Reaction of Camelina (Camelina sativa (L.) Crantz) to Different Foliar Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Weather and Soil Conditions
2.3. Chemical Analysis
2.4. Economic Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Results of Field and Biometric Measurements
3.3. Field Measurements
3.4. Chemical Composition
3.5. Statistical Dependencies
3.6. Economic Effects
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zanetti, F.; Eynck, C.; Christou, M.; Krzyżaniak, M.; Righini, D.; Alexopoulou, E.; Stolarski, M.J.; Van Loo, E.N.; Puttick, D.; Monti, A. Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Ind. Crop. Prod. 2017, 107, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Kurasiak-Popowska, D.; Ryńska, B.; Kurasiak-Popowska, D. Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil. Agronomy 2019, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Román-Figueroa, C.; Padilla, R.; Uribe, J.M.; Paneque, M. Land Suitability Assessment for Camelina (Camelina sativa L.) Development in Chile. Sustainability 2017, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Righini, D.; Zanetti, F.; Martínez-Force, E.; Mandrioli, M.; Toschi, T.G.; Monti, A. Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Ind. Crop. Prod. 2019, 137, 66–73. [Google Scholar] [CrossRef]
- Wittenberg, A.; Anderson, J.V.; Berti, M.T. Winter and summer annual biotypes of camelina have different morphology and seed characteristics. Ind. Crop. Prod. 2019, 135, 230–237. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Tomkowiak, A.; Człopińska, M.; Bocianowski, J.; Weigt, D.; Nawracała, J. Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes. Ind. Crop. Prod. 2018, 123, 667–675. [Google Scholar] [CrossRef]
- Mauri, P.V.; Mostaza, D.; Plaza, A.; Ruiz-Fernández, J.; Prieto, J.; Capuano, A. Variability of Camelina Production in the Center of Spain in Two Years of Cultivation, a New Profitable and Alternatives Crop. In Proceedings of the 27th European Biomass Conference & Exhibition, Lisbon, Portugal, 27 May 2019; pp. 196–200. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Tworkowski, J.; Puttick, D.; Eynck, C.; Załuski, D.; Kwiatkowski, J. Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Ind. Crop. Prod. 2019, 138, 111443. [Google Scholar] [CrossRef]
- Kim, R.J.; Kim, H.U.; Suh, M.C. Development of camelina enhanced with drought stress resistance and seed oil production by co-overexpression of MYB96A and DGAT1C. Ind. Crop. Prod. 2019, 138, 111475. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.V.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crop. Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Luo, Z.; Brock, J.; Dyer, J.M.; Kutchan, T.; Schachtman, D.; Augustin, M.; Ge, Y.; Fahlgren, N.; Abdel-Haleem, H. Genetic Diversity and Population Structure of a Camelina sativa Spring Panel. Front. Plant Sci. 2019, 10, 184. [Google Scholar] [CrossRef] [Green Version]
- Bujnovský, R.; Holíčková, M.; Ondrejíčková, P. Spring Camelina sativa—Perspective cultivation as biofuel feedstock in Slovakia. Ind. Crop. Prod. 2020, 154, 112634. [Google Scholar] [CrossRef]
- Sidhu, V.; Sarkar, D.; Datta, R. Growing Biofuel Feedstocks in Copper-Contaminated Soils of a Former Superfund Site. Appl. Sci. 2020, 10, 1499. [Google Scholar] [CrossRef] [Green Version]
- Załuski, D.; Tworkowski, J.; Krzyżaniak, M.; Stolarski, M.J.; Kwiatkowski, J. The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy 2020, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Hossain, Z.; Johnson, E.N.; Wang, L.; Blackshaw, R.E.; Cutforth, H.; Gan, Y. Plant establishment, yield and yield components of Brassicaceae oilseeds as potential biofuel feedstock. Ind. Crop. Prod. 2019, 141, 111800. [Google Scholar] [CrossRef]
- Davis, P.B.; Maxwell, B.; Menalled, F.D. Impact of growing conditions on the competitive ability of Camelina sativa (L.) Crantz (Camelina). Can. J. Plant Sci. 2013, 93, 243–247. [Google Scholar] [CrossRef]
- Tulkubayeva, S.A.; Vasin, V.G. Camelina (Camelina Sativa) cultivation in the north of kazakhstan. Int. J. Pharm. Res. 2018, 10, 798–802. [Google Scholar] [CrossRef]
- Leclère, M.; Loyce, C.; Jeuffroy, M.-H. Growing camelina as a second crop in France: A participatory design approach to produce actionable knowledge. Eur. J. Agron. 2018, 101, 78–89. [Google Scholar] [CrossRef]
- Jiang, Y.; Caldwell, C.D. Effect of nitrogen fertilization on camelina seed yield, yield components, and downy mildew infection. Can. J. Plant Sci. 2016, 96, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Czarnik, M.; Jarecki, W.; Bobrecka-Jamro, D. The effects of varied plant density and nitrogen fertilization on quantity and quality yield of Camelina sativa L. Emir. J. Food Agric. 2017, 29, 988–993. [Google Scholar]
- Miralles de Imperial Hornedo, R.; Delgado Arroyo, M.M.; García Manso, Á.; González Gullón, M.I.; Martín Sánchez, J.V. Efecto del residual de estiércol avícola o residual de fertilizante mineral en el rendimiento y la calidad de camelina (Camelina sativa L. Crantz). Rev. Mex. Cienc. Pecu. 2017, 8, 353. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Załuski, D.; Kwiatkowski, J.; Szczukowski, S. Camelina and crambe production—Energy efficiency indices depending on nitrogen fertilizer application. Ind. Crop. Prod. 2019, 137, 386–395. [Google Scholar] [CrossRef]
- Li, N.; Kumar, P.; Lai, L.; Abagandura, G.O.; Kumar, S.; Nleya, T.; Sieverding, H.L.; Stone, J.J.; Gibbons, W. Response of Soil Greenhouse Gas Fluxes and Soil Properties to Nitrogen Fertilizer Rates under Camelina and Carinata Nonfood Oilseed Crops. BioEnergy Res. 2019, 12, 524–535. [Google Scholar] [CrossRef]
- Johnson, J.M.; Gesch, R.W.; Barbour, N.W. Spring camelina N rate: Balancing agronomics and environmental risk in United States Corn Belt. Arch. Agron. Soil Sci. 2018, 65, 640–653. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Chen, C.; Afshar, R.K. Nutrient Requirements of Camelina for Biodiesel Feedstock in Central Montana. Agron. J. 2017, 109, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Sokólski, M.; Kordan, B. Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland. Ind. Crop. Prod. 2019, 141, 111776. [Google Scholar] [CrossRef]
- Ropelewska, E.; Jankowski, K.J. Thermophysical properties of camelina (Camelina sativa (L.) Crantz) seeds fertilized with nitrogen. J. Food Process. Eng. 2019, 42, e13161. [Google Scholar] [CrossRef]
- Malhi, S.S.; Johnson, E.N.; Hall, L.M.; May, W.E.; Phelps, S.; Nybo, B. Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Can. J. Soil Sci. 2014, 94, 35–47. [Google Scholar] [CrossRef]
- Solis, A.; Vidal, I.; Paulino, L.; Johnson, B.L.; Berti, M.T. Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Ind. Crop. Prod. 2013, 44, 132–138. [Google Scholar] [CrossRef]
- Jiang, Y.; Caldwell, C.D.; Falk, K.C.; Lada, R.; Macdonald, D. Camelina Yield and Quality Response to Combined Nitrogen and Sulfur. Agron. J. 2013, 105, 1847–1852. [Google Scholar] [CrossRef]
- Afshar, R.K.; Mohammed, Y.A.; Chen, C. Enhanced efficiency nitrogen fertilizer effect on camelina production under conventional and conservation tillage practices. Ind. Crop. Prod. 2016, 94, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Kurasiak-Popowska, D.; Graczyk, M.; Stuper-Szablewska, K. Winter camelina seeds as a raw material for the production of erucic acid-free oil. Food Chem. 2020, 330, 127265. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Caldwell, C.D.; Falk, K.C. Camelina seed quality in response to applied nitrogen, genotype and environment. Can. J. Plant Sci. 2014, 94, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Amiri-Darban, N.; Nourmohammadi, G.; Rad, A.H.S.; Mirhadi, S.M.J.; Heravan, I.M. Potassium sulfate and ammonium sulfate affect quality and quantity of camelina oil grown with different irrigation regimes. Ind. Crop. Prod. 2020, 148, 112308. [Google Scholar] [CrossRef]
- Kumari, A.; Joshi, P.K.; Mohsin, M.; Arya, M.C.; Ahmed, Z.; Anuja, K.; Kumar, J.P.; Mohammed, M.; Chander, A.M.; Zakwan, A. Effects of nitrogen and sulphur on false flax (Camelina sativa cv. calena)—A biofuel crop. Res. Crop. 2015, 16, 780. [Google Scholar] [CrossRef]
- Wysocki, D.J.; Chastain, T.G.; Schillinger, W.F.; Guy, S.O.; Karow, R.S. Camelina: Seed yield response to applied nitrogen and sulfur. Field Crop. Res. 2013, 145, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Mohsin, M.; Arya, M.C.; Joshi, P.K. Response of foliar fertilization of B and N on growth, yield and oil content of false flax (Camelina sativa) under protected condition. Indian J. Agric. Sci. 2013, 83, 1347–1350. [Google Scholar]
- Khan, S.; Rehman, H.U.; Wahid, M.A.; Saleem, M.F.; Cheema, M.A.; Basra, S.M.A.; Nadeem, M.; Ur, R.H. Boron fertilization improves seed yield and harvest index of Camelina sativa L. by affecting source-sink. J. Plant Nutr. 2016, 39, 1681–1687. [Google Scholar] [CrossRef]
- Martinelli, T.; Galasso, I. Phenological growth stages of Camelina sativa according to the extended BBCH scale. Ann. Appl. Biol. 2010, 158, 87–94. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2014; World Soil Resources Reports 2015; FAO: Rome, Italy, 2014. [Google Scholar]
- Zubr, J. Qualitative variation of Camelina sativa seed from different locations. Ind. Crop. Prod. 2003, 17, 161–169. [Google Scholar] [CrossRef]
- George, N.; Thompson, S.; Hollingsworth, J.; Orloff, S.; Kaffka, S. Measurement and simulation of water-use by canola and camelina under cool-season conditions in California. Agric. Water Manag. 2018, 196, 15–23. [Google Scholar] [CrossRef]
- Pan, X.; Lada, R.; Caldwell, C.D.; Falk, K.C. Photosynthetic and growth responses of Camelina sativa (L.) Crantz to varying nitrogen and soil water status. Photosynthetica 2011, 49, 316–320. [Google Scholar] [CrossRef]
- Hossain, Z.; Johnson, E.N.; Wang, L.; Blackshaw, R.E.; Gan, Y. Comparative analysis of oil and protein content and seed yield of five Brassicaceae oilseeds on the Canadian prairie. Ind. Crop. Prod. 2019, 136, 77–86. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Chen, C.; Lamb, P.; Afshar, R.K. Agronomic Evaluation of Camelina (Camelina sativa L. Crantz) Cultivars for Biodiesel Feedstock. BioEnergy Res. 2017, 10, 792–799. [Google Scholar] [CrossRef]
- Başalma, D.; Gürsoy, M.; Nofouzi, F. Factors affecting agricultural characteristics of Camelina sativa (L.) Crantz under dry-summer subtropical and warm temperate climates. Rev. Fac. Agron. 2018, 35, 248–269. [Google Scholar]
- Marcheva, M.P. Evaluation of morphology, productive potential and oil content and composition of plant genetic resources of Camelina sativa. Emir. J. Food Agric. 2016, 28, 152. [Google Scholar] [CrossRef] [Green Version]
- Končius, D.; Karčauskiene, D. The effect of nitrogen fertilisers, sowing time and seed rate on the productivity of Camelina sativa. Zemdirbyste 2010, 97, 37–46. [Google Scholar]
- Fritschi, F.B.; Ray, J.D. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica 2007, 45, 92–98. [Google Scholar] [CrossRef]
- Neupane, D.; Solomon, J.K.Q.; McLennon, E.; Davison, J.; Lawry, T. Camelina production parameters response to different irrigation regimes. Ind. Crop. Prod. 2020, 148, 112286. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmed, Z.; Ahmad, R.; Shabbir, R.N. Modulating the phenology and yield of camelina sativa L. by varying sowing dates under water deficit stress conditions. Soil Environ. 2017, 36, 84–92. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmed, Z.; Ahmad, Z.; Ahmad, R.; Erman, M.; Cig, F.; El Sabagh, A. Alterations in Growth and Yield of Camelina Induced by Different Planting Densities under Water Deficit Stress. Phyton 2020, 89, 587–597. [Google Scholar] [CrossRef]
- Toncea, I.; Necseriu, D.; Prisecaru, T.; Balint, L.N.; Ghilvacs, M.I.; Popa, M. The seed’s and oil composition of Camelia—First romanian cultivar of camelina (Camelina sativa, L. Crantz). Rom. Biotech. Lett. 2013, 18, 8594–8602. [Google Scholar]
- Urbaniak, S.D.; Caldwell, C.D.; Zheljazkov, V.D.; Lada, R.; Luan, L. The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can. J. Plant Sci. 2008, 88, 111–119. [Google Scholar] [CrossRef]
- Lošák, T.; Hlušek, J.; Martinec, J.; Vollmann, J.; Peterka, J.; Filipčík, R.; Varga, L.; Ducsay, L.; Mårtensson, A. Effect of combined nitrogen and sulphur fertilization on yield and qualitative parameters of Camelina sativa [L.] Crtz. (false flax). Acta Agric. Scand. Sect. B Plant Soil Sci. 2011, 61, 313–321. [Google Scholar] [CrossRef]
- Jakubus, M.; Bakinowska, E. Varied macronutrient uptake by plants as an effect of different fertilisation schemes evaluated by PCA. Acta Agric. Scand. Sect. B Plant Soil Sci. 2019, 70, 56–68. [Google Scholar] [CrossRef]
- Zubr, J. Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutr. Food Sci. 2010, 40, 523–531. [Google Scholar] [CrossRef]
- Schillinger, W.F. Camelina: Long-term cropping systems research in a dry Mediterranean climate. Field Crop. Res. 2019, 235, 87–94. [Google Scholar] [CrossRef]
- Dangol, N.; Shrestha, D.S.; Duffield, J.A. Life-cycle energy, GHG and cost comparison of camelina-based biodiesel and biojet fuel. Biofuels 2020, 11, 399–407. [Google Scholar] [CrossRef]
- Mohammad, B.T.; Al-Shannag, M.; Alnaief, M.; Singh, L.; Singsaas, E.; Alkasrawi, M. Production of multiple biofuels from Whole Camelina Material: A renewable energy crop. BioResources 2019, 13, 4870–4883. [Google Scholar]
- Stolarski, M.J.; Krzyżaniak, M.; Kwiatkowski, J.; Tworkowski, J.; Szczukowski, S. Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland. Energy 2018, 150, 770–780. [Google Scholar] [CrossRef]
- Zanetti, F.; Alberghini, B.; Jeromela, A.M.; Grahovac, N.; Rajković, D.; Kiprovski, B.; Monti, A. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agron. Sustain. Dev. 2021, 41, 1–18. [Google Scholar] [CrossRef]
Date of Plant Fertilization | |||
---|---|---|---|
before sowing, soil fertilization (kg·ha−1) | beginning of budding (BBCH 55), foliar fertilization | ||
variant | fertilizer | dose per hectare | |
50N + 40P2O5 + 60K2O | A | Control | - |
B | Urea | 16.6 kg N | |
C | Magnesium Sulfate heptahydrate | 2.4 kg MgO + 4.8 kg·SO3 | |
D | Plonvit R | 2 l | |
E | Urea + Magnesium Sulfate heptahydrate | 16.6 kg N + 2.4 kg MgO + 4.8 kg·SO3 | |
F | Urea + Plonvit R | 16.6 kg N + 2 l | |
G | Magnesium Sulfate heptahydrate + Plonvit R | 2.4 kg MgO + 4.8 kg·SO3 + 2 l | |
H | Urea + Magnesium Sulfate heptahydrate + Plonvit R | 16.6 kg N + 2.4 kg MgO + 4.8 kg·SO3 + 2 l |
Measurement | 2016 | 2017 | 2018 | |
---|---|---|---|---|
pH in KCl | 6.8 | 6.7 | 7.0 | |
Nmin kg ha−1 | 56 | 53 | 58 | |
Humus % | 1.2 | 1.6 | 1.4 | |
P2O5 | mg·100 g−1 of Soil | 24.8 | 21.9 | 25.3 |
K2O | 21.6 | 23.0 | 21.2 | |
Mg | 11.1 | 14.9 | 10.3 | |
S-SO4 | 1.7 | 1.8 | 1.7 | |
B | mg·1000 g−1 of Soil | 1.4 | 2.1 | 0.9 |
Zn | 15.6 | 17.5 | 16.3 | |
Cu | 6.2 | 4.2 | 5.5 | |
Fe | 3567.1 | 2504.3 | 3767.9 | |
Mn | 563.7 | 463.2 | 656.8 |
Variant 1 | Plant Density before Harvest (pcs.·m−2) | Number of Silicles per Plant | Number of Seeds per Silicle | Thousand Seed Weight (g) | Seed Yield (t·ha−1) |
---|---|---|---|---|---|
Foliar fertilization (F) | |||||
A | 198 | 86.8 b | 8.75 | 0.96 c | 1.44 b |
B | 196 | 96.3 a | 8.75 | 1.01 bc | 1.67 ab |
C | 198 | 88.6 b | 8.75 | 0.98 c | 1.50 ab |
D | 197 | 87.8 b | 8.83 | 0.99 c | 1.51 ab |
E | 200 | 97.3 a | 8.67 | 1.05 abc | 1.77 ab |
F | 199 | 97.6 a | 8.83 | 1.11 ab | 1.90 ab |
G | 198 | 89.3 b | 8.80 | 1.03 bc | 1.60 ab |
H | 199 | 98.3 a | 8.80 | 1.15 a | 1.98 a |
Year (Y) | |||||
2016 | 208 a | 95.3 a | 8.25 b | 1.03 | 1.67 |
2017 | 200 b | 88.3 b | 8.72 ab | 1.05 | 1.63 |
2018 | 187 c | 94.6 a | 9.38 a | 1.02 | 1.69 |
Mean | |||||
2016–2018 | 198 | 92.7 | 8.78 | 1.03 | 1.66 |
ANOVA | |||||
F | n.s. | *** | n.s. | *** | ** |
Y | *** | *** | * | n.s. | n.s. |
FxY | n.s. | * | n.s. | n.s. | n.s. |
Variant 1 | Fat Content (% DM) | Fat Yield (t·ha−1) | Protein Content (% DM) | Protein Yield (t·ha−1) |
---|---|---|---|---|
Foliar fertilization (F) | ||||
A | 40.6 a | 0.58 b | 24.6 | 0.35 c |
B | 39.1 b | 0.65 ab | 25.6 | 0.42 abc |
C | 41.3 a | 0.62 ab | 24.8 | 0.37 bc |
D | 41.1 a | 0.62 ab | 24.9 | 0.38 abc |
E | 40.5 a | 0.72 ab | 25.0 | 0.44 abc |
F | 40.8 a | 0.78 ab | 25.3 | 0.48 ab |
G | 41.4 a | 0.66 ab | 24.9 | 0.40 abc |
H | 41.2 a | 0.82 a | 25.8 | 0.50 a |
Year (Y) | ||||
2016 | 39.5 c | 0.66 | 25.6 a | 0.43 |
2017 | 41.8 a | 0.68 | 25.1 a | 0.41 |
2018 | 41.0 b | 0.69 | 24.4 b | 0.41 |
Mean | ||||
2016–2018 | 40.8 | 0.68 | 25.1 | 0.42 |
ANOVA | ||||
F | *** | ** | n.s. | ** |
Y | *** | n.s. | *** | n.s. |
FxY | * | n.s. | n.s. | n.s. |
Variant 1 | Mg | Fe | Mn | Cu | Zn | ||
---|---|---|---|---|---|---|---|
g kg−1 DM | mg kg−1 DM | ||||||
Foliar fertilization (F) | |||||||
A | 2.56 ab | 66.3 c | 18.6 | 5.23 | 32.5 | ||
B | 2.46 b | 68.4 bc | 19.3 | 5.36 | 34.6 | ||
C | 2.62 ab | 68.6 bc | 18.8 | 5.22 | 32.7 | ||
D | 2.59 ab | 69.2 ab | 19.6 | 5.37 | 34.8 | ||
E | 2.57 ab | 70.6 abc | 18.9 | 5.20 | 32.3 | ||
F | 2.58 ab | 72.6 ab | 19.8 | 5.37 | 34.9 | ||
G | 2.65 a | 73.6 a | 19.5 | 5.35 | 33.5 | ||
H | 2.60 ab | 71.8 ab | 19.7 | 5.36 | 33.9 | ||
Year | |||||||
2016 | 2.57 | 67.9 c | 18.6 b | 4.66 b | 31.8 b | ||
2017 | 2.61 | 72.4 a | 20.1 a | 5.63 a | 37.6 a | ||
2018 | 2.55 | 70.1 b | 19.1 ab | 5.62 a | 31.6 b | ||
Mean | |||||||
2016–2018 | 2.58 | 70.1 | 19.3 | 5.3 | 33.7 | ||
ANOVA | |||||||
F | * | *** | n.s. | n.s. | n.s. | ||
Y | n.s. | *** | ** | *** | *** | ||
FxY | n.s. | n.s. | n.s. | n.s. | n.s. |
Measurement | LAI | SPAD | Fat Yield | Protein Yield | Seed Yield | TSW | Number of Seeds | Number of Pods |
---|---|---|---|---|---|---|---|---|
Number of pods | 0.70 | 0.90 | 0.91 | 0.85 | 0.90 | 0.21 | −0.09 | 1.00 |
Number of seeds | 0.24 | 0.04 | 0.24 | 0.25 | 0.23 | 0.36 | 1.00 | |
TSW | 0.83 | 0.84 | 0.97 | 0.99 | 0.98 | 1.00 | ||
Seed yield | 0.83 | 0.89 | 0.99 | 0.99 | 1.00 | |||
Protein yield | 0.84 | 0.87 | 0.98 | 1.00 | ||||
Fat yield | 0.82 | 0.91 | 1.00 | |||||
SPAD | 0.36 | 1.00 | ||||||
LAI | 1.00 |
Variant 1 | Yield Increase (t·ha−1) | Yield Increase (EUR/ha) | Cost of Foliar Fertilization (EUR/ha) | Profitability (EUR/ha) |
---|---|---|---|---|
a | b | c | d = b − c | |
A | - | - | - | - |
B | 0.22 | 153.49 | 24.65 | 128.84 |
C | 0.06 | 41.86 | 10.47 | 31.39 |
D | 0.05 | 34.88 | 9.30 | 25.58 |
E | 0.35 | 244.18 | 30.47 | 213.71 |
F | 0.45 | 313.95 | 29.30 | 284.65 |
G | 0.15 | 104.65 | 15.12 | 89.53 |
H | 0.53 | 369.77 | 35.12 | 334.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarecki, W. Reaction of Camelina (Camelina sativa (L.) Crantz) to Different Foliar Fertilization. Agronomy 2021, 11, 185. https://doi.org/10.3390/agronomy11010185
Jarecki W. Reaction of Camelina (Camelina sativa (L.) Crantz) to Different Foliar Fertilization. Agronomy. 2021; 11(1):185. https://doi.org/10.3390/agronomy11010185
Chicago/Turabian StyleJarecki, Wacław. 2021. "Reaction of Camelina (Camelina sativa (L.) Crantz) to Different Foliar Fertilization" Agronomy 11, no. 1: 185. https://doi.org/10.3390/agronomy11010185
APA StyleJarecki, W. (2021). Reaction of Camelina (Camelina sativa (L.) Crantz) to Different Foliar Fertilization. Agronomy, 11(1), 185. https://doi.org/10.3390/agronomy11010185