Potato Growth and Yield Characteristics under Different Cropping System Management Strategies in Northeastern U.S. †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cropping Systems
2.2. Field Set-Up and Management
2.3. Tuber Yield and Quality Assays
2.4. Crop Growth Assays
2.4.1. Leaf Area Index, Duration, and Chlorophyll Content
2.4.2. Root, Tuber, and Shoot Biomass
2.4.3. Root, Tuber, and Shoot Tissue Composition
2.5. Statistical Analyses
3. Results
3.1. Tuber Yield
3.2. Tuber Size and Quality
3.3. Crop Growth Assays
3.3.1. Leaf Area Duration and Chlorophyll Content
3.3.2. Root, Shoot, and Tuber Biomass
3.3.3. Plant Tissue Elemental Analyses
3.4. Parameter Correlations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doran, J.W.; Sarrantonio, M.; Leibig, M. Soil health and sustainability. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 1996; pp. 1–54. [Google Scholar]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Larkin, R.P. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 2015, 53, 19–221. [Google Scholar] [CrossRef] [PubMed]
- Magdoff, F.; van Es, H. Building Soils for Better Crops, 3rd ed.; Sustainable Agriculture Research and Education: Waldorf, MD, USA, 2009. [Google Scholar]
- Grandy, A.S.; Porter, G.A.; Erich, M.S. Organic amendment and rotation crop effects on the recovery of soil organic matter and aggregation in potato cropping systems. Soil Sci. Soc. Am. J. 2002, 66, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.R.; Sanderson, J.B. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil Tillage Res. 2001, 63, 1–13. [Google Scholar] [CrossRef]
- Mohr, R.M.; Volkmar, K.; Derksen, D.A.; Irvine, R.B.; Khakbazan, M.; McLaren, D.L.; Monreal, M.A.; Moulin, A.P.; Tomasiewicz, D.J. Effect of rotation on crop yield and quality in an irrigated potato system. Am. J. Potato Res. 2011, 88, 346–359. [Google Scholar] [CrossRef]
- Peters, R.D.; Sturz, A.V.; Carter, M.R.; Sanderson, J.B. Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Can. J. Soil Sci. 2004, 84, 397–402. [Google Scholar] [CrossRef]
- Scholte, K. Causes of differences in growth pattern, yield and quality of potatoes (Solanum tuberosum L.) in short rotations on sandy soil as affected by crop rotation, cultivar, and application of granular nematicides. Potato Res. 1990, 33, 181–190. [Google Scholar] [CrossRef]
- Wright, P.J.; Falloon, R.E.; Hedderly, D. A long-term vegetable crop rotation study to determine effects on soil microbial communities and soilborne diseases of potato and onion. N. Z. J. Crop Hortic. Sci. 2017, 45, 29–54. [Google Scholar] [CrossRef]
- Essah, S.Y.C.; Delgado, J.A.; Dillon, M.; Sparks, R. Cover crops can improve potato tuber yield and quality. HortTechnology 2012, 22, 185–190. [Google Scholar] [CrossRef] [Green Version]
- N’Dayegamiye, A.; Nyiraneza, J.; Grenier, M.; Bippfubusa, M.; Drapeau, A. The benefits of crop rotation including cereals and green manure on potato yield and nitrogen nutrition and soil properties. Adv. Crop Sci. Tech. 2017, 5, 279. [Google Scholar] [CrossRef] [Green Version]
- Bernard, E.; Larkin, R.P.; Tavantzis, S.; Erich, M.S.; Alyokhin, A.; Gross, S. Rapeseed rotation, compost, and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant Soil 2014, 374, 611–627. [Google Scholar] [CrossRef]
- Blanchet, G.; Gavazov, K.; Bragazza, L.; Sinaj, S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016, 230, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Ninh, H.T.; Grandy, A.S.; Wickings, K.; Snapp, S.S.; Kirk, W.; Hao, J. Organic amendment effects on potato productivity and quality are related to soil microbial activity. Plant Soil 2015, 386, 223–236. [Google Scholar] [CrossRef]
- Carter, M.R.; Noronha, C.; Peters, R.D.; Kimpinski, J. Influence of conservation tillage and crop rotation on the resilience of an intensive long-term potato cropping system. Agric. Ecosyst. Environ. 2009, 133, 32–39. [Google Scholar] [CrossRef]
- Larkin, R.P.; Griffin, T.S.; Honeycutt, C.W. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis. 2010, 94, 1491–1502. [Google Scholar] [CrossRef] [Green Version]
- Larkin, R.P.; Halloran, J.M. Management effects of disease-suppressive rotation crops on potato yield and soilborne disease and their economic implications in potato production. Am. J. Potato Res. 2014, 91, 429–439. [Google Scholar] [CrossRef]
- Larkin, R.P.; Honeycutt, C.W. Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology 2006, 96, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Larkin, R.P.; Honeycutt, C.W.; Griffin, T.S.; Olanya, O.M.; Halloran, J.M.; He, Z. Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 2011, 101, 58–67. [Google Scholar] [CrossRef]
- Larkin, R.P.; Honeycutt, C.W.; Griffin, T.S.; Olanya, O.M.; He, Z.; Halloran, J.M. Cumulative and residual effects of different potato cropping system management strategies on soilborne diseases and soil microbial communities over time. Plant Pathol. 2017, 66, 437–449. [Google Scholar] [CrossRef]
- Olanya, O.M.; Honeycutt, C.W.; He, Z.; Larkin, R.P.; Halloran, J.M.; Frantz, J.M. Early and late blight potential on Russet Burbank potato as affected by microclimate, cropping systems, and irrigation management in Northeastern United States. In Sustainable Potato Production: Global Case Studies; He, Z., Larkin, R.P., Honeycutt, C.W., Eds.; Springer: Amsterdam, The Netherlands, 2012; pp. 43–60. [Google Scholar]
- Olanya, O.M.; Larkin, R.P.; Halloran, J.M.; He, Z. Relationships of crop and soil management systems to meteorological variables and potato diseases on a Russet Burbank cultivar. J. Agric. Meteorol. 2014, 70, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Larkin, R.P. Cumulative and residual effects of potato cropping system management strategies on soil physical, chemical, and biological properties. Phytopathology 2015, 105, S4. [Google Scholar]
- Larkin, R.P.; Griffin, T.S.; Honeycutt, C.W.; Olanya, O.M.; He, Z. Potato cropping system management strategy impacts soil physical, chemical, and biological properties over time. Soil Tillage Res. 2021. submitted. [Google Scholar]
- He, Z.; Honeycutt, C.W.; Griffin, T.S.; Larkin, R.P.; Olanya, O.M.; Halloran, J.M. Increases in phosphatase and urease activities in potato fields by cropping rotation practices. J. Food Agric. Environ. 2010, 8, 1112–1117. [Google Scholar] [CrossRef]
- He, Z.; Honeycutt, C.W.; Olanya, O.M.; Larkin, R.P.; Halloran, J.M. Soil test phosphorus and microbial biomass phosphorus in potato fields. J. Food Agric. Environ. 2011, 9, 540–545. [Google Scholar] [CrossRef]
- He, Z.; Honeycutt, C.W.; Olanya, O.M.; Larkin, R.P.; Halloran, J.M.; Frantz, J.M. Comparison of phosphorus status and organic matter composition in potato fields with different crop rotation systems. In Sustainable Potato Production: Global Case Studies; He, Z., Larkin, R.P., Honeycutt, C.W., Eds.; Springer: Amsterdam, The Netherlands, 2012; pp. 61–79. [Google Scholar]
- Belanger, G.; Walsh, J.R.; Richards, J.E.; Milburn, P.H.; Ziadi, N. Yield response of two potato cultivars to supplemental irrigation and N fertilization in New Brunswick. Am. J. Potato Res. 2000, 77, 11–21. [Google Scholar] [CrossRef]
- Honeycutt, C.W.; Clapham, W.M.; Leach, S.S. Crop rotation and N fertilization effects on growth, yield, and disease incidence in potato. Am. Potato J. 1996, 73, 45–61. [Google Scholar] [CrossRef]
- Porter, G.A.; Sisson, J.A. Response of Russet Burbank and Shepody potatoes to nitrogen fertilizer in two cropping systems. Am. Potato J. 1991, 68, 428–463. [Google Scholar] [CrossRef]
- Zaeen, A.A.; Sharma, L.K.; Jasim, A.; Bali, S.; Buzza, A.; Alyokhin, A. Yield and quality of three potato cultivars under series of nitrogen rates. Agrosystems Geosci. Environ. 2020, 3, e20062. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Bélanger, G.; Cambouris, A.N.; Ziadi, N. Nitrogen fertilization strategies in relation to potato tuber yield, quality, and crop N recovery. In Sustainable Potato Production: Global Case Studies; He, Z., Larkin, R.P., Honeycutt, C.W., Eds.; Springer: Amsterdam, The Netherlands, 2012; pp. 165–186. [Google Scholar]
- Halloran, J.M.; Larkin, R.P.; DeFauw, S.L.; Olanya, O.M.; He, Z. Economic potential of compost amendment as an alternative to irrigation in Maine potato production systems. Am. J. Plant Sci. 2013, 4, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Griffin, T.S.; Porter, G.A. Altering soil carbon and nitrogen stocks in intensively tilled two-year rotations. Biol. Fertil. Soils 2004, 39, 366–374. [Google Scholar]
- Porter, G.A.; Opena, G.B.; Bradbury, W.B.; McBurnie, J.C.; Sisson, J.A. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron. J. 1999, 91, 416–425. [Google Scholar] [CrossRef]
- Wilson, C.; Zebarth, B.J.; Burton, D.L.; Goyer, C. Short-term effects of diverse compost products on soil quality in potato production. Soil Sci. Soc. Am. J. 2018, 82, 889–900. [Google Scholar] [CrossRef]
- Wilson, C.; Zebarth, B.J.; Burton, D.L.; Goyer, C.; Moreau, G.; Dixon, T. Effect of diverse compost products on potato yield and nutrient availablity. Am. J. Potato Res. 2019, 96, 272–284. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability. Soil Biol. Biochem. 2008, 41, 1–12. [Google Scholar] [CrossRef]
- Albaich, R.; Canet, R.; Pomares, F.; Ingelmo, F. Organic matter components and aggregate stability after application of different amendments to a horticultural soil. Bioresour. Technol. 2001, 76, 125–129. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Tazisong, I.A.; Senwo, Z.N.; Zhang, D. Soil properties and macro cations impacted by long-term applied poultry litter. Commun. Soil Sci. Plant Anal. 2008, 39, 858–872. [Google Scholar] [CrossRef] [Green Version]
- Sexton, P.; Plant, A.; Johnson, S.B. Effect of a mustard green manure on potato yield and disease incidence in a rainfed environment. Crop Manag. 2007. [Google Scholar] [CrossRef]
- Sharifi, M.; Lynch, D.H.; Hammermeister, A.; Burton, D.L.; Messiga, A.J. Effect of green manure and supplemental fertility amendments on selected soil quality parameters in an organic potato rotation in Eastern Canada. Nutr. Cycl. Agroecosyst. 2014, 100, 135–146. [Google Scholar] [CrossRef]
- Carter, M.R.; Holmstrom, D.; Sanderson, J.B.; Ivany, J.A.; DeHaan, R. Comparison of conservation with conventional tillage for potato production in Atlantic Canada: Crop productivity, soil physical proerties and weed control. Can. J. Soil Sci. 2005, 85, 453–461. [Google Scholar] [CrossRef]
- Griffin, T.S.; Larkin, R.P.; Honeycutt, C.W. Delayed tillage and cover crop effects in potato systems. Am. J. Potato Res. 2009, 86, 79–87. [Google Scholar] [CrossRef]
- National Agricultural Statistics Service (NASS). New England Agricultural Statistics 2011. Available online: https://www.nass.usda.gov/Statistics_by_State/New_England_includes/Publications/Annual_Statistical_Bulletin/2011/fallpots2011.pdf (accessed on 20 August 2020).
- Lulai, E.C.; Orr, P.H. Influence of specific gravity on yield and oil content of chips. Am. Potato J. 1977, 56, 379–389. [Google Scholar] [CrossRef]
- Eldredge, E.P.; Holmes, Z.A.; Mosley, A.R.; Shock, C.C.; Stieber, T.D. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am. J. Potato Res. 1996, 73, 517–530. [Google Scholar] [CrossRef]
- Kincaid, D.C.; Westermann, D.T.; Trout, T.J. Irrigation and soil temperature effects on Russet Burbank quality. Am. J. Potato Res. 1993, 70, 711–723. [Google Scholar] [CrossRef]
- Boyd, N.S.; Gordon, R.; Martin, R.C. Relationship between leaf area index and ground cover in potato under different management conditions. Potato Res. 2002, 45, 117–129. [Google Scholar] [CrossRef]
- Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 2015, 5, 13389. [Google Scholar] [CrossRef] [Green Version]
- Opena, G.B.; Porter, G.A. Soil management and supplemental nutrition effects on potato II. Root growth. Agron. J. 1999, 91, 426–431. [Google Scholar] [CrossRef]
- He, Z.; Shankle, M.; Zhang, H.; Way, T.R.; Tewolde, H.; Uchimaya, M. Mineral composition of cottonseed is affected by fertilization management practices. Agron. J. 2013, 105, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Tewolde, H.; Adeli, A.; Sistani, K.R.; Rowe, D.E. Mineral nutrition of cotton fertilized with poultry litter or ammonium nitrate. Agron. J. 2011, 103, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- Walworth, J.L.; Muniz, J.E. A compendium of tissue nutrient concentrations for field-grown potatoes. Am. Potato J. 1993, 70, 579–597. [Google Scholar] [CrossRef]
- Warman, P.R.; Havard, K.A. Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. Agric. Ecosys. Environ. 1998, 68, 207–216. [Google Scholar] [CrossRef]
- Magdoff, F.; Weil, R.R. Soil Organic Matter in Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- He, Z.; Zhang, M.; Zhao, A.; Olanya, O.M.; Larkin, R.P.; Honeycutt, C.W. Quantity and nature of water-extractable organic matter from sandy loam soils with potato cropping management. Agric. Environ. Lett. 2016, 1, 6. [Google Scholar] [CrossRef]
Cropping System Parameters | ||||
---|---|---|---|---|
Name | Abbreviation | Length | Rotation Description | Features |
Status Quo | SQ | 2 y | Barley/Clover, Potato | Typical rotation (Industry standard) |
Soil Conserving | SC | 3 y | Barley/Timothy, Timothy, Potato | Additional year of forage, limited tillage, straw mulch after potato |
Soil Improving | SI | 3 y | Barley/Timothy, Timothy, Potato | SC plus yearly compost amendments |
Disease- Suppressive | DS | 3 y | Mustard GM/Rapeseed cover, Sudangrass GM/Rye cover, Potato | Biofumigation crops, green manures, cover crops, and increased crop diversity |
Continuous Potato | PP | 1 y | Potato, Potato | Non-rotation control |
Environmental Parameters | ||||||
---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2009 | 2010 | Long-Term Avg | |
Average Daily Temperature (°C) | ||||||
May | 12.7 | 10.7 | 10.3 | 11.3 | 13.1 | 11.4 |
June | 18.1 | 16.7 | 15.9 | 14.7 | 16.2 | 16.4 |
July | 20.3 | 19.0 | 20.4 | 13.4 | 20.8 | 19.0 |
August | 16.1 | 17.3 | 17.7 | 15.9 | 18.8 | 18.2 |
September | 13.1 | 14.1 | 13.6 | 11.7 | 14.6 | 13.2 |
Season avg | 16.1 | 15.6 | 15.6 | 13.4 | 16.7 | 15.6 |
Rainfall (cm) | ||||||
May | 11.3 | 6.1 | 5.3 | 12.5 | 6.5 | 8.7 |
June | 10.9 | 5.1 | 11.6 | 8.6 | 13.0 | 8.6 |
July | 11.7 | 9.8 | 8.2 | 12.2 | 7.2 | 9.4 |
August | 6.3 | 12.0 | 11.2 | 5.9 | 3.3 | 10.0 |
September | 7.1 | 4.3 | 7.9 | 3.8 | 7.2 | 8.7 |
Season total | 47.3 | 37.3 | 44.2 | 43.0 | 37.2 | 45.4 |
Irrigation events (no.) | 3 | 6 | 4 | 0 | 6 |
Tuber Yield (Mg/ha) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2009 | 2010 | ||||||
Treatment x | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr |
Total yield | ||||||||||
SI | 41.5 a y | 43.3 ab | 44.2 a | 43.0 ab | 33.9 a | 33.9 ab | 34.1 a | 32.0 c | 35.1 a | 40.9 a |
DS | 36.6 ab | 44.7 a | 35.6 b | 44.9 a | 31.4 ab | 36.5 a | 28.1 bc | 39.3 a | 30.6 b | 39.4 ab |
SC | 27.9 c | 37.1 c | 33.1 b | 39.0 bc | 30.5 ab | 37.1 a | 30.6 ab | 36.7 b | 25.5 c | 37.7 abc |
SQ | 34.5 b | 44.4 a | 31.4 bc | 39.3 bc | 29.7 b | 32.7 bc | 26.7 c | 32.0 c | 22.0 d | 35.4 c |
PP | 32.4 bc | 38.1 bc | 27.8 c | 34.0 c | 22.8 c | 29.6 c | 25.1 c | 33.7 c | 25.0 cd | 36.5 bc |
LSD (p = 0.05) | 5.1 | 5.7 | 4.8 | 5.3 | 3.4 | 3.8 | 3.8 | 2.3 | 3.5 | 3.6 |
Avg. | 34.6 | 41.5 * z | 34.4 | 40.0* | 29.5 | 34.0 * | 28.8 | 34.7 * | 27.6 | 38.0 * |
Marketable yield | ||||||||||
SI | 32.0 a | 34.3 a | 35.4 a | 33.9 ab | 28.1 a | 27.2 a | 27.9 a | 26.8 b | 26.3 a | 30.7 ab |
DS | 29.3 ab | 34.7 a | 25.6 b | 35.9 a | 24.8 ab | 29.3 a | 22.3 bc | 33.4 a | 23.3 a | 33.4 a |
SC | 21.2 c | 29.5 a | 22.9 b | 28.6 bc | 23.0 c | 27.7 a | 24.9 ab | 28.5 b | 17.6 b | 33.2 a |
SQ | 25.4 bc | 35.7 a | 23.7 b | 30.7 bc | 24.4 bc | 25.5 ab | 21.7 bc | 27.4 b | 13.6 b | 28.2 b |
PP | 22.8 c | 29.1 a | 18.8 c | 25.2 c | 16.2 d | 21.6 c | 17.9 c | 25.8 b | 16.5 b | 29.1 b |
LSD (p = 0.05) | 5.9 | 7.3 | 3.8 | 6.3 | 3.5 | 4.5 | 5.4 | 3.7 | 4.8 | 3.2 |
Avg. | 26.2 | 32.7 * | 25.5 | 30.9 * | 23.3 | 26.3 | 22.9 | 28.4 * | 19.4 | 30.9 * |
Tuber Specific Gravity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2009 | 2010 | Mean | ||||||
Treatment y | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr |
SI | 1.083 a z | 1.082 b | 1.082 b | 1.083 c | 1.088 a | 1.087 b | 1.074 c | 1.071 c | 1.082 b | 1.081 c |
DS | 1.085 a | 1.086 ab | 1.087 a | 1.085 b | 1.086 a | 1.092 ab | 1.079 ab | 1.075 b | 1.084 a | 1.085 b |
SC | 1.082 a | 1.086 ab | 1.085 a | 1.085 b | 1.086 a | 1.090 b | 1.077 b | 1.074 bc | 1.082 b | 1.084 b |
SQ | 1.085 a | 1.087 a | 1.086 a | 1.084 c | 1.087 a | 1.089 b | 1.080 a | 1.075 b | 1.084 a | 1.084 b |
PP | 1.082 a | 1.087 a | 1.087 a | 1.088 a | 1.087 a | 1.096 a | 1.080 a | 1.078 a | 1.084 a | 1.087 a |
LSD | 0.004 | 0.005 | 0.004 | 0.002 | 0.003 | 0.005 | 0.002 | 0.003 | 0.002 | 0.002 |
2006 | 2007 | 2008 | 2009 | Mean (2006–2009) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment x | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr | Non-Irr | Irr |
Leaf area duration | ||||||||||
SI | 194.1 a y | 228.2 a | 244.2 a | 216.6 a | 224.3 a | 221.8 a | 184.6 a | 176.9 a | 211.7 a | 210.9 a |
DS | 166.5 a | 204.2 ab | 173.6 b | 222.7 a | 174.6 b | 232.9 a | 120.0 b | 185.9 a | 158.2 b | 211.4 a |
SC | 117.2 b | 181.2 b | 149.1 b | 190.6 a | 152.1 c | 216.9 a | 115.8 b | 170.5 a | 133.5 c | 189.8 bc |
SQ | 129.6 b | 214.3 ab | 141.0 b | 213.1 a | 152.2 c | 237.3 a | 108.1 b | 158.7 a | 132.7 c | 205.8 ab |
PP | 123.2 b | 178.5 b | 169.5 b | 226.4 a | 118.0 d | 187.4 b | 98.7 b | 156.0 a | 127.3 c | 187.1 c |
LSD | 42.6 | 46.4 | 30.9 | 42.9 | 18.9 | 28.9 | 41.6 | 31.2 | 14.8 | 18.0 |
Avg. | 146.1 | 201.3 * z | 175.5 | 214.8 * | 163.8 | 219.3 * | 125.4 | 169.6 * | 152.6 | 201.1 * |
Chlorophyll content (SPAD) | ||||||||||
SI | 39.9 a | 39.0 a | 42.6 a | 42.6 a | 37.0 a | 37.1 ab | 38.8 a | 40.4 ab | 39.6 a | 39.8 a |
DS | 39.5 a | 38.2 a | 39.9 b | 41.8 ab | 34.6 bc | 36.0 bc | 37.8 ab | 40.2 ab | 38.0 b | 39.1 b |
SC | 38.4 a | 38.1 a | 38.5 b | 41.7 ab | 33.9 c | 36.4 ab | 37.2 b | 40.3 ab | 37.0 c | 39.2 b |
SQ | 39.6 a | 39.0 a | 40.0 b | 42.7 a | 35.6 b | 37.3 a | 38.0 ab | 40.7 a | 38.3 b | 39.9 a |
PP | 39.4 a | 38.6 a | 38.7 b | 40.8 b | 34.2 c | 34.9 c | 37.4 b | 39.6 b | 37.4 c | 38.5 c |
LSD | 1.0 | 1.1 | 1.4 | 1.2 | 1.2 | 1.2 | 1.3 | 1.1 | 0.6 | 0.5 |
Avg. | 39.4 | 38.6 * | 39.9 | 41.9 * | 35.1 | 36.4 * | 37.8 | 40.2 * | 38.0 | 39.3 * |
Biomass (Mg dry wt/ha) | ||||||||
---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2009 | Mean (2007–2009) | |||||
System y | Non-Irr | Irrigated | Non-Irr | Irrigated | Non-Irr | Irrigated | Non-Irr | Irrigated |
Root Biomass | ||||||||
SI | 0.136 a z | 0.106 a | 0.168 a | 0.198 ab | 0.188 a | 0.190 a | 0.164 a | 0.165 ab |
DS | 0.118 a | 0.098 a | 0.140 ab | 0.211 ab | 0.134 b | 0.176 a | 0.131 b | 0.161 ab |
SC | 0.104 a | 0.120 a | 0.130 ab | 0.236 a | 0.138 b | 0.180 a | 0.124 bc | 0.179 a |
SQ | 0.086 a | 0.090 a | 0.124 ab | 0.168 b | 0.136 b | 0.194 a | 0.115 bc | 0.151 ab |
PP | 0.076 a | 0.108 a | 0.100 b | 0.144 b | 0.136 b | 0.166 a | 0.104 c | 0.139 b |
LSD (p = 0.05) | 0.056 | 0.042 | 0.051 | 0.064 | 0.025 | 0.041 | 0.024 | 0.027 |
Shoot biomass | ||||||||
SI | 3.37 a | 3.56 a | 3.36 a | 3.71 a | 3.62 a | 4.00 a | 3.44 a | 3.76 a |
DS | 2.55 b | 3.45 a | 2.03 c | 2.73 ab | 1.98 b | 2.93 b | 2.19 b | 3.04 b |
SC | 2.16 b | 3.25 a | 1.96 c | 3.01 ab | 1.88 b | 2.85 b | 1.97 b | 3.04 b |
SQ | 2.26 b | 3.21 a | 2.64 b | 2.79 ab | 1.76 b | 2.43 b | 2.26 b | 2.81 bc |
PP | 1.86 b | 3.06 a | 1.89 c | 2.34 b | 2.12 b | 2.30 b | 1.96 b | 2.56 c |
LSD (p = 0.05) | 0.68 | 0.91 | 0.49 | 0.98 | 0.44 | 0.67 | 0.33 | 0.41 |
Tuber biomass | ||||||||
SI | 3.19 a | 3.62 a | 2.44 a | 1.88 bc | 3.35 b | 3.85 a | 2.99 b | 3.12 b |
DS | 3.58 a | 4.00 a | 3.06 a | 3.11 a | 4.51 ab | 4.87 a | 3.72 a | 3.99 a |
SC | 3.69 a | 3.75 a | 3.14 a | 2.80 ab | 4.03 ab | 4.43 a | 3.62 ab | 3.66 ab |
SQ | 3.07 a | 4.24 a | 2.81 a | 1.79 c | 3.92 ab | 3.75 a | 3.26 ab | 3.26 b |
PP | 3.53 a | 3.64 a | 2.72 a | 2.41 abc | 4.63 a | 5.02 a | 3.63 ab | 3.69 ab |
LSD (p = 0.05) | 1.08 | 1.71 | 1.04 | 0.91 | 1.10 | 1.32 | 0.65 | 0.59 |
Elemental Composition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment y | N | P | K | Ca | Mg | Mn | Fe | B | Cu | Zn |
---------------------------- % ------------------------------ | --------------------------------- ppm --------------------------- | |||||||||
Shoot tissue | ||||||||||
SI | 3.95 a z | 0.235 a | 5.47 a | 1.21 c | 0.834 c | 262.9 c | 165.8 b | 27.1 a | 7.77 b | 113.4 b |
DS | 3.58 b | 0.185 cd | 4.67 b | 1.24 bc | 0.893 bc | 422.1 a | 199.0 ab | 25.4 a | 8.88 b | 127.0 ab |
SC | 3.53 bc | 0.198 bc | 4.68 b | 1.25 bc | 0.861 bc | 359.9 b | 181.8 b | 25.2 a | 9.94 ab | 129.8 a |
SQ | 3.83 a | 0.199 b | 4.32 b | 1.35 a | 0.929 ab | 389.6 ab | 240.0 a | 26.2 a | 9.25 ab | 128.8 ab |
PP | 3.32 c | 0.181 d | 4.39 b | 1.32 ab | 0.949 a | 355.5 b | 207.0 ab | 24.9 a | 11.27 a | 130.9 a |
LSD | 0.23 | 0.014 | 0.38 | 0.088 | 0.075 | 54.0 | 50.0 | 2.6 | 2.05 | 14.9 |
Tuber tissue | ||||||||||
SI | 1.74 a | 0.260 a | 2.49 a | 0.043 a | 0.107 ab | 17.2 ab | 19.5 ab | 5.50 a | 8.00 a | 17.5 a |
DS | 1.66 a | 0.210 d | 2.24 b | 0.032 c | 0.105 ab | 19.6 a | 24.1 a | 4.76 a | 8.14 a | 15.1 c |
SC | 1.70 a | 0.246 ab | 2.29 b | 0.033 c | 0.104 ab | 18.6 ab | 18.9 b | 4.97 a | 8.44 a | 16.1 bc |
SQ | 1.67 a | 0.222 cd | 2.15 b | 0.038 b | 0.102 b | 18.7 ab | 18.2 b | 5.18 a | 7.98 a | 15.4 c |
PP | 1.72 a | 0.230 bc | 2.24 b | 0.035bc | 0.111 a | 15.1 b | 19.6 ab | 4.86 a | 8.32 a | 16.7ab |
LSD | 0.09 | 0.017 | 0.13 | 0.004 | 0.006 | 3.4 | 4.7 | 0.75 | 0.49 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larkin, R.P.; Honeycutt, C.W.; Griffin, T.S.; Olanya, O.M.; He, Z. Potato Growth and Yield Characteristics under Different Cropping System Management Strategies in Northeastern U.S. Agronomy 2021, 11, 165. https://doi.org/10.3390/agronomy11010165
Larkin RP, Honeycutt CW, Griffin TS, Olanya OM, He Z. Potato Growth and Yield Characteristics under Different Cropping System Management Strategies in Northeastern U.S. Agronomy. 2021; 11(1):165. https://doi.org/10.3390/agronomy11010165
Chicago/Turabian StyleLarkin, Robert P., C. Wayne Honeycutt, Timothy S. Griffin, O. Modesto Olanya, and Zhongqi He. 2021. "Potato Growth and Yield Characteristics under Different Cropping System Management Strategies in Northeastern U.S." Agronomy 11, no. 1: 165. https://doi.org/10.3390/agronomy11010165
APA StyleLarkin, R. P., Honeycutt, C. W., Griffin, T. S., Olanya, O. M., & He, Z. (2021). Potato Growth and Yield Characteristics under Different Cropping System Management Strategies in Northeastern U.S. Agronomy, 11(1), 165. https://doi.org/10.3390/agronomy11010165