Raffaelli, M. Machines for Non-Chemical Intra-Row Weed Control in Narrow and Wide-Row Crops: A Review. J. Agric. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Blasco, J.; Aleixos, N.; Roger, J.M.; Rabatel, G.; Molto, E. Robotic Weed Control using Machine Vision. Biosyst. Eng. 2002, 83, 149–157. [Google Scholar] [CrossRef]
- Barberi, P.; Mazzoncini, M. Changes in weed community composition as influenced by cover crop and management system in continuous corn. Weed Sci. 2001, 49, 491–499. [Google Scholar] [CrossRef]
- Flamini, G. Natural herbicides as a safer and more environmentally friendly approach to weed control: A review of the literature since 2000. Stud. Nat. Prod. Chem. 2012, 38, 353–396. [Google Scholar]
- Tabaglio, V.; Marocco, A.; Schulz, M. Allelopathic cover crop of rye for integrated weed control in sustainable agroecosystems. Ital. J. Agron. 2013, 8, 35–40. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Muñoz-Carpena, R.; Quemada, M. The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecol. Environ. 2012, 155, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Tosti, G.; Benincasa, P.; Farneselli, M.; Guiducci, M.; Onofri, A.; Tei, F. Processing Tomato–Durum Wheat Rotation under Integrated, Organic and Mulch-Based No-Tillage Organic Systems: Yield, N Balance and N Loss. Agronomy 2019, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Panagos, P. An indicator to reflect the mitigating effect of Common Agricultural Policy on soil erosion. Land Use Policy 2020, 92, 104–467. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Quemada, M.; Martín-Lammerding, D.; Vanclooster, M. Assessing the cover crop effect on soil hydraulic properties by inverse modelling in a 10-year field trial. Agric. Water Manag. 2019, 222, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Perego, A.; Rocca, A.; Cattivelli, V.; Tabaglio, V.; Fiorini, A.; Barbieri, S.; Schillaci, C.; Chiodini, M.E.; Brenna, S.; Acutis, M. Agro-environmental aspects of conservation agriculture compared to conventional systems: A 3-year experience on 20 farms in the Po valley (Northern Italy). Agric. Syst. 2019, 168, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Massaccesi, L.; Rondoni, G.; Tosti, G.; Conti, E.; Guiducci, M.; Agnelli, A. Soil functions are affected by transition from conventional to organic mulch-based cropping system. Appl. Soil Ecol. 2020, 153, 103639. [Google Scholar] [CrossRef]
- Diacono, M.; Ciaccia, C.; Canali, S.; Fiore, A.; Montemurro, F. Assessment of agro-ecological service crop managements combined with organic fertilisation strategies in organic melon crop. Ital. J. Agron. 2018, 13, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Bechar, A.; Vigneault, C. Agricultural robots for field operations. Part 2: Operations and systems. Biosyst. Eng. 2017, 153, 110–128. [Google Scholar] [CrossRef]
- Sportelli, M.; Pirchio, M.; Fontanelli, M.; Volterrani, M.; Frasconi, C.; Martelloni, L.; Caturegli, L.; Gaetani, M.; Grossi, N.; Magni, M.; et al. Autonomous mowers working in narrow spaces: A possible future application in agriculture? Agronomy 2020, 10, 553. [Google Scholar] [CrossRef] [Green Version]
- Magni, S.; Sportelli, M.; Grossi, N.; Volterrani, M.; Minelli, A.; Pirchio, M.; Fontanelli, M.; Frasconi, C.; Gaetani, M.; Martelloni, L.; et al. Autonomous Mowing and Turf-Type Bermudagrass as Innovations for An Environment-Friendly Floor Management of a Vineyard in Coastal Tuscany. Agriculture 2020, 10, 189. [Google Scholar] [CrossRef]
- Casa, R.; Lo Cascio, B. Soil conservation tillage effects on yield and water use efficiency on irrigated crops in Central Italy. J. Agron. Crop Sci. 2008, 194, 310–319. [Google Scholar] [CrossRef] [Green Version]
- Hernanz, J.L.; Lopez, R.; Navarrete, L.; Sanchez-Giron, V. Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Tillage Res. 2002, 66, 129–141. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Di Bene, C.; Coli, A.; Antichi, D.; Petri, M.; Bonari, E. Rainfed wheat and soybean productivity in a long-term tillage experiment in central Italy. Agron. J. 2008, 100, 1418–1429. [Google Scholar] [CrossRef]
- Ruisi, P.; Giambalvo, D.; Di Miceli, G.; Frenda, A.S.; Saia, S.; Amato, G. Tillage effects on yield and nitrogen fixation of legumes in Mediterranean conditions. Agron. J. 2012, 104, 1459–1466. [Google Scholar] [CrossRef] [Green Version]
- Ruisi, P.; Giambalvo, D.; Saia, S.; Di Miceli, G.; Frenda, A.S.; Plaia, A.; Amato, G. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 2014, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Troccoli, A.; Maddaluno, C.; Mucci, M.; Russo, M.; Rinaldi, M. Is it appropriate to support the farmers for adopting conservation agriculture? Economic and environmental impact assessment. Ital. J. Agron. 2015, 10, 661. [Google Scholar] [CrossRef] [Green Version]
- Özpinar, S.; Çay, A. Effects of minimum and conventional tillage systems on soil properties and yield of winter wheat (Triticum aestivum L.) in clay-loam in the Çanakkale region. Turk. J. Agric. For. 2005, 29, 9–18. [Google Scholar]
- Lampurlanés, J.; Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crop Res. 2016, 189, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Colecchia, S.A.; Rinaldi, M.; De Vita, P. Effects of tillage systems in durum wheat under rainfed Mediterranean conditions. Cereal Res. Commun. 2015, 43, 4. [Google Scholar] [CrossRef] [Green Version]
- Failla, S.; Ingrao, C.; Arcidiacono, C. Energy consumption of rainfed durum wheat cultivation in a Mediterranean area using three different soil management systems. Energy 2020, 195, 116960. [Google Scholar] [CrossRef]
- Pisante, M.; Basso, F. Influence of tillage systems on yield and quality of durum wheat in Southern Italy. Ciheam Options Mediterr. 2000, 549–554. [Google Scholar]
- Ceccanti, C.; Landi, M.; Antichi, D.; Guidi, L.; Manfrini, L.; Monti, M.; Tosti, G.; Frasconi, C. Bioactive Properties of Fruits and Leafy Vegetables Managed with Integrated, Organic, and Organic No-Tillage Practices in the Mediterranean Area: A Two-Year Rotation Experiment. Agronomy 2020, 10, 841. [Google Scholar] [CrossRef]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.F.; Carof, M.; Chen, W.; Le Floch, G. Effect of tillage and static abiotic soil properties on microbial diversity. Appl. Soil Ecol. 2018, 132, 135–145. [Google Scholar] [CrossRef]
- Debiase, G.; Traversa, A.; Montemurro, F.; Mastrangelo, M.; Fiore, A.; Ventrella, G.; Brunetti, G. Minimum tillage and organic fertilization for the sustainable management of Brassica carinata A. (Braun) in the Mediterranean environment. Environ. Sci. Pollut. Res. 2018, 25, 33556–33565. [Google Scholar] [CrossRef] [PubMed]
- Abou Chehade, L.; Antichi, D.; Martelloni, L.; Frasconi, C.; Sbrana, M.; Mazzoncini, M.; Peruzzi, A. Evaluation of the agronomic performance of organic processing tomato as affected by different cover crop residues management. Agronomy 2019, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- Guidobono Cavalchini, A.; Rognoni, G.L.; Tangorra, F.M.; Costa, A. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing. J. Agric. Eng. 2013, XLIV(s2), 392–396. [Google Scholar]
- Marandola, D.; Marongiu, S. Più efficienza al Centro-Sud con la semina su Sodo. L’Informatore Agrario 2012, 40, 75–78. [Google Scholar]
- Iezzi, G.; Roggero, P.P.; Santilocchi, R.; Seddaiu, G. Effects of repeated sod seeding or ntinimum tillage and nitrogen fertilisation on durum v,heal grain yield in the clay hills of central ltabt- pvss. In Proceedings of the VII European Society for Agronomy Congress, Cordoba, Spain, I5–18 July 2002; pp. 499–500. [Google Scholar]
- Scopel, E.; Triomphe, B.; Affholder, F.; Macena, F.; Corbeels, M.; Xavier, J.; Lahmar, R.; Recous, S.; Bernoux, M.; Blanchart, E.; et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 2013, 33, 113–130. [Google Scholar] [CrossRef]
- Calcante, A.; Oberti, R. A Technical-Economic Comparison between Conventional Tillage and Conservative Techniques in Paddy-Rice Production Practice in Northern Italy. Agronomy 2019, 9, 886. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Failla, S.; Pirchio, M.; Sportelli, M.; Frasconi, C.; Fontanelli, M.; Raffaelli, M.; Peruzzi, A. Evolution of Smart Strategies and Machines Used for Conservative Management of Herbaceous and Horticultural Crops in the Mediterranean Basin: A Review. Agronomy 2021, 11, 106. https://doi.org/10.3390/agronomy11010106
Failla S, Pirchio M, Sportelli M, Frasconi C, Fontanelli M, Raffaelli M, Peruzzi A. Evolution of Smart Strategies and Machines Used for Conservative Management of Herbaceous and Horticultural Crops in the Mediterranean Basin: A Review. Agronomy. 2021; 11(1):106. https://doi.org/10.3390/agronomy11010106
Chicago/Turabian StyleFailla, Sabina, Michel Pirchio, Mino Sportelli, Christian Frasconi, Marco Fontanelli, Michele Raffaelli, and Andrea Peruzzi. 2021. "Evolution of Smart Strategies and Machines Used for Conservative Management of Herbaceous and Horticultural Crops in the Mediterranean Basin: A Review" Agronomy 11, no. 1: 106. https://doi.org/10.3390/agronomy11010106
APA StyleFailla, S., Pirchio, M., Sportelli, M., Frasconi, C., Fontanelli, M., Raffaelli, M., & Peruzzi, A. (2021). Evolution of Smart Strategies and Machines Used for Conservative Management of Herbaceous and Horticultural Crops in the Mediterranean Basin: A Review. Agronomy, 11(1), 106. https://doi.org/10.3390/agronomy11010106