Reduced Pollination Efficiency Compromises Some Physicochemical Qualities in Gac (Momordica cochinchinensis Spreng.) Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop Production
2.2. Pollen Collection and Storage Treatments
2.2.1. Ambient Storage
2.2.2. Cool Storage
2.3. In Vitro Pollen Viability Assessments
2.4. In Vivo Pollen Viability Assessments
2.5. Fruit Physiological Properties
2.6. Chemical Properties of the Aril
2.6.1. Total Soluble Solids (TSS) of the Aril
2.6.2. Determination of Total Oil and Carotenoid Concentrations
2.7. Statistical Analysis
3. Results
3.1. The Viability of Pollen Stored under Ambient Conditions
3.2. The Viability of Cold-Stored Pollen
3.3. Physicochemical Properties of Gac Fruits Pollinated with Stored Pollen
3.3.1. Physical Properties of Fruit
3.3.2. Chemical Properties of Aril
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Telford, I.R. Cucurbitaceae; Australian Government Publishing Service: Canberra, Australia, 1982. [Google Scholar]
- Aoki, H.; Kieu, N.T.M.; Kuze, N.; Tomisaka, K.; Chuyen, N.V. Carotenoid pigments in gac fruit (Momordica cochinchinensis Spreng). Biosci. Biotechnol. Biochem. 2002, 66, 2479–2482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, B.K.; Turner, C.; Chapman, M.H.; McKeon, T.A. Fatty acid and carotenoid composition of gac (Momordica cochinchinensis Spreng) fruit. J. Agric. Food Chem. 2004, 52, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Vuong, T.L. Underutilized β-carotene-rich crops of Vietnam. Food Nutr. Bull. 2000, 21, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Parks, S.E.; Stathopoulos, C. Gac fruit: Nutrient and phytochemical composition, and options for processing. Food Rev. Int. 2013, 29, 92–106. [Google Scholar] [CrossRef]
- Lopez-Huertas, E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol. Res. 2010, 61, 200–207. [Google Scholar] [CrossRef]
- Parks, S.E.; Murray, C.T.; Gale, D.L.; Al-Khawaldeh, B.; Spohr, L.J. Propagation and production of gac (Momordica Cochinchinensis Spreng), a greenhouse case study. Exp. Agric. 2013, 49, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.X. Improving Production and Quality of Gac (Momordica cochinchinensis Spreng) Fruit. Ph.D. Thesis, The University of Newcastle, Ourimbah, Australia, 2017. [Google Scholar]
- Pereira, M.C.T.; Crane, J.H.; Montas, W.; Nietsche, S.; Vendrame, W.A. Effects of storage length and flowering stage of pollen influence its viability, fruit set and fruit quality in ‘Red’ and ‘Lessard Thai’ sugar apple (Annona squamosa) and ‘Gefner’ atemoya (A. cherimola × A. squamosa). Sci. Hortic. 2014, 178, 55–60. [Google Scholar] [CrossRef]
- Samnegård, U.; Hambäck, P.A.; Smith, H.G. Pollination treatment affects fruit set and modifies marketable and storable fruit quality of commercial apples. R. Soc. Open Sci. 2019, 6, 190326. [Google Scholar] [CrossRef] [Green Version]
- Tran, X.T.; Parks, S.E.; Roach, P.D.; Golding, J.B.; Nguyen, M.H. Effects of maturity on physicochemical properties of gac fruit (Momordica cochinchinensis Spreng). Food Sci. Nutr. 2016, 4, 305–314. [Google Scholar] [CrossRef]
- Anusree, T.; Abhina, C.; Lishiba, P.P.; Rasna, T.V.; Varma, S.; Sinu, P.A. Flower sex expression in cucurbit crops of Kerala: Implications for pollination and fruitset. Curr. Sci. 2015, 109, 2299–2302. [Google Scholar] [CrossRef] [Green Version]
- Maharana, T.; Sahoo, P.C. Floral biology of Momordica species. J. Hortic. For. 1995, 4, 143–151. [Google Scholar]
- Hong, T.D.; Ellis, R.H.; Buitink, J.; Walters, C.; Hoekstra, F.A.; Crane, J. A model of the effect of temperature and moisture on pollen longevity in air dry storage environments. Ann. Bot. 1999, 83, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Stathopoulos, C.E. Effects of gac aril microwave processing conditions on oil extraction efficiency, and βcarotene and lycopene contents. J. Food Eng. 2013, 117, 486–491. [Google Scholar] [CrossRef]
- VSN International. Genstat for Windows, 21st ed.; VSN International: Hemel Hempstead, UK, 2020. [Google Scholar]
- Müller-Maatsch, J.; Sprenger, J.; Hempel, J.; Kreiser, F.; Carle, R.; Schweiggert, R.M. Carotenoids from gac fruit aril (Momordica cochinchinensis [Lour.] Spreng) are more bioaccessible than those from carrot root and tomato fruit. Food Res. Int. 2017, 99, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Chuyen, H.V.; Nguyen, M.H.; Roach, P.D.; Golding, J.B.; Parks, S.E. Gac fruit (Momordica cochinchinensis Spreng): A rich source of bioactive compounds and its potential health benefits. Int. J. Food Sci. Technol. 2015, 50, 567–577. [Google Scholar] [CrossRef]
- Mai, H.C.; Truong, V.; Debaste, F. Optimization of enzyme-aided extraction of oil rich in carotenoids from gac fruit (Momordica cochinchinensis Spreng). Food Technol. Biotech. 2013, 51, 488–499. [Google Scholar]
- Khan, M.F.; Abutaha, N.; Nasr, F.A.; Alqahtani, A.S.; Noman, O.M.; Wadaan, M.A.M. Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos. BMC Complement. Altern. Med. 2019, 184, 19. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.W.; Jaskani, M.J.; Ko, B.R.; Cho, J.L. Collection, germination and storage of watermelon (Citrullus lanatus Thunb) pollen for pollination under temperate conditions. Asian J. Plant Sci. 2005, 4, 44–49. [Google Scholar] [CrossRef]
- Connor, K.; Towill, L. Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage. Euphytica 2004, 68, 77–84. [Google Scholar] [CrossRef]
- Franchi, G.G.; Piotto, B.; Nepi, M.; Baskin, C.C.; Baskin, J.M.; Pacini, E. Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J. Exp. Bot. 2011, 62, 5267–5281. [Google Scholar] [CrossRef] [Green Version]
- Carrizo García, C.; Guarnieri, M.; Pacini, E. Carbohydrate metabolism before and after dehiscence in the recalcitrant pollen of pumpkin (Cucurbita pepo L.). Plant Biol. 2015, 17, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Nepi, M.; Cresti, L.; Guarnieri, M.; Pacini, E. Effect of relative humidity on water content, viability and carbohydrate profile of Petunia hybrida and Cucurbita pepo pollen. Plant Syst. Evol. 2010, 284, 57–64. [Google Scholar] [CrossRef]
- Ballesteros, D.; Pritchard, H.W.; Walters, C. Dry architecture: Towards the understanding of the variation of longevity in desiccation-tolerant germplasm. Seed Sci. Res. 2020, 30, 142–155. [Google Scholar] [CrossRef]
- Pacini, E.; Dolferus, R. Pollen developmental arrest: Maintaining pollen fertility in a world with a changing climate. Front. Plant Sci. 2019, 10, 679. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, F.A. Collecting pollen for genetic resources conservation. In Collecting Plant Genetic Diversity: Technical Guidelines; CAB InternationalPublisher: Wallingford, Oxon, UK, 1995; pp. 527–550. [Google Scholar]
- Cruzatty, L.C.G.; Droppelmann, F.; Izaguirre-Mayoral, M.L. New protocol for storage of viable pollen of Lapageria rosea (Philesiaceae), an endangered plant species endemic to temperate forests of Chile. Plant Species Biol. 2020, 35, 332–337. [Google Scholar] [CrossRef]
Storage Temperature (°C) | Time (Days) | Proportion Fruit Set | Fruit Weight (g) | Proportion Aril | Total Seed Number | Proportion Developed Seeds |
---|---|---|---|---|---|---|
Fresh pollen | 0 | 0.967 e | 1402.88 | 0.264 | 30.96 | 0.883 d |
4 | 14 | 0.767 cd | 1173.43 | 0.232 | 30.01 | 0.858 d |
4 | 28 | 0.8 cd | 1192.60 | 0.234 | 28.50 | 0.844 cd |
4 | 56 | 0.4 b | 920.45 | 0.225 | 28.58 | 0.57 b |
4 | 84 | 0.1 a | 826.63 | 0.191 | 16.00 | 0.657 bc |
−20 | 14 | 0.867 de | 1287.28 | 0.237 | 28.59 | 0.804 cd |
−20 | 28 | 0.833 cd | 1251.50 | 0.227 | 29.40 | 0.861 d |
−20 | 56 | 0.733 c | 1102.07 | 0.231 | 27.80 | 0.799 cd |
−20 | 84 | 0.133 a | 908.86 | 0.158 | 21.17 | 0.219 a |
Effect: p-value (LSD) | ||||||
Storage | <0.001 (0.061) | <0.001 (114.22) | 0.044 (0.046) | 0.158 (ns) | 0.016 (0.144) | |
Storage*temp | <0.001 (0.064) | 0.007 (120.34) | 0.62 (ns) | 0.654 (ns) | 0.195 (ns) | |
Storage*time | <0.001 (0.07) | <0.001 (131.89) | 0.028 (0.046) | 0.006 (7.74) | <0.001 (0.166) | |
Storage*time*temp | <0.001 (0.081) | 0.661 (ns) | 0.757 (ns) | 0.696 (ns) | <0.001 (0.192) |
Storage Temperature (°C) | Time (Days) | TSS (oBrix) | Oil
(g g−1 DW) | Lycopene
(mg g−1 FW) | β-Carotene
(mg g−1 FW) |
---|---|---|---|---|---|
Fresh pollen | 0 | 16.18 | 0.29 | 0.373 | 0.24 |
4 | 14 | 15.6 | 0.177 | 0.232 | 0.217 |
4 | 28 | 15.43 | 0.13 | 0.273 | 0.19 |
4 | 56 | 13.37 | 0.127 | 0.38 | 0.297 |
4 | 84 | 12.20 | 0.123 | 0.28 | 0.13 |
−20 | 14 | 15.77 | 0.17 | 0.337 | 0.217 |
−20 | 28 | 15.37 | 0.207 | 0.343 | 0.26 |
−20 | 56 | 14.77 | 0.153 | 0.37 | 0.29 |
−20 | 84 | 12.73 | 0.187 | 0.227 | 0.157 |
Effect: p-value (LSD) | |||||
Storage | 0.003 (1.09) | <0.001 (0.063) | 0.08 (ns) | 0.688 (ns) | |
Storage*temp | 0.158 (ns) | 0.062 (ns) | 0.891 (ns) | 0.509 (ns) | |
Storage*time | <0.001 (1.26) | 0.653 (ns) | 0.154 (ns) | 0.041 (0.121) | |
Storage*time*temp | 0.474 (ns) | 0.472 (ns) | 0.68 (ns) | 0.845 (ns) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, X.T.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Reduced Pollination Efficiency Compromises Some Physicochemical Qualities in Gac (Momordica cochinchinensis Spreng.) Fruit. Agronomy 2021, 11, 190. https://doi.org/10.3390/agronomy11010190
Tran XT, Parks SE, Nguyen MH, Roach PD. Reduced Pollination Efficiency Compromises Some Physicochemical Qualities in Gac (Momordica cochinchinensis Spreng.) Fruit. Agronomy. 2021; 11(1):190. https://doi.org/10.3390/agronomy11010190
Chicago/Turabian StyleTran, Xuan T., Sophie E. Parks, Minh H. Nguyen, and Paul D. Roach. 2021. "Reduced Pollination Efficiency Compromises Some Physicochemical Qualities in Gac (Momordica cochinchinensis Spreng.) Fruit" Agronomy 11, no. 1: 190. https://doi.org/10.3390/agronomy11010190
APA StyleTran, X. T., Parks, S. E., Nguyen, M. H., & Roach, P. D. (2021). Reduced Pollination Efficiency Compromises Some Physicochemical Qualities in Gac (Momordica cochinchinensis Spreng.) Fruit. Agronomy, 11(1), 190. https://doi.org/10.3390/agronomy11010190