Identification of Associations between SSR Markers and Quantitative Traits of Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Experiment
2.3. Quantitative Traits
2.4. DNA Extraction
2.5. Microsatellite Markers Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, R.A.; Edmeades, G.O. Breeding and cereal yield progress. Crop Sci. 2010, 50, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Tollenaar, M.; Stewart, G.; Deen, W. Impact of planter type, planting speed, and tillage on stand uniformity and yield of corn. Agron. J. 2004, 96, 1668–1672. [Google Scholar] [CrossRef]
- MacRobert, J.F.; Setimela, P.; Gethi, J.; Regasa, M.W. Maize Hybrid Seed Production Manual. CIMMYT. 2014. Available online: https://excellenceinbreeding.org/sites/default/files/manual/98078.pdf (accessed on 14 January 2021).
- Echarte, L.; Tollenaar, T. Kernel set in maize hybrids and their inbred lines exposed to stress. Crop Sci. 2006, 46, 870–878. [Google Scholar] [CrossRef]
- Campos, H.; Cooper, M.; Habben, J.E.; Edmeades, G.O.; Schussler, J.R. Improving drought tolerance in maize: A view from industry. Field Crops Res. 2004, 90, 19–34. [Google Scholar] [CrossRef]
- Hall, J.A.; Richards, R.A. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res. 2013, 143, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Szulc, P. Differences in the accumulation and redistribution of dry matter and Nmin content in the cultivation of two different maize (Zea mays L.) cultivars for grain. Pol. J. Environ. Stud. 2012, 21, 1039–1046. [Google Scholar]
- Szulc, P.; Bocianowski, J.; Rybus-Zając, M. Correlation between traits and their influence on grain yield of “stay-green” maize hybrid (Zea mays L.). Fresenius Environ. Bull. 2011, 20, 2150–2155. [Google Scholar]
- Marsalis, M.A.; Angadi, S.V.; Contreras-Govea, F.E. Dry matter yield and nutritive value of corn, foragesorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crop Res. 2010, 116, 52–57. [Google Scholar] [CrossRef]
- Iqbal, A.; Ayub, M.; Zaman, H.; Ahmed, R. Impact ofnutrient management and legume association on agro-qualitative traits of maize forage. Pak. J. Bot. 2006, 38, 1079–1084. [Google Scholar]
- Tautz, D.; Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984, 12, 4127–4138. [Google Scholar] [CrossRef] [Green Version]
- Nunome, T.; Suwabe, K.; Iketani, H.; Hirai, M.; Wricke, G. Identification and characterization of microsatellites in eggplant. Plant Breed. 2003, 122, 256–262. [Google Scholar] [CrossRef]
- Hospital, F.; Moreau, L.; Lacoudre, F.; Charcosset, A.; Gallais, A. More on the efficiency of marker-assisted selection. Theor. Appl. Genet. 1997, 95, 1181–1189. [Google Scholar] [CrossRef]
- Pejic, I.; Ajmone-Marsan, P.; Morgante, M.; Kozumplick, V.; Castiglioni, P.; Taramino, G.; Motto, M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet. 1998, 97, 1248–1255. [Google Scholar] [CrossRef]
- Senior, M.L.; Heun, M. Mapping maize microsatellite and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 1993, 36, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Scharf, P.C.; Brouder, M.S.; Hoeft, G.R. Chlorophyll meter readings can predict nitrogen need and yield response of corn in the North-Central USA. Agron. J. 2006, 98, 655–665. [Google Scholar] [CrossRef]
- Wolko, Ł.; Bocianowski, J.; Antkowiak, W.; Słomski, R. Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland. Open Life Sci. 2015, 10, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. Available online: www.jstor:stable/2333709 (accessed on 19 January 2021).
- Hoxha, S.; Shariflou, M.R.; Sharp, P. Evaluation of genetic diversity in Albanian maize using SSR markers. Maydica 2004, 49, 97–103. [Google Scholar]
- Singh, S.B.; Gupta, B.B.; Singh, S.P. Genetic divergence in exotic inbreds of maize (Zea mays L.). Prog. Agric. 2007, 7, 1–4. [Google Scholar]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015, 431487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Valdés, M.H. Informativeness of Microsatellite Markers. In Microsatellites. Methods in Molecular Biology (Methods and Protocols); Kantartzi, S., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 1006, pp. 259–270. [Google Scholar] [CrossRef]
- Garcia, A.A.F.; Benchimol, L.L.; Barbosa, A.M.M.; Geraldi, I.O.; Souza, C.L., Jr.; de Souza, A.P. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet. Mol. Biol. 2004, 27, 579–588. [Google Scholar] [CrossRef]
- Liersch, A.; Bocianowski, J.; Popławska, W.; Szała, L.; Sosnowska, K.; Cegielska-Taras, T.; Nowosad, K.; Matuszczak, M.; Bartkowiak-Broda, I. Creation of gene pools with amplified fragment length polymorphis markers for development of winter oilseed rape (Brassica napus L.) hybrid cultivars. Euphytica 2019, 215, 22. [Google Scholar] [CrossRef] [Green Version]
- Irzykowska, I.; Bocianowski, J. Genetic variation, pathogenicity and mycelial growth rate differentiation between Gaeumannomyces graminis var. tritici isolates derived from winter and spring wheat. Ann. Appl. Biol. 2008, 152, 369–375. [Google Scholar] [CrossRef]
- Bocianowski, J.; Seidler-Łożykowska, K.; Nowosad, K.; Kuczyńska, A. The relationship between RAPD marker-by-marker interactions and quantitative traits of caraway (Carum carvi L.). Acta Sci. Pol.-Hortorum Cultus 2019, 18, 53–69. [Google Scholar] [CrossRef]
- Czyczyło-Mysza, I.M.; Cyganek, K.; Dziurka, K.; Quarrie, S.; Skrzypek, E.; Marcińska, I.; Myśków, B.; Dziurka, M.; Warchoł, M.; Kapłoniak, K.; et al. Genetic Parameters and QTLs for Total Phenolic Content and Yield of Wheat Mapping Population of CSDH Lines under Drought Stress. Int. J. Mol. Sci. 2019, 20, 6064. [Google Scholar] [CrossRef] [Green Version]
Primer Code | Left End | Right End | Temp (°C) | PIC |
---|---|---|---|---|
phi001 | TGACGGACGTGGATCGCTTCAC | AGCAGGCAGCAGGTCAGCAGCG | 71 | 0.357 |
phi002 | CATGCAATCAATAACGATGGCGAGT | TTAGCGTAACCCTTCTCCAGTCAGC | 66 | 0.401 |
phi008 | CGGCTACGGAGGCGGTG | GATGGGCCCACACATCAGTC | 65 | 0.051 |
phi015 | GCAACGTACCGTACCTTTCCGA | ACGCTGCATTCAATTACCGGGAAG | 67 | 0.080 |
phi021 | TTCCATTCTCGTGTTCTTGGAGTGGTCCA | CTTGATCACCTTTCCTGCTGTCGCCA | 63 | 0.387 |
phi026 | TAATTCCTCGCTCCCGGATTCAGC | GTGCATGAGGGAGCAGCAGGTAGTG | 70 | 0.373 |
phi036 | CCGTGGAGAGACGTTTGACGT | TCCATCACCACTCAGAATGTCAGTGA | 66 | 0.129 |
phi041 | TTGGCTCCCAGCGCCGCAAA | GATCCAGAGCGATTTGACGGCA | 64 | 0.007 |
phi042 | ATGTGGCCATCATTCAATGCTGTAGAC | ACACATGCAGGTGCAGCCAGA | 68 | 0.397 |
phi047 | GGAGATGCTCGCACTGTTCTC | CTCCACCCTCTTTGACATGGTATG | 63 | 0.255 |
phi049 | GATTGCGATAACATTGCGGCAAGTTGT | CTTCTGTTCCGCCATCCAGTATGTT | 69 | 0.390 |
phi054 | AGAAAAGAGAGTGTGCAATTGTGATAGAG | AATGGGTGCCTCGCACCAAG | 66 | 0.401 |
phi056 | ACTTGCTTGCCTGCCGTTAC | CGCACACCACTTCCCAGAA | 63 | 0.447 |
phi061 | GACGTAAGCCTAGCTCTGCCAT | AAACAAGAACGGCGGTGCTGATTC | 69 | 0.497 |
phi064 | CCGAATTGAAATAGCTGCGAGAACCT | ACAATGAACGGTGGTTATCAACACGC | 68 | 0.394 |
phi068 | GTACACACGCTCCGACGATTAC | TCTTCTCCACCAGAGCCTTGTAAG | 62 | 0.257 |
phi070 | GCTGAGCGATCAGTTCATCCAG | CCATGGCAGGGTCTCTCAAG | 64 | 0.269 |
phi072 | ACCGTGCATGATTAATTTCTCCAGCCTT | GACAGCGCGCAAATGGATTGAACT | 70 | 0.110 |
phi073 | GTGCGAGAGGCTTGACCAA | AAGGGTTGAGGGCGAGGAA | 63 | 0.028 |
phi076 | TTCTTCCGCGGCTTCAATTTGACC | GCATCAGGACCCGCAGAGTC | 65 | 0.381 |
phi079 | TGGTGCTCGTTGCCAAATCTACGA | GCAGTGGTGGTTTCGAACAGACAA | 68 | 0.473 |
phi080 | CACCCGATGCAACTTGCGTAGA | TCGTCACGTTCCACGACATCAC | 64 | 0.308 |
phi085 | AGCAGAACGGCAAGGGCTACT | TTTGGCACACCACGACGA | 64 | 0.333 |
phi112 | TGCCCTGCAGGTTCACATTGAGT | AGGAGTACGCTTGGATGCTCTTC | 66 | 0.240 |
phi113 | GCTCCAGGTCGGAGATGTGA | CACAACACATCCAGTGACCAGAGT | 63 | 0.197 |
phi116 | TCCCTGCCGGGACTCCTG | GCATACGGCCATGGATGGGA | 68 | 0.165 |
phi119 | GGGCTCCAGTTTTCAGTCATTGG | ATCTTTCGTGCGGAGGAATGGTCA | 68 | 0.180 |
phi120 | TGATGTCCCAGCTCTGAACTGAC | GACTCTCACGGCGAGGTATGA | 63 | 0.199 |
phi127 | ATATGCATTGCCTGGAACTGGAAGGA | AATTCAAACACGCCTCCCGAGTGT | 69 | 0.197 |
phi129 | TCCAGGATGGGTGTCTCATAAAACTC | GTCGCCATACAAGCAGAAGTCCA | 65 | 0.317 |
Trait | 2016 | 2017 | The Number of Common Markers | ||
---|---|---|---|---|---|
The Number of Significant Markers | Range of the Proportion of Total Phenotypic Variance Explained by the Marker | The Number of Significant Markers | Range of the Proportion of Total Phenotypic Variance Explained by the Marker | ||
Soil plant analysis development (SPAD) | 8 | 25.5–36.1 | 1 | 25.7–25.7 | 0 |
The number of plants after germination | 8 | 26.1–44.8 | 6 | 29.3–76.7 | 1 |
The number of plants before harvest | 5 | 26.4–53.6 | 6 | 29.4–77.9 | 1 |
Moisture of grain | 4 | 25.9–51.0 | 3 | 25.4–29.3 | 2 |
Yield of grain | 10 | 24.4–42.8 | 3 | 27.1–35.3 | 1 |
Weight of 1000 grains | 6 | 26.6–43.5 | 5 | 38.3–42.0 | 4 |
Length of ears | 3 | 28.4–50.2 | 3 | 27.8–32.7 | 2 |
Diameter of ears | 11 | 24.8–60.7 | 5 | 25.3–45.6 | 4 |
The number of rows in ear | 4 | 24.4–47.1 | 3 | 25.9–41.8 | 0 |
The number of kernels in row | 1 | 31.6–31.6 | 3 | 24.9–34.8 | 1 |
The number of grains in ear | 5 | 27.5–45.6 | 1 | 24.9–24.9 | 1 |
Leaf weight | 4 | 28.9–34.4 | 2 | 25.1–25.9 | 1 |
Stems weight | 10 | 26.0–60.1 | 2 | 25.9–29.1 | 0 |
Ears weight | 1 | 48.5–48.5 | 11 | 25.5–46.6 | 0 |
Fresh weight of one plant | 1 | 43.9–43.9 | 1 | 37.8–37.8 | 0 |
Share of leaves in the mass of the plant | 5 | 25.3–40.6 | 7 | 24.4–47.5 | 0 |
Damage of maize caused by P. nubilalis | 14 | 25.1–62.3 | 4 | 24.5–52.7 | 0 |
Infection of maize by Fusarium spp. | 10 | 28.8–77.7 | 4 | 27.1–32.3 | 0 |
Infection of maize by Ustilago maydis Corda | 12 | 25.2–62.0 | 7 | 32.0–75.4 | 0 |
The number of ears | 12 | 25.1–56.5 | 6 | 26.9–68.3 | 3 |
Plant density | 10 | 26.0–50.4 | 10 | 29.0–42.7 | 0 |
Content of chlorophyll a | 3 | 42.5–64.7 | 5 | 30.1–34.5 | 0 |
Content of chlorophyll b | 3 | 40.1–66.2 | 5 | 25.7–35.7 | 0 |
Content of chlorophyll a + b | 3 | 42.0–65.1 | 7 | 24.7–34.1 | 0 |
Content of chlorophyll a/b | 2 | 45.3–58.5 | 3 | 24.3–44.7 | 0 |
Carotenoids content | 5 | 26.1–57.0 | 12 | 24.5–44.7 | 1 |
Trait | Marker Symbol | 2016 | 2017 | ||||
---|---|---|---|---|---|---|---|
Estimates of Regression Coefficients | p-Value | The Proportion of Total Phenotypic Variance Explained by the Marker | Estimates of Regression Coefficients | p-Value | The Proportion of Total Phenotypic Variance Explained by the Marker | ||
The number of plants after germination | phi036/3 | 0.394 | 0.007 | 44.8 | 1.488 | 0.028 | 31.2 |
The number of plants before harvest | phi036/3 | 0.363 | 0.007 | 45.1 | 1.476 | 0.025 | 32.3 |
Moisture of grain | phi073/5 | −2.052 | 0.010 | 41.5 | −1.399 | 0.038 | 27.4 |
phi061/2 | 1.993 | 0.044 | 25.9 | 1.676 | 0.033 | 29.3 | |
Yield of grain | phi047/4 | 16.97 | 0.033 | 29.2 | 9.00 | 0.019 | 35.3 |
Weight of 1000 grains | phi127/3 | −60.70 | 0.008 | 43.5 | −66.20 | 0.014 | 38.3 |
phi083/2 | −60.70 | 0.008 | 43.5 | −66.20 | 0.014 | 38.3 | |
phi054/3 | −60.70 | 0.008 | 43.5 | −66.20 | 0.014 | 38.3 | |
phi058/1 | −60.70 | 0.008 | 43.5 | −66.20 | 0.014 | 38.3 | |
Length of ears | phi061/2 | −1.15 | 0.004 | 50.2 | −1.722 | 0.029 | 30.5 |
phi061/5 | −0.866 | 0.016 | 36.8 | −1.424 | 0.037 | 27.8 | |
Diameter of ears | phi070/2 | 0.349 | 0.016 | 37.1 | 0.210 | 0.046 | 25.3 |
phi076/3 | 0.327 | 0.002 | 57.0 | 0.190 | 0.016 | 36.9 | |
phi041/1 | 0.336 | 0.001 | 60.7 | 0.207 | 0.007 | 45.6 | |
phi120/3 | 0.336 | 0.001 | 60.7 | 0.207 | 0.007 | 45.6 | |
The number of kernels in row | phi021/4 | −2.750 | 0.027 | 31.6 | −2.570 | 0.043 | 26.0 |
The number of grains in ear | phi021/4 | −86.40 | 0.012 | 39.8 | −66.30 | 0.048 | 24.9 |
Leaf weight | phi001/3 | 24.60 | 0.032 | 29.5 | 19.41 | 0.047 | 25.1 |
The number of ears | phi076/2 | −1.011 | 0.041 | 26.7 | −1.345 | <.001 | 64.8 |
phi036/3 | 1.380 | 0.039 | 27.3 | 1.388 | 0.022 | 33.8 | |
phi116/2 | 0.896 | 0.010 | 42.1 | 0.788 | 0.016 | 37.1 | |
Carotenoids content | phi073/2 | −1.188 | 0.043 | 26.1 | −0.915 | 0.049 | 24.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocianowski, J.; Nowosad, K.; Wróbel, B.; Szulc, P. Identification of Associations between SSR Markers and Quantitative Traits of Maize (Zea mays L.). Agronomy 2021, 11, 182. https://doi.org/10.3390/agronomy11010182
Bocianowski J, Nowosad K, Wróbel B, Szulc P. Identification of Associations between SSR Markers and Quantitative Traits of Maize (Zea mays L.). Agronomy. 2021; 11(1):182. https://doi.org/10.3390/agronomy11010182
Chicago/Turabian StyleBocianowski, Jan, Kamila Nowosad, Barbara Wróbel, and Piotr Szulc. 2021. "Identification of Associations between SSR Markers and Quantitative Traits of Maize (Zea mays L.)" Agronomy 11, no. 1: 182. https://doi.org/10.3390/agronomy11010182
APA StyleBocianowski, J., Nowosad, K., Wróbel, B., & Szulc, P. (2021). Identification of Associations between SSR Markers and Quantitative Traits of Maize (Zea mays L.). Agronomy, 11(1), 182. https://doi.org/10.3390/agronomy11010182