Wild and Cultivated Homoeologous Barley Chromosomes Can Associate and Recombine in Wheat in the Absence of the Ph1 Locus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Characterization
2.3. Fluorescence In Situ Hybridization
2.4. Fluorescence Microscopy and Image Processing
3. Results
3.1. Development of Double Monosomic H. vulgare-H. chilense Addition Lines in Wheat in the ph1b Mutant Background
3.2. Non-Homologous Chromosome Associations between H. vulgare and H. chilense Are Allowed during Early Meiosis in Wheat in the ph1b Mutant Background
3.3. Recombination Can Occur Indistinctly between Wild Barley, Cultivated Barley, and Wheat Chromosomes in the Absence of the Ph1 Locus
3.4. Segregation of the Inter-Specific Chromosome Associations Occurred Randomly in the Absence of the Ph1 Locus
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2769–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mara, J.G. The cytogenetics of Triticale. Bot. Rev. 1953, 19, 587–605. [Google Scholar] [CrossRef]
- Martín, A.; Chapman, V. A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res. Commun. 1977, 5, 365–368. [Google Scholar]
- Lukaszewski, A.J. Manipulation of the 1RS.1BL Translocation in Wheat by Induced Homoeologous Recombination. Crop. Sci. 2000, 40, 216–225. [Google Scholar] [CrossRef]
- Friebe, B.; Jiang, J.; Raupp, W.J.; McIntosh, R.A.; Gill, B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 1996, 91, 59–87. [Google Scholar] [CrossRef]
- Calderón, M.D.C.; Ramírez, M.D.C.; Martín, A.; Prieto, P. Development of Hordeum chilense 4 H ch introgression lines in durum wheat: A tool for breeders and complex trait analysis. Plant Breed. 2012, 131, 733–738. [Google Scholar] [CrossRef]
- Rey-Santomé, M.D.; Calderón, M.-C.; Rodrigo, M.J.; Zacarías, L.; Alós, E.; Prieto, P. Novel Bread Wheat Lines Enriched in Carotenoids Carrying Hordeum chilense Chromosome Arms in the ph1b Background. PLoS ONE 2015, 10, e0134598. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; DeYoe, C.W. Wide hybridization and cereal improvement. Econ. Bot. 1973, 27, 401–412. [Google Scholar] [CrossRef]
- Martinez-Perez, E.; Shaw, P.; Moore, G. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nat. Cell Biol. 2001, 411, 204–207. [Google Scholar] [CrossRef]
- Sears, E.R. Induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 1977, 19, 585–593. [Google Scholar] [CrossRef]
- Mello-Sampayo, T. Genetic Regulation of Meiotic Chromosome Pairing by Chromosome 3D of Triticum aestivum. Nat. New Biol. 1971, 230, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.J. Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can. J. Genet. Cytol. 1972, 14, 39–42. [Google Scholar] [CrossRef]
- Prieto, P.; Moore, G.; Reader, S. Control of conformation changes associated with homologue recognition during meiosis. Theor. Appl. Genet. 2005, 111, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, M. A synaptic effect of chromosome V. Wheat Inf. Serv. 1957, 5, 6. Available online: http://ci.nii.ac.jp/naid/10029710824/en/ (accessed on 15 July 2020).
- Riley, R.; Chapman, V. Genetic Control of the Cytologically Diploid Behaviour of Hexaploid Wheat. Nat. Cell Biol. 2006, 182, 713–715. [Google Scholar] [CrossRef]
- Sears, E.R.; Okamoto, M. Intergenomic chromosome relationship in hexaploid wheat. In Proceedings of the 10th Inter-national Congress of Genetics, Toronto, ON, Canada, 20–27 August 1958; pp. 258–259. [Google Scholar]
- Moore, G. The Control of Recombination in Wheat by Ph1 and Its Use in Breeding. In Advanced Structural Safety Studies; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; Volume 1145, pp. 143–153. [Google Scholar]
- Martín, A.C.; Rey, M.-D.; Shaw, P.; Moore, G. Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma 2017, 126, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Rey, M.-D.; Martín, A.C.; Higgins, J.; Swarbreck, D.; Uauy, C.; Shaw, P.; Moore, G. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol. Breed. 2017, 37, 1–11. [Google Scholar] [CrossRef]
- Calderón, M.C.; Rey, M.-D.; Martín, A.; Prieto, P. Homoeologous Chromosomes from Two Hordeum Species Can Recognize and Associate During Meiosis in Wheat in the Presence of the Ph1 Locus. Front. Plant Sci. 2018, 9, 585. [Google Scholar] [CrossRef] [Green Version]
- Jenczewski, E.; Alix, K. From Diploids to Allopolyploids: The Emergence of Efficient Pairing Control Genes in Plants. Crit. Rev. Plant Sci. 2004, 23, 21–45. [Google Scholar] [CrossRef]
- Pawlowski, W.P. Chromosome organization and dynamics in plants. Curr. Opin. Plant Biol. 2010, 13, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Shaw, P.; Moore, G. Homologue recognition during meiosis is associated with a change in chromatin conformation. Nat. Cell Biol. 2004, 6, 906–908. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, T.; Corredor, E. Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants. Cytogenet. Genome Res. 2008, 120, 320–330. [Google Scholar] [CrossRef]
- Naranjo, T. The Effect of Chromosome Structure upon Meiotic Homologous and Homoeologous Recombinations in Triticeae. Agronomy 2019, 9, 552. [Google Scholar] [CrossRef] [Green Version]
- Greer, E.; Martín, A.C.; Pendle, A.; Colas, I.; Jones, A.M.; Moore, G.; Shaw, P. The Ph1 Locus Suppresses Cdk2-Type Activity during Premeiosis and Meiosis in Wheat. Plant Cell 2012, 24, 152–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.-B.; De Jong, H. Production of alien chromosome additions and their utility in plant genetics. Cytogenet. Genome Res. 2005, 109, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.E.; Reader, S.M.; Chapman, V. The Addition of Hordeum Chilense Chromosomes to Wheat. In Induced Variability in Plant Breeding: Proceedings of an International Eucarpia Symposium; Wageningen Academic Publishers: Wageningen, The Netherlands, 1982; pp. 79–81. [Google Scholar]
- Islam, A.K.M.R.; Shepherd, K.W.; Sparrow, D.H.B. Production and characterization of wheat-barley addition lines. In Proceedings of the 5th International Wheat Genetics Symposium, New Delhi, India, 23–28 February 1978; pp. 365–371. [Google Scholar]
- Islam, A.K.M.R.; Shepherd, K.W.; Sparrow, D.H.B. Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 1981, 46, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Maestra, B.; De Jong, J.H.; Shepherd, K.; Naranjo, T. Chromosome arrangement and behaviour of two rye homologous telosomes at the onset of meiosis in disomic wheat-5RL addition lines with and without the Ph1 locus. Chromosom. Res. 2002, 10, 655–667. [Google Scholar] [CrossRef]
- Rey, M.-D.; Calderon, M.C.; Prieto, P. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front. Plant Sci. 2015, 6, 160. [Google Scholar] [CrossRef]
- Murray, M.; Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- Hernández, P.; Dorado, G.; Prieto, P.; Giménez, M.J.; Ramírez, M.C.; Laurie, D.A.; Snape, J.W.; Martín, A. A core genetic map of Hordeum chilense and comparisons with maps of barley (Hordeum vulgare) and wheat (Triticum aestivum). Theor. Appl. Genet. 2001, 102, 1259–1264. [Google Scholar] [CrossRef]
- Wang, X.; Lai, J.; Liu, G.; Chen, F. Development of a scar marker for the Ph1 Locus in common wheat and its application. Crop. Sci. 2002, 42, 1365–1368. [Google Scholar] [CrossRef]
- Liu, Z.; Biyashev, R.M.; Maroof, M.S. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor. Appl. Genet. 1996, 93, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Hagras, A.A.-A.; Kishii, M.; Tanaka, H.; Sato, K.; Tsujimoto, H. Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes Genet. Syst. 2005, 80, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto, P.; Martin, A.; Cabrera, A.; Soliman, M.H. Chromosomal distribution of telomeric and telomeric-associated sequences in Hordeum chilense by in situ hybridization. Heredity 2004, 141, 122–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, M.; Levy, A.A. Genome Evolution Due to Allopolyploidization in Wheat. Genetics 2012, 192, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Leitch, A.R.; Bennett, M.D. Polyploidy in angiosperms. Trends Plant Sci. 1997, 2, 470–476. [Google Scholar] [CrossRef]
- Mello-Sampayo, T.; Canas, A.P. Suppressors of meiotic chromosome pairing in common wheat. In Proceedings of the 4th International Wheat Genetics Symposium; Sears, E.R., Sears, L.M.S., Eds.; Columbia University of Agricultural Experiment Station, College of Agriculture, and Missouri: Columbia, MO, USA, 1973; pp. 703–713. [Google Scholar]
- Sears, E.-R. Misdivision of univalents in common wheat. Chromosoma 1950, 4, 535–550. [Google Scholar] [CrossRef]
- Steinitz-Sears, L.M. Somatic Instability of Telocentric Chromosomes in Wheat and the Nature of the Centromere. Genetics 1966, 54, 241–248. [Google Scholar] [CrossRef]
- Friebe, B.; Zhang, P.; Linc, G.; Gill, B. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet. Genome Res. 2005, 109, 293–297. [Google Scholar] [CrossRef]
- Molnár-Láng, M.; Linc, G.; Logojan, A.; Sutka, J. Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome 2000, 43, 1045–1054. [Google Scholar] [CrossRef]
- Silkova, O.G.; Kabanenko, Y.N.; Loginova, D.V. The effect of wheat-rye substitution on chromosome elimination: An analysis of univalents’ behavior in wheat meiosis with dimonosomy and tetramonosomy. Russ. J. Genet. 2014, 50, 245–252. [Google Scholar] [CrossRef]
- Martín, A.C.; Shaw, P.; Phillips, D.W.; Reader, S.; Moore, G. Licensing MLH1 sites for crossover during meiosis. Nat. Commun. 2014, 5, 4580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Pickering, R.; Murray, B.G. Direct measurement of recombination frequency in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization. Heredity 1999, 83, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Rouse, M.; Friebe, B.; Jin, Y.; Gill, B.; Pumphrey, M.O. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosom. Res. 2011, 19, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Ramíarez, M.C.; Ballesteros, J.; Soliman, M.H. Identification of Intergenomic Translocations Involving Wheat, Hordeum Vulgare and Hordeum Chilense Chromosomes by FISH. Heredity 2004, 135, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.E.; Reader, S.M.; Purdie, K.A.; King, I.P. Determination of the frequency of wheat-rye chromosome pairing in wheat x rye hybrids with and without chromosome 5B. Theor. Appl. Genet. 1994, 89, 255–258. [Google Scholar] [CrossRef]
- Blattner, F.R. Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breed. Sci. 2009, 59, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Aliyeva-Schnorr, L.; Stein, N.; Houben, A. Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis. Chromosom. Res. 2016, 24, 231–242. [Google Scholar] [CrossRef]
- Duncan, R.E. Production of variable aneuploid numbers of chromosomes within the root tips of Parphiopedilum ward-iiSummerhayes. Am. J. Bot. 1945, 32, 506–509. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, L.; Zheng, J.; Li, Y.; Zhang, L.; Liu, D.; Pu, Z.; Hao, M. Karyotype mosaicism in early generation synthetic hexaploid wheats. Genome 2020, 63, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Lewis, W.H. Chromosomal Drift, a New Phenomenon in Plants. Science 1970, 168, 1115–1116. [Google Scholar] [CrossRef] [PubMed]
- Persson, K. Biosystematic studies in the Artemisia maritimacomplex in Europe. Opera Bot. 1974, 35, 1–188. [Google Scholar]
- Couderc, H.; Gorenflot, R.; Calame, F.G.; Küpfer, P. La polyploïdie chez les plantes. Bot. Helv. 1980, 108, 5–37. [Google Scholar]
- Samonte, R.V. Structural Dynamics of Eukaryotic Chromosome Evolution. Science 2003, 301, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Linardopoulou, E.V.; Williams, E.M.; Fan, Y.; Friedman, C.; Young, J.M.; Trask, B.J. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nat. Cell Biol. 2005, 437, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Prieto, P. Sequence analysis of wheat subtelomeres reveals a high polymorphism among homoeologous chromosomes. Plant Genome 2020, 13, e20065. [Google Scholar] [CrossRef]
- Kotani, H.; Hosouchi, T.; Tsuruoka, H. Structural Analysis and Complete Physical Map of Arabidopsis thaliana Chromosome 5 Including Centromeric and Telomeric Regions. DNA Res. 1999, 6, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Heacock, M.; Spangler, E.; Riha, K.; Puizina, J.; Shippen, D.E. Molecular analysis of telomere fusions in Arabidopsis: Multiple pathways for chromosome end-joining. EMBO J. 2004, 23, 2304–2313. [Google Scholar] [CrossRef] [Green Version]
- Calderón, M.D.C.; Rey, M.-D.; Soliman, M.H.; Prieto, P. The subtelomeric region is important for chromosome recognition and pairing during meiosis. Sci. Rep. 2014, 4, 6488. [Google Scholar] [CrossRef] [Green Version]
(a) | |||||
---|---|---|---|---|---|
parental lines ph1bph1b | self-pollinated progeny ph1bph1b | ||||
7Hv monosomic addition line | 5Hch monosomic addition line | 7Hch monosomic addition line | 7Hv7Hv disomic addition line | 5Hch5Hch disomic addition line | 7Hch7Hch disomic addition line |
50 | 50 | 50 | 5 | 8 | 5 |
(b) | |||||
F1 progeny ph1bph1b | F2 progeny ph1bph1b | ||||
7HvL5Hch double monosomic addition line | 7HvL7Hch double monosomic addition line | 7HvL5Hch double monosomic addition line | 7HvL7Hch double monosomic addition line | 7HvL monosomic addition line | 7HvL5Hch aneusomaty |
26 | 20 | 5 | 3 | 1 | 1 |
Wheat Line | Number of Plants Analyzed in Metaphase | Number of PMCs Scored in Metaphase | Number (and Frequency) of PMCs Carrying Chromosome Associations Scored in Metaphase I | |||||
---|---|---|---|---|---|---|---|---|
Hv-Hch Pairing | Hch-Wheat Pairing | Hv-Wheat Pairing | Hch-Wheat and Hv-Wheat Pairing | Hv-Hch-Wheat Pairing | Total Pairing | |||
7Hv7Hch double monosomic Ph1Ph1 | 2 | 107 | 0 | 0 | 0 | 0 | 0 | 0 |
7Hv5Hch double monosomic Ph1Ph1 | 2 | 159 | 0 | 0 | 0 | 0 | 0 | 0 |
7HvL7Hch double monosomic ph1bph1b | 2 | 211 | 44 (20.85%) | 18 (8.53%) | 18 (8.53%) | 4 (1.89%) | 1 (0.47%) | 85 (40.27%) |
7HvL5Hch double monosomic ph1bph1b | 2 | 303 | 22 (7.26%) | 7 (2.31%) | 8 (2.64%) | 2 (0.66%) | 1 (0.33%) | 40 (13.20%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón, M.C.; Prieto, P. Wild and Cultivated Homoeologous Barley Chromosomes Can Associate and Recombine in Wheat in the Absence of the Ph1 Locus. Agronomy 2021, 11, 147. https://doi.org/10.3390/agronomy11010147
Calderón MC, Prieto P. Wild and Cultivated Homoeologous Barley Chromosomes Can Associate and Recombine in Wheat in the Absence of the Ph1 Locus. Agronomy. 2021; 11(1):147. https://doi.org/10.3390/agronomy11010147
Chicago/Turabian StyleCalderón, María Carmen, and Pilar Prieto. 2021. "Wild and Cultivated Homoeologous Barley Chromosomes Can Associate and Recombine in Wheat in the Absence of the Ph1 Locus" Agronomy 11, no. 1: 147. https://doi.org/10.3390/agronomy11010147
APA StyleCalderón, M. C., & Prieto, P. (2021). Wild and Cultivated Homoeologous Barley Chromosomes Can Associate and Recombine in Wheat in the Absence of the Ph1 Locus. Agronomy, 11(1), 147. https://doi.org/10.3390/agronomy11010147