Influence of Organic and Conventional Farming on Grain Yield and Protein Composition of Chickpea Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Weather Conditions
2.3. Agronomic Characterization and Seed Quality
2.4. Water-Holding Capacity
2.5. Protein Extraction and SDS-PAGE Analysis
2.6. Statistical Analysis
3. Results
3.1. Yield and Quality Response under Conventional and Organic Cropping Systems
3.2. Changes in Chickpea Protein Composition
3.3. Relationship between Chickpea Protein Composition and Agronomic Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghelfi, R.; Palmieri, A. Pulses production in Italy: Trade, marketing and policy issues. Ital. J. Agron. 2017, 12, 891. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Bandara, M.; Hamel, C.; Knight, J.D.; Gan, Y. Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments. Field Crops Res. 2020, 248, 107657. [Google Scholar] [CrossRef]
- Duranti, M. Grain legume proteins and nutraceutical properties. Fitoterapia 2006, 77, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Maiti, R.K.; Wesche-Ebeling, P. Vegetative and reproductive growth and productivity. In Advances in Chickpea Science; Maiti, R., Wesche-Ebeling, P., Eds.; Science Publishers: Enfield, NH, USA, 2001; pp. 67–104. [Google Scholar]
- Nisa, Z.U.; Arif, A.; Waheed, M.Q.; Shah, T.M.; Iqbal, A.; Siddiqui, A.J.; Choudhary, M.I.; El-Seedi, H.R.; Musharraf, S.G. A comparative metabolomic study on desi and kabuli chickpea (Cicer arietinum L.) genotypes under rainfed and irrigated field conditions. Sci. Rep. 2020, 10, 13919. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, R.; Primi, R.; Danieli, P.P.; Ronchi, B.; Rossini, F. Effects of seeding date and seeding rate on yield, proximate composition and total tannins content of two Kabuli chickpea cultivars. Ital. J. Agron. 2017, 12, 890. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P.R. The protein chemistry of dicotyledonous grains. Encyclopedia Food Grains 2016, 2, 109–114. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Sonnante, G.; Lupo, F.; Piergiovanni, A.R.; Laghetti, G.; Sparvoli, F.; Lioi, L. Characterization of Italian chickpea (Cicer arietinum L.) germplasm by multidisciplinary approach. Genet. Resour. Crop Evol. 2013, 60, 865–877. [Google Scholar] [CrossRef]
- De Giovanni, C.; Pavan, S.; Taranto, F.; Di Rienzo, V.; Miazzi, M.M.; Marcotrigiano, A.R.; Mangini, G.; Montemurro, C.; Ricciardi, L.; Lotti, C. Genetic variation of a global germplasm collection of chickpea (Cicer arietinum L.) including Italian accessions at risk of genetic erosion. Physiol. Mol. Biol. Plants 2017, 23, 197–205. [Google Scholar] [CrossRef]
- Summo, C.; De Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Nutritional, physico-chemical and functional characterization of a global chickpea collection. J. Food Compos. Anal. 2019, 43, 49–60. [Google Scholar] [CrossRef]
- Vadez, V.; Berger, J.D.; Warkentin, T.; Asseng, S.; Ratnakumar, P.; Rao, K.P.C.; Gaur, P.M.; Munier-Jolain, N.; Larmure, A.; Voisin, A.S.; et al. Adaptation of grain legumes to climate change: A review. Agron. Sustain. Dev. 2012, 32, 31–34. [Google Scholar] [CrossRef]
- Kaloki, P.; Trethowan, R.; Tan, D.K.Y. Genetic and environmental influences on chickpea water-use efficiency. J. Agron. Crop Sci. 2019, 205, 470–476. [Google Scholar] [CrossRef]
- Dubey, R.K.; Dubey, P.K.; Chaurasia, R.; Singh, H.B.; Abhilash, P.C. Sustainable agronomic practices for enhancing the soil quality and yield of Cicer arietinum L. under diverse agroecosystems. J. Environ. Manag. 2020, 262, 110284. [Google Scholar] [CrossRef] [PubMed]
- Menga, V.; Codianni, P.; Fares, C. Agronomic Management under Organic Farming May Affect the Bioactive Compounds of Lentil (Lens culinaris L.) and Grass Pea (Lathyrus communis L.)? Sustainability 2014, 6, 1059–1075. [Google Scholar] [CrossRef] [Green Version]
- Ksiezak, J.; Bojarszczuk, J. The Effect of Cropping Method and Botanical Form on Seed Yielding and Chemical Composition of Chickpeas (Cicer arietinum L.) Grown under Organic System. Agronomy 2020, 10, 801. [Google Scholar] [CrossRef]
- Ravi, R.; Harte, J.B. Milling and physicochemical properties of chickpea (Cicer arietinum L.) varieties. J. Sci. Food Agric. 2009, 89, 258–266. [Google Scholar] [CrossRef]
- Nikolic, Z.; Dordevic, V.; Torbica, A.; Mikic, A. Legumes seed storage proteins characterization by SDS-PAGE and Lab-on-a-Chip electrophoresis. J. Food Compos. Anal. 2012, 28, 75–80. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Flagella, Z.; Reyneri, A.; Blandino, M. Impact of nitrogen fertilisation strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Res. 2020, 254. [Google Scholar] [CrossRef]
- Ladjal-Ettoumi, Y.; Boudries, H.; Chibane, M.; Romero, A. Pea, chickpea and lentil protein isolates: Physicochemical characterization and emulsifying properties. Food Biophys. 2016, 11, 43–51. [Google Scholar] [CrossRef]
- López-Bellido, F.J.L.; López-Bellido, R.J.; Khalil, S.K.; López-Bellido, L.L. Effect of planting date on winter kabuli chickpea growth and yield under rainfed Mediterranean conditions. Agron. J. 2008, 100, 957–964. [Google Scholar] [CrossRef]
- Rinaldi, M.; Vonella, A.V.; Soldo, P.; Debiase, G.; Garofalo, P. Yield and canopy response of chickpea (Cicer arietinum L.) to different irrigation regimes. In Sustainable Irrigation—Management, Technologies and Policies; Villacampa Esteve, Y., Brebbia, C.A., Pratas Rico, D., Eds.; WIT Press, WIT Transaction on Ecology and the Environment: Southampton, UK, 2008; Volume 112, pp. 123–132. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, S.; Erdogan, C.; Arslan, M.; Caliskan, M.E. Comparison of organic and traditional production systems in chickpea (Cicer arietinum L.). Turk. J. Field Crops 2013, 18, 34–39. [Google Scholar]
- Zhang, C.; Chen, W.; Sankaran, S. Impact of ascochyta blight disease on the expression of biochemical compounds in chickpea. Crop Prot. 2019, 125, 104885. [Google Scholar] [CrossRef]
- Gaur, P.M.; Singh, M.K.; Samineni, S.; Sajja, S.B.; Jukanti, A.K.; Kamatam, S.; Varshney, R.K. Inheritance of protein content and its relationships with seed size, grain yield and other traits in chickpea. Euphytica 2016, 209, 253–260. [Google Scholar] [CrossRef] [Green Version]
- López-Bellido, R.J.; López-Bellido, L.; Benítez-Vega, J.; Munoz-Romero, V.; López-Bellido, F.; Redondo, R. Chickpea and faba bean nitrogen fixation in a Mediterranean rainfed Vertisol: Effect of the tillage system. Europ. J. Agron. 2011, 34, 222–230. [Google Scholar] [CrossRef]
- López-Bellido, R.J.; López-Bellido, L.; Castillo, J.E.; López-Bellido, F.J. Chickpea response to tillage and soil residual nitrogen in a continuous rotation with wheat II. Soil nitrate, N uptake and influence on wheat yield. Field Crops Res. 2004, 88, 201–210. [Google Scholar] [CrossRef]
- Tzitzikas, E.N.; Vincken, J.P.; De Groot, J.; Gruppen, H.; Visser, R.G.F. Genetic variation in pea seed globulin composition. J. Agric. Food Chem. 2006, 54, 425–433. [Google Scholar] [CrossRef]
- Lioi, L.; Sparvoli, F.; Sonnante, G.; Laghetti, G.; Lupo, F.; Zaccardelli, M. Characterization of Italian grasspea (Lathyrus sativus L.) germplasm using agronomic traits, biochemical and molecular markers. Genet. Resour. Crop Evol. 2011, 58, 425–437. [Google Scholar] [CrossRef]
- Singh, G.D.; Wani, A.A.; Kaur, D.; Sogi, D.S. Characterisation and functional properties of proteins of some Indian chickpea (Cicer arietinum) cultivars. J. Sci. Food Agric. 2008, 88, 778–786. [Google Scholar] [CrossRef]
- Barac, M.; Cabrilo, S.; Pesic, M.; Stanojevic, S.; Zilic, S.; Macej, O.; Ristic, N. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. Int. J. Mol. Sci. 2010, 11, 4973–4990. [Google Scholar] [CrossRef] [Green Version]
- Arefian, M.; Vessal, S.; Malekzadeh-Shafaroudi, S.; Siddique, H.M.; Bagheri, A. Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC Plant Biol. 2019, 19, 300. [Google Scholar] [CrossRef] [Green Version]
- Mertens, C.; Dehon, L.; Bourgeois, A.; Verhaeghe-Cartrysse, C.; Blecker, C. Agronomical factors influencing the legumin/vicilin ratio in pea (Pisum sativum L.) seeds. J. Sci. Food Agric. 2012, 92, 1591–1596. [Google Scholar] [CrossRef]
- Tavano, O.L.; Neves, V.A. Isolation, solubility and in vitro hydrolysis of chickpea vicilin-like protein. LWT Food Sci. Technol. 2008, 41, 1244–1251. [Google Scholar] [CrossRef]
- Chiaiese, P.; Ohkama-Ohtsu, N.; Molvig, L.; Godfree, R.; Dove, H.; Hocart, C.; Fujiwara, T.; Higgins, T.J.V.; Tabe, L.M. Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. J. Exper. Bot. 2004, 55, 404. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Gupta, K.; Sharma, A.; Das, M.; Ansari, I.A.; Dwivedi, P.D. Health risks and benefits of chickpea (Cicer arietinum) consumption. J. Agric. Food Chem. 2017, 65, 6–22. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Diaz, P.; Agama-Acevedo, E.; Mendoza-Vinalay, M.; Tovar, J.; Bello-Pèrez, L.A. Pasta added with chickpea flour: Chemical composition, in vitro starch digestibility and predicted glycemic index. Cienc. Tecnol. Aliment. 2008, 6, 6–12. [Google Scholar] [CrossRef]
- Sofi, S.A.; Singh, J.; Muzaffar, K.; Majid, D.; Dar, B.N. Physicochemical characteristics of protein isolates from native and germinated chickpea cultivars and their noodle quality. Int. J. Gastron. Food Sci. 2020, 22, 100258. [Google Scholar] [CrossRef]
- Saget, S.; Costa, M.; Barilli, E.; de Vasconcelos, M.W.; Sancho Santos, C.; Styles, D.; Williams, M. Substituting wheat with chickpea flour in pasta production delivers more nutrition at a lower environmental cost. Sustain. Prod. Consum. 2020, 24, 26–38. [Google Scholar] [CrossRef]
- Traynham, T.L.; Myers, D.J.; Carriquiry, A.L.; Johnson, L.A. Evaluation of water-holding capacity for wheat–soy flour blends. J. Am. Oil Chem. Soc. 2007, 84, 151–155. [Google Scholar] [CrossRef]
- Du, S.; Jiang, H.; Yu, X.; Jane, J. Physicochemical and functional properties of whole legume flour. Food Sci. Technol. 2014, 308–313. [Google Scholar] [CrossRef]
- Pasqualone, A.; De Angelis, D.; Squeo, G.; Difonzo, G.; Caponio, F.; Summo, C. The effect of the addition of Apulian black chickpea flour on the nutritional and qualitative properties of durum wheat-based bakery products. Foods 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Ghribi, A.M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Besbes, S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J. Funct. Foods 2015, 12, 516–525. [Google Scholar] [CrossRef]
- Bar-El Dadon, S.; Pascual, C.Y.; Eshel, D.; Teper-Bamnolker, P.; Ibańez, M.D.P.; Reifen, R. Vicilin and the basic subunit of legumin are putative CP allergens. Food Chem. 2013, 138, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.J.; Gupta, N.; Narvekar, D.T.; Bhadkariya, R.; Bhagyawant, S.S. Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiol. Mol. Biol. Plants 2018, 24, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Prathapan, A.; Fahad, K.; Thomas, B.K.; Philip, R.M.; Raghu, K.G. Effect of sprouting on antioxidant and inhibitory potential of two varieties of Bengal gram (Cicer arietinum L.) against key enzymes linked to type-2 diabetes. Int. J. Food Sci. Nutr. 2011, 62, 234–238. [Google Scholar] [CrossRef] [PubMed]
Genotype | Seed Type | Seed Color | Seed Size |
---|---|---|---|
Calia | Rough | Yellow | Medium |
Kairo | Rough | Yellow | Medium |
Nero Senise | Rough | Black | Small |
Pascià | Rough | Yellow | Large |
Principe | Rough | Yellow | Large |
Reale | Smooth | Yellow | Large |
Sultano | Smooth | Yellow | Medium |
Vulcano | Smooth | Yellow | Medium |
Parameter | CCS | OCS | ||||
---|---|---|---|---|---|---|
G | Y | G × Y | G | Y | G × Y | |
GY | *** | *** | ns | * | *** | ns |
GW | *** | *** | ns | * | ns | ns |
GNO | *** | *** | * | *** | *** | ns |
GNU | *** | *** | * | ** | *** | ns |
PC | * | *** | * | * | *** | ns |
WHC | *** | * | * | *** | ns | ** |
7s-C | *** | * | *** | ** | ** | ns |
7s-V | *** | *** | *** | ** | *** | *** |
11s-L | *** | *** | *** | *** | *** | *** |
lect | *** | *** | *** | *** | ns | *** |
2s-alb | *** | ** | * | ns | ns | ns |
7s-V/11s-L | *** | *** | *** | *** | *** | *** |
CS | Factor | Level | GY | GW | GNO | GNU | PC | WHC | 7s-C | 7s-V | 11s-L | lect | 2s-alb | 7s-V/11s-L |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 | mg | no. m−2 | kg ha−1 | % | g g−1 | % | % | % | % | % | ratio | |||
CCS | Genotype | Calia | 1391 b–d | 301 c | 4507 bc | 53.8 b–d | 23.6 ab | 1.47 b | 7.0 b–d | 39.2 a | 24.7 c | 14.5 b | 5.9 bc | 1.88 a |
Kairo | 1717 a–c | 312 c | 5484 b | 65.8 ab | 23.8 ab | 1.34 b | 7.7 a–c | 39.3 a | 24.0 c | 15.8 a | 5.0 c | 1.97 a | ||
Nero Senise | 2050 a | 234 d | 8762 a | 77.0 a | 23.6 ab | 1.68 a | 7.3 a–d | 24.5 b | 37.3 b | 10.7 e | 7.5 a | 0.85 b | ||
Pascià | 1361 b–d | 382 b | 3403 c | 51.2 b–d | 22.3 b | 1.33 b | 7.0 b–d | 23.0 b | 37.3 b | 13.0d | 5.2 c | 0.81 bc | ||
Principe | 1617 a–d | 378 b | 4243 bc | 63.5 a–c | 24.5 a | 1.40 b | 6.2 d | 21.0 d | 39.3 a | 14.3 bc | 5.7 c | 0.69 d | ||
Reale | 1176 cd | 429 a | 2715 c | 44.3 cd | 23.2 ab | 1.39 b | 7.8 ab | 24.2 b | 37.3 b | 12.7 d | 5.3 c | 0.88 b | ||
Sultano | 1834 ab | 306 c | 5968 b | 69.7 ab | 23.5 ab | 1.42 b | 6.5 cd | 20.7 d | 40.8 a | 11.0 e | 7.2 ab | 0.67 d | ||
Vulcano | 1074 d | 284 c | 3539 c | 42.5 d | 24.8 a | 1.46 b | 8.5 a | 20.7 d | 39.8 a | 13.5 | 6.0 bc | 0.75 cd | ||
Year | 2014 | 1060 b | 310 b | 3645 b | 38.6 b | 22.7 b | 1.40 b | 7.0 b | 25.9 b | 36.8 a | 12.5 b | 6.3 a | 1.00 b | |
2015 | 1995 a | 347 a | 6010 a | 78.3 a | 24.6 a | 1.47 a | 7.5 a | 27.2 a | 33.4 b | 13.9 a | 5.6 b | 1.12 a | ||
OCS | Genotype | Calia | 573 bc | 355 a–c | 1661 c | 21.0 bc | 23.2 b | 1.38 b | 7.3 a | 42.3 ab | 23.2 d | 12.5 ab | 7.0 a | 2.15 a |
Kairo | 714 a–c | 321 b–d | 2196 a–c | 26.8 a–c | 24.1 ab | 1.39 b | 6.3 b | 41.5 a–c | 26.5 a | 12.7 ab | 6.2 a | 1.82 c | ||
Nero Senise | 802 ab | 244 d | 3288 a | 30.0 ab | 23.7 ab | 1.60 a | 6.2 b | 42.7 a | 24.3 b–d | 10.3 d | 7.2 a | 2.01 ab | ||
Pascià | 649 a–c | 432 a | 1505 c | 23.2 a–c | 22.6 b | 1.34 b | 7.0 ab | 39.7 c | 27.0 a | 13.3 a | 6.5 a | 1.77 c | ||
Principe | 763 a–c | 370 a–c | 2061 bc | 31.3 ab | 25.8 a | 1.32 b | 6.3 b | 40.0 bc | 26.2 ab | 11.0 cd | 6.8 a | 1.78 c | ||
Reale | 627 a–c | 400 ab | 1700 c | 23.5 a–c | 23.3 ab | 1.34 b | 6.5 ab | 43.0 a | 24.5 b–d | 11.0 cd | 6.7 a | 2.03 ab | ||
Sultano | 902 a | 313 cd | 2860 ab | 33.7 a | 23.4 ab | 1.42 b | 6.5 ab | 41.3 a–c | 24.0 cd | 11.3 cd | 6.3 a | 2.00 ab | ||
Vulcano | 485 c | 315 cd | 1561 c | 18.0 d | 23.4 ab | 1.37 b | 6.7 ab | 40.0 bc | 25.3 a–c | 12.0 bc | 6.8 a | 1.88 bc | ||
Year | 2014 | 525 b | 338 a | 1670 b | 21.0 b | 24.9 a | 1.41 a | 6.3 b | 39.8 b | 26.5 a | 11.8 a | 6.4 a | 1.76 b | |
2015 | 853 a | 350 a | 2538 a | 30.8 a | 22.5 b | 1.38 a | 6.9 a | 42.8 a | 23.7 b | 11.7 a | 6.9 a | 2.10 a |
Genotype | GNO | GNU | PC | WHC | 7s conv | 7s vicil | 11s leg | lect | 2s alb | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n. ha−1 | kg ha−1 | % | g g−1 | % | % | % | % | % | ||||||||||
CCS | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 |
Calia | 2934 e–h | 6080 a–d | 29.0 e–g | 78.7 a–d | 22.1 a–c | 25.1 a | 1.45 a–d | 1.48 a–d | 6.7 c | 7.3 bc | 37.0 b | 41.3 a | 26.0 f | 23.3 fg | 15.7 a | 13.3 cd | 6.9 ab | 5.0 b–d |
Kairo | 4373 c–g | 6595 a–c | 49.0 c–f | 82.7 ab | 22.9 a–c | 24.7 ab | 1.19 d | 1.48 a–d | 7.7 a–c | 7.7 a–c | 41.7 a | 37.0 b | 23.0 g | 25.0 fg | 15.3 ab | 16.3 a | 5.0 b–d | 5.0 b–d |
Nero Senise | 8676 a | 8848 a | 68.7 a–d | 85.3 ab | 23.6 ab | 23.5 ab | 1.72 a | 1.64 ab | 7.7 a–c | 7.0 bc | 24.0 d | 25.0 d | 38.7 b–d | 36.0 de | 8.0 g | 13.3 cd | 7.4 a | 7.5 a |
Pascià | 1928 gh | 4877 b–f | 22.7 fg | 79.7 a–c | 20.0 c | 24.5 ab | 1.28 cd | 1.39 a–d | 7.0 bc | 7.0 bc | 22.0 e | 24.0 d | 38.7 b–d | 36.0 de | 12.0 de | 14.0 bc | 6.0 a–d | 4.5 cd |
Principe | 3462 d–h | 5023 b–f | 47.3 d–f | 79.7 a–c | 24.1 ab | 25.0 a | 1.32 b–d | 1.49 a–d | 6.3 c | 6.0 c | 20.7 ef | 21.3 ef | 40.7 bc | 38.0 cd | 12.3 de | 16.3 a | 6.5 a–c | 5.0 b–d |
Reale | 2090 f–h | 3339 d–h | 30.0 e–g | 58.7 b–e | 21.6 bc | 24.9 a | 1.49 a–d | 1.28 cd | 6.7 c | 9.0 a | 21.3 ef | 27.0 c | 41.0 b | 33.7 e | 11.3 ef | 14.0 bc | 6.5 a–c | 4.0 d |
Sultano | 4307 c–h | 7629 ab | 47.0 d–g | 92.3 a | 22.7 a–c | 24.4 ab | 1.38 b–d | 1.45 a–d | 6.7 c | 6.3 c | 20.7 ef | 20.7 ef | 41.3 b | 40.3 bc | 12.0 de | 10.0 f | 6.5 a–c | 8.0 a |
Vulcano | 1388 h | 5690 b–e | 15.3 g | 69.7 a–d | 24.8 a | 24.8 a | 1.38 b–d | 1.53 a–c | 8.0 a–c | 9.0 a | 20.0 f | 21.3 ef | 44.7 a | 35.0 e | 13.0 cd | 14.0 bc | 6.0 a–d | 6.0 a–d |
OCS | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 |
Calia | 1055 d | 2267 a–d | 13.3 d | 28.7 a–d | 23.7 a–c | 22.7 bc | 1.45 b–d | 1.32 c–e | 7.3 a | 7.3 a | 43.0 a–c | 41.7 a–c | 22.7 c | 23.7 c | 13.3 bc | 11.7 c–f | 7.5 a | 6.5 a |
Kairo | 1291 cd | 3101 a–c | 16.3 cd | 37.3 ab | 25.5 a–c | 22.7 bc | 1.30 c–e | 1.47 bc | 6.0 a | 6.7 a | 40.0 b–d | 43.0 a–c | 28.0 ab | 25.0 bc | 10.3 fg | 15.0 ab | 6.9 a | 5.6 a |
Nero Senise | 3218 ab | 3359 ab | 30.7 a–d | 29.3 a–d | 25.8 ab | 21.7 c | 1.68 a | 1.52 ab | 6.3 a | 6.0 a | 42.3 a–c | 43.0 a–c | 25.0 bc | 23.7 c | 11.3 d–f | 9.3 g | 5.5 a | 9.0 a |
Pascià | 1064 d | 1947 a–d | 17.0 cd | 29.3 a–d | 23.2 bc | 21.9 bc | 1.39 b–e | 1.29 de | 7.0 a | 7.0 a | 34.3 e | 45.0 a | 30.0 a | 24.0 c | 15.3 a | 11.3 d–f | 5.6 a | 7.5 a |
Principe | 1922 a–d | 2200 a–d | 29.7 a–d | 33.0 a–c | 27.7 a | 23.8 a–c | 1.39 b–e | 1.27 e | 6.0 a | 6.7 a | 39.3 cd | 40.7 b–d | 28.0 ab | 24.3 c | 10.7 e–g | 11.3 d–f | 6.6 a | 7.1 a |
Reale | 1559 b–d | 1841 a–d | 22.0 b–d | 25.0 a–d | 24.3 a–c | 22.4 bc | 1.32 c–e | 1.36 b–e | 6.0 a | 7.0 a | 42.3 a–c | 43.7 ab | 25.7 bc | 23.3 c | 10.3 fg | 11.7c–f | 6.5 a | 6.8 a |
Sultano | 2179 a–d | 3542 a | 26.0 a–d | 41.3 a | 24.0 a–c | 22.8 bc | 1.43 b–e | 1.41 b–e | 6.0 a | 7.0 a | 40.0 b–d | 42.7 a–c | 25.0 bc | 23.0 c | 12.3 c–e | 10.3 ef | 6.0 a | 6.5 a |
Vulcano | 1073 d | 2048 a–d | 13.3 d | 22.7 a–d | 24.6 a–c | 22.1 b–c | 1.33 c–e | 1.42 b–e | 6.0 a | 7.3 a | 37.0 de | 43.0 a–c | 28.0 ab | 22.7 c | 11.0 f–g | 13.0 cd | 7.0 a | 6.5 a |
Parameter | Unit | CCS | OCS | OCS vs. CCS |
---|---|---|---|---|
GY | kg ha−1 | 1527 ± 93 | 689 ± 37 | −58% |
GW | mg | 328 ± 9.4 | 344 ± 9.5 | 5% |
GNO | no. m−2 | 4827 ± 346 | 2104 ± 137 | −56% |
GNU | kg ha−1 | 58.5 ± 3.8 | 25.9 ± 1.3 | −56% |
PC | % | 23.7 ± 0.3 | 23.7 ± 0.2 | 0% |
WHC | g g−1 | 1.43 ± 0.02 | 1.40 ± 0.02 | −2% |
7s convicilin | % | 7.3 ± 0.2 | 6.6 ± 0.1 | −10% |
7s vicilin | % | 26.6 ± 1.1 | 41.3 ± 0.4 | 55% |
11s legumin | % | 35.1 ± 0.7 | 25.1 ± 0.2 | −28% |
lectin | % | 13.2 ± 2.2 | 11.8 ± 1.7 | −11% |
2s albumin | % | 6.0 ± 0.3 | 6.7 ± 0.2 | 12% |
7s-V/11s-L | ratio | 1.06 ± 0.2 | 1.93 ± 0.1 | 82% |
GW | GNO | GNU | PC | WHC | 7s-C | 7s-V | 11s-L | lectin | 2s-alb | 7s-V/11s-L | |
---|---|---|---|---|---|---|---|---|---|---|---|
GY | −0.10 | 0.93 | 0.99 | 0.13 | 0.31 | 0.25 | −0.45 | 0.33 | 0.22 | −0.14 | −0.39 |
GW | −0.38 | −0.10 | −0.10 | −0.41 | 0.07 | 0.02 | −0.04 | 0.23 | −0.24 | 0.02 | |
GNO | 0.92 | 0.10 | 0.46 | 0.22 | −0.41 | 0.31 | 0.06 | 0.00 | −0.35 | ||
GNU | 0.22 | 0.33 | 0.25 | −0.45 | 0.38 | 0.23 | −0.16 | −0.39 | |||
PC | 0.25 | 0.02 | −0.03 | 0.04 | 0.00 | −0.20 | −0.07 | ||||
WHC | −0.04 | −0.15 | 0.15 | −0.09 | 0.06 | −0.25 | |||||
7s-C | −0.16 | 0.07 | 0.29 | −0.22 | −0.06 | ||||||
7s-V | −0.96 | −0.08 | 0.09 | 0.98 | |||||||
11s-L | −0.04 | −0.06 | −0.98 | ||||||||
lectin | −0.42 | −0.02 | |||||||||
2s-alb | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, M.A.; Rinaldi, M.; Menga, V.; Codianni, P.; Giuzio, L.; Fares, C.; Flagella, Z. Influence of Organic and Conventional Farming on Grain Yield and Protein Composition of Chickpea Genotypes. Agronomy 2021, 11, 191. https://doi.org/10.3390/agronomy11020191
De Santis MA, Rinaldi M, Menga V, Codianni P, Giuzio L, Fares C, Flagella Z. Influence of Organic and Conventional Farming on Grain Yield and Protein Composition of Chickpea Genotypes. Agronomy. 2021; 11(2):191. https://doi.org/10.3390/agronomy11020191
Chicago/Turabian StyleDe Santis, Michele Andrea, Michele Rinaldi, Valeria Menga, Pasquale Codianni, Luigia Giuzio, Clara Fares, and Zina Flagella. 2021. "Influence of Organic and Conventional Farming on Grain Yield and Protein Composition of Chickpea Genotypes" Agronomy 11, no. 2: 191. https://doi.org/10.3390/agronomy11020191
APA StyleDe Santis, M. A., Rinaldi, M., Menga, V., Codianni, P., Giuzio, L., Fares, C., & Flagella, Z. (2021). Influence of Organic and Conventional Farming on Grain Yield and Protein Composition of Chickpea Genotypes. Agronomy, 11(2), 191. https://doi.org/10.3390/agronomy11020191