Effects of Fertigation with Untreated and Treated Leachates from Municipal Solid Waste on the Microelement Status and Biometric Parameters of Viola × wittrockiana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phytodepuration Station
2.2. Treatments Tested
2.3. Sampling and Analyses
2.3.1. Fertigation Water Analysis
2.3.2. Substrate Solution Analysis
2.3.3. Plant Analysis
2.3.4. Plant Biometric Parameters
2.4. Statistical Analysis
3. Results
3.1. Fertigation Water Quality
3.2. Substrate Solution Composition
3.3. Nutritional Parameters in Plants
3.3.1. Copper Concentration and Content
3.3.2. Manganese Concentration and Content
3.3.3. Iron Concentration and Content
3.3.4. Zinc Concentration and Content
3.4. Biometric Parameters
4. Discussion
4.1. Nutritional Parameters
4.1.1. Fertigation Water and Substrate Solution Assessment
4.1.2. Copper
4.1.3. Manganese
4.1.4. Iron
4.1.5. Zinc
4.2. Biometric Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, F.N.; Lan, C.Q. Treatment of landfill leachate using membrane bioreactors: A review. Desalination 2012, 287, 41–54. [Google Scholar] [CrossRef]
- Chofqi, A.; Younsi, A.; Lhadi, E.K.; Mania, J.; Mudry, J.; Veron, A. Environmental impact of an urban landfill on a coastal aquifer (El Jadida, Morocco). J. Afr. Earth Sci. 2004, 39, 509–516. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Sen Gupta, B. Contemporary environmental issues of landfill leachate: Assessment and remedies. Crit. Rev. Environ. Sci. Technol. 2014, 45, 472–590. [Google Scholar] [CrossRef] [Green Version]
- Slack, R.J.; Gronow, J.R.; Voulvoulis, N. Household hazardous waste in municipal landfills: Contaminants in leachate. Sci. Total Environ. 2005, 337, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.; Ravindra, K.; Dahiya, R.P.; Chandra, A. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ. Monit. Assess. 2006, 118, 435–456. [Google Scholar] [CrossRef]
- Abd El-Salam, M.M.; Abu-Zuid, G.I. Impact of landfill leachate on the groundwater quality: A case study in Egypt. J. Adv. Res. 2015, 6, 579–586. [Google Scholar] [CrossRef]
- Han, Z.; Ma, H.; Shi, G.; He, L.; Wei, L.; Shi, Q. A review of groundwater contamination near municipal solid waste landfill sites in China. Sci. Total Environ. 2016, 569–570, 1255–1264. [Google Scholar] [CrossRef]
- Youcai, Z.; Ziyang, L. Chapter five—Pollution control and resource recovery for landfill gas. In Pollution Control and Resource Recovery, Municipal Solid Wastes at Landfill; Youcai, Z., Ziyang, L., Eds.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 227–319. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, X.Q.; Luo, J.H.; Liu, J.Y.; Xu, Y.F.; Zhao, A.H.; Liu, F.; Tai, J.; Qian, G.R.; Peng, B. Characterization of fresh leachate from a refuse transfer station under different seasons. Int. Biodeter. Biodegr. 2013, 85, 631–637. [Google Scholar] [CrossRef]
- Baldantoni, D.; Leone, A.; Iovieno, P.; Morra, L.; Zaccardelli, M.; Alfani, A. Total and available soil trace element concentrations in two Mediterranean agricultural systems treated with municipal waste compost or conventional mineral fertilizers. Chemosphere 2010, 80, 1006–1013. [Google Scholar] [CrossRef]
- Roghanian, S.; Hosseini, H.M.; Savaghebi, G.; Halajian, L.; Jamei, M.; Etesami, H. Effects of composted municipal waste and its leachate on some soil chemical properties and corn plant responses. Int. J. Agric. Res. Rev. 2012, 2, 801–814. Available online: https://www.cabdirect.org/cabdirect/abstract/20123377794 (accessed on 11 November 2020).
- Zhang, L.; Sun, X. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol. 2014, 171, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Baccot, C.; Pallier, V.; Thom, M.T.; Thuret-Benoist, H.; Feuillade-Cathalifaud, G. Valorization of extracted organic matter from municipal solid waste leachate: Application to soils from France and Togo. Waste Manag. 2020, 102, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Ramos, P.; Costa, C.; Márquez, M.C. Raw and digested municipal waste compost leachate as potential fertilizer: Comparison with a commercial fertilizer. J. Clean. Prod. 2013, 59, 73–78. [Google Scholar] [CrossRef]
- Alaribe, F.O.; Agamuthu, P. Nutrient value of landfill leachate on the growth of Brassica rapa L. Malaysian J. Sci. 2010, 29, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Cretescu, I.; Pohontu, C.; Iticescu, C.; Cioroi, M.; Ciocinta, R.C.; Bucur, D. Treatment of landfill leachate using Zea mays and Triticum sp. on antropogenic soils. J. Food Agric. Environ. 2013, 11, 1507–1512. [Google Scholar] [CrossRef]
- Wang, S.; Lai, J.; Zhao, X. Effect of landfill leachate irrigation on soil physiochemical properties and the growth of two herbaceous flowers. Acta Ecol. Sin. 2012, 32, 6128–6137. [Google Scholar] [CrossRef] [Green Version]
- EU (European Union). Landfill Directive. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Available online: https://eur-lex.europa.eu/eli/dir/1999/31/2018-07-04 (accessed on 15 November 2020).
- EU (European Union). Waste Framework Directive. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/eli/dir/2008/98/2018-07-05 (accessed on 15 November 2020).
- EU (European Union). Urban Waste Water Treatment Directive. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01991L0271-20140101 (accessed on 15 November 2020).
- EU (European Union). Water Framework Directive. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02000L0060-20141120 (accessed on 15 November 2020).
- Zema, D.A.; Bombino, G.; Andiloro, S.; Zimbone, S.M. Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values. Agric. Water Manag. 2012, 115, 55–65. [Google Scholar] [CrossRef]
- Anning, A.K.; Akoto, R. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicol. Environ. Saf. 2018, 148, 97–104. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Rocha, R.B.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Banat, I.M. Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem. Ecol. 2015, 31, 707–723. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Temel, A.F.; Avcı, E.; Ardalı, Y. Full scale horizontal subsurface flow constructed wetlands to treat domestic wastewater by Juncus acutus and Cortaderia selloana. Int. J. Phytoremediat. 2018, 20, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Williamson, K.L.; Owen, A.G. Phytoremediation of landfill leachate. Waste Manag. 2006, 26, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Zupančič Justin, M.; Pajk, N.; Zupanc, V.; Zupančič, M. Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: Biomass and growth response. Waste Manag. 2010, 30, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, Q.F.; Li, J.Y.; Guo, B.B.; Liu, T.; Li, L. Comparison of purification ability of aquatic plants under different concentrations of nitrogen and phosphorus in tailrace of livestock wastewater. J. Agro Environ. Sci. 2020, 39, 2397–2408. [Google Scholar] [CrossRef]
- Ben Salem, Z.; Laffray, X.; Ashoour, A.; Ayadi, H.; Aleya, L. Metal accumulation and distribution in the organs of Reeds and Cattails in a constructed treatment wetland (Etueffont, France). Ecol. Eng. 2014, 64, 1–17. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Haroon, M.; Schrader, L.E.; Young, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Hocking, P.J.; Pate, J.S. Mobilization of minerals to developing seeds of legumes. Ann. Bot. 1977, 41, 1259–1278. [Google Scholar] [CrossRef]
- Yu, G.R.; Miwa, T.; Nakayama, K.; Matsuoka, N.; Kon, H. A proposal for universal formulas for estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties. Plant Soil 2000, 227, 47–58. [Google Scholar] [CrossRef]
- Brennan, R.B.; Healy, M.G.; Morrison, L.; Hynes, S.; Norton, D.; Clifford, E. Management of landfill leachate: The legacy of European Union Directives. Waste Manag. 2016, 55, 355–363. [Google Scholar] [CrossRef]
- Rani, A.; Negi, S.; Hussain, A.; Kumar, S. Treatment of urban municipal landfill leachate utilizing garbage enzyme. Bioresour. Technol. 2020, 297, 122437. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, G.O.; Opasina, M.A. Physicochemical and heavy metals assessments of leachates from aperin abandoned dumpsite in Ibadan City, Nigeria. E J. Chem. 2010, 7, 1278–1283. [Google Scholar] [CrossRef] [Green Version]
- Rengel, Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 2015, 15, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Van Iersel, M. Fertilizer concentration affects growth and nutrient composition of subirrigated pansies. HortScience 1999, 34, 660–663. [Google Scholar] [CrossRef] [Green Version]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 Rev. 1; FAO: Rome, Italy, 1985; Available online: http://www.fao.org/3/T0234E/T0234E00.htm (accessed on 20 November 2020).
- Dickson, R.; Fischer, P.R. Ammonium-nitrate ratio and cation/anion uptake affect the acidity or basicity of floriculture species. Acta Hortic. 2017, 1168, 135–142. [Google Scholar] [CrossRef]
- OJEU (Official Journal of the European Union). Regulation (Eu) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. L 170 Volume 62, 25 June 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:170:FULL&from=EN (accessed on 1 December 2020).
- WHO (World Health Organization). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. 24 April 2017. ISBN 978-92-4-154995-0. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 1 December 2020).
- Olivero-Verbel, J.; Padilla-Bottet, C.; De la Rosa, O. Relationships between physicochemical parameters and the toxicity of leachates from a municipal solid waste landfill. Ecotoxicol. Environ. Saf. 2008, 70, 294–299. [Google Scholar] [CrossRef]
- Carmo, D.L.; Lima, L.B.; de Silva, C.A. Soil fertility and electrical conductivity affected by organic waste rates and nutrient inputs. Rev. Bras. Cienc. Solo 2016, 40, e0150152. [Google Scholar] [CrossRef] [Green Version]
- Bunt, A.C. Microelements. In Media and Mixes for Container-Grown Plants; Springer: Dordrecht, The Netherlands, 1988; pp. 151–173. [Google Scholar] [CrossRef]
- Mills, H.A.; Jones, J.B., Jr. Plant Analysis Handbook II. A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing: Athens, Greece, 1996. [Google Scholar]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar] [CrossRef]
- Owen, W.G. Response of Calceolaria × herbeohybrida cultivars to substrate pH and corresponding leaf tissue nutrient concentration effects. HortScience 2019, 54, 2163–2168. [Google Scholar] [CrossRef] [Green Version]
- Aghajanzadeh, T.A.; Reich, M.; Hawkesford, M.J.; Burow, M. Sulfur metabolism in Allium cepa is hardly affected by chloride and sulfate salinity. Arch. Agron. Soil Sci. 2019, 65, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Rogacheva, S.; Gubina, T.; Pisarenko, E.; Zhutov, A.; Shilova, N.; Wiłkomirski, B. Phytoextraction of copper and nickel from soils characterized by different degrees of chloride salinity. J. Elem. 2018, 23, 119–135. [Google Scholar] [CrossRef]
- Koksal, N.; Alkan-Torun, A.; Kulahlioglu, I.; Ertargin, E.; Karalar, E. Ion uptake of marigold under saline growth conditions. Springerplus 2016, 20, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kováčik, J.; Klejdus, B.; Hedbavny, J.; Štork, F.; Grúz, J. Modulation of copper uptake and toxicity by abiotic stresses in Matricaria chamomilla plants. J. Agric. Food Chem. 2012, 60, 6755–6763. [Google Scholar] [CrossRef] [PubMed]
- Chidichimo, F.; De Biase, M.; Straface, S. Groundwater pollution assessment in landfill areas: Is it only about the leachate? Waste Manag. 2020, 102, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Reich, M.; Aghajanzadeh, T.; Helm, J.; Parmar, S.; Hawkesford, M.J.; De Kok, L.J. Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 2017, 411, 19–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavan, P.D.; Karadge, B.A. Influence of salinity on mineral nutrition of peanut (Arachis hypogea L.). Plant Soil 1980, 54, 5–13. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 1999, 78, 127. [Google Scholar] [CrossRef]
- Lindsay, W.L. Soil and plant relationships associated with iron deficiency with emphasis on nutrient interactions. J. Plant Nutr. 1984, 7, 489–500. [Google Scholar] [CrossRef]
- Hassan, A.H.; Ramadan, M.H. Assessment of sanitary landfill leachate characterizations and its impacts on groundwater at Alexandria. J. Egypt Public Health Assoc. 2005, 80, 27–49. [Google Scholar]
- Abiriga, D.; Vestgarden, L.S.; Klempe, H. Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry. Sci. Total Environ. 2020, 737, 140307. [Google Scholar] [CrossRef]
- Wu, C.; Liao, B.; Wang, S.L.; Zhang, J.; Li, J.T. Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis). Int. J. Phytoremediation 2010, 12, 574–585. [Google Scholar] [CrossRef]
- Ahmadi, M.; Souri, M.K. Growth and mineral content of coriander (Coriandrum sativum L.) plants under mild salinity with different salts. Acta Physiol. Plant. 2018, 40, 194. [Google Scholar] [CrossRef]
- Rivero, R.M.; Mestre, T.C.; Mittler, R.; Rubio, F.; García-Sánchez, F.; Martínez, V. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 2014, 37, 1059–1073. [Google Scholar] [CrossRef] [PubMed]
- Garg, B.K.; Garg, O.P. Salinity and plant nutrition—Effect of sodium carbonate and sodium bicarbonate on the growth and absorption of essential macronutrients and sodium in pea (Pisum sativum L.). Proc. Indian Natl. Sci. Acad. B 1980, 46, 694–698. Available online: https://insa.nic.in/writereaddata/UpLoadedFiles/PINA/Vol46B_1980_5_Art12.pdf (accessed on 1 September 2020).
- Sánchez-Raya, A.J.; Delgado, I.C. Mineral nutrient transport by sunflower seedlings grown under saline conditions (NaCl). J. Plant Nutr. 1996, 19, 1463–1475. [Google Scholar] [CrossRef]
- Zabotto, A.R.; Longuini-Gomes, L.D.; D’andréa Mateus, C.D.M.; Villas-Boas, R.L.; Kanashiro, S.; Tavares, A.R. Nutrition and physiology of hybrid Eucalyptus urograndis in soil fertilized with sewage sludge. Emir. J. Food Agric. 2020, 32, 19–24. [Google Scholar] [CrossRef]
- Franco, H.C.J.; Mariano, E.; Vitti, A.C.; Faroni, C.E.; Otto, R.; Trivelin, P.C.O. Sugarcane response to boron and zinc in Southeastern Brazil. Sugar Tech. 2011, 13, 86–95. [Google Scholar] [CrossRef]
- Marques, D.M.; Veroneze Júnior, V.; da Silva, A.B.; Mantovani, J.R.; Magalhães, P.C.; de Souza, T.C. Copper toxicity on photosynthetic responses and root morphology of Hymenaea courbaril L. (Caesalpinioideae). Water Air Soil Pollut. 2018, 229, 138. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, C.; Srinivasan, V.M. Influence of micronutrients on seedling production in teak (Tectona grandis Linn.f.). Trop. Agric. 2004, 81, 121–126. [Google Scholar]
- Gao, Y.; Li, D.; Chen, Y. Differentiation of carbonate, chloride, and sulfate salinity responses in tall fescue. Sci. Hortic. 2012, 139, 1–7. [Google Scholar] [CrossRef]
- Deshmukh, M.R.; Patil, S.G. Effect of sodium sulphate salinity on biochemical contents of grapes (Vitis spp.). J. Agric. Sci. Technol. 2011, 36, 183–188. Available online: https://www.jart.co.in/uploads/168/6342_pdf.pdf (accessed on 12 March 2020).
- Patel, S.V.; Gajera, H.P.; Kanani, J.K.; Golakiya, B.A. Effect of sulphate type of salinity on some metabolic drifits in germinating groundnut (Arachis hypogae) varieties. Int. J. Plant Sci. (Muzaffarnagar) 2009, 4, 502–508. Available online: http://researchjournal.co.in/Online/IJPS/IJPS%204/4_A-502-508.pdf (accessed on 12 October 2020).
- Renault, S. Response of red-osier dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: Effects of supplemental calcium. Physiol. Plant. 2005, 123, 75–81. [Google Scholar] [CrossRef]
- Marques, D.M.; Silva, A.B.; Mantovani, J.R.; Pereira, D.S.; Souza, T.C. Growth and physiological responses of tree species (Hymenaea courbaril L., Peltophorum dubium (Spreng.) Taub. and Myroxylon peruiferum L. f.) exposed to different copper concentrations in the soil. Rev. Árvore 2018, 42, e420202. [Google Scholar] [CrossRef] [Green Version]
- Valcarenghi, L.H.S.; Neto, A.J.A.; Madalosso, T.; Fávero, F.; Scapim, C.A.; Rampim, L.; Coppo, J.C.; Rissato, B.B.; Lorenzetti, E.; Ritter, G. Productivity of maize by leaf application of zinc (Zn) and copper (Cu). Aust. J. Crop Sci. 2017, 11, 1381–1385. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Garg, B.K.; Gupta, I.C. Physiology of salt tolerance of arid zone crops VIII. Sorghum. Curr. Agric. 2000, 24, 9–22. Available online: https://www.cabdirect.org/cabdirect/abstract/20013102204 (accessed on 25 October 2020).
- Sujatha, S.; Tejaswini, P.; Laxman, R.H. Biomass, carbon and nutrient stocks in different categories of rose (Rosa spp.) for optimizing input use. J. Plant Nutr. 2020, 43, 2425–2444. [Google Scholar] [CrossRef]
- Kuehny, J.S.; Morales, B. Effects of salinity and alkalinity on pansy and impatiens in three different growing media. J. Plant Nutr. 1998, 21, 1011–1023. [Google Scholar] [CrossRef]
- Sharma, K.D.; Singh, N.; Bishnoi, N.R. Effect of chloride and sulphate salinity on flowering and yield attributes of chickpea (Cicer arietinum L.). Indian J. Plant Physiol. 1993, 36, 266–268. [Google Scholar] [CrossRef]
Treatment | W9.0 | W4.5 | DW4.5 | PW4.5 | T |
---|---|---|---|---|---|
pH | 9.34 ± 0.14 a | 9.17 ± 0.25 a | 8.99 ± 0.38 b | 9.11 ± 0.34 a | 8.58 ± 0.17 b |
EC | 9.09 ± 0.16 a | 4.76 ± 0.19 b | 4.61 ± 0.04 b | 4.54 ± 0.16 b | 1.17 ± 0.14 c |
NO3− | 28.14 ± 5.13 b | 31.19 ± 9.57 b | 96.73 ± 18.22 a | 96.30 ± 8.44 a | 26.58 ± 5.66 b |
PO43− | 0.96 ± 0.59 c | 1.38 ± 0.84 c | 28.33 ± 1.27 b | 34.90 ± 1.99 a | 2.58 ± 0.27 c |
Cl− | 176 ± 63 b | 205 ± 51 b | 236 ± 14 b | 378 ± 111 a | 290 ± 40 ab |
SO42− | 3138 ± 212 a | 1248 ± 86 b | 1524 ± 385 b | 1307 ± 387 b | 7 ± 4 c |
K+ | 7.21 ± 5.64 b | 5.53 ± 1.92 bc | 17.01 ± 3.25 a | 23.06 ± 3.53 a | 0.35 ± 0.08 c |
Na+ | 2541 ± 34 a | 1128 ± 124 b | 899 ± 176 c | 849 ± 112 c | 176 ± 1 d |
Ca2+ | 6.41 ± 1.13 d | 7.24 ± 0.30 d | 25.83 ± 2.78 b | 14.66 ± 4.60 c | 49.00 ± 3.90 a |
Mg2+ | 31.86 ± 4.08 a | 24.20 ± 2.71 b | 22.80 ± 1.35 b | 20.54 ± 4.17 bc | 15.55 ± 1.35 d |
Cu | 13.33 ± 5.77 b | 10.00 ± 0.00 b | 53.33 ± 28.87 a | 26.67 ± 15.28 ab | 10.00 ± 0.00 b |
Mn | 10.00 ± 0.00 b | 10.00 ± 0.00 b | 10.00 ± 0.00 b | 10.00 ± 0.00 b | 66.67 ± 49.33 a |
Fe | 10.00 ± 0.00 b | 10.00 ± 0.00 b | 16.67 ± 11.55 a | 13.33 ± 5.77 ab | 10.00 ± 0.00 b |
Zn | 10.00 ± 0.01 b | 10.00 ± 0.00 b | 30.00 ± 17.32 b | 16.67 ± 11.55 b | 160.00 ± 70.00 a |
Treatment | W9.0 | W4.5 | DW4.5 | PW4.5 | T |
---|---|---|---|---|---|
pH | 7.26 ± 0.01 a | 7.16 ± 0.09 ab | 7.10 ± 0.04 ab | 7.06 ± 0.06 b | 7.03 ± 0.26 b |
EC | 6.52 ± 0.29 a | 4.63 ± 0.17 b | 4.41 ± 0.64 b | 4.43 ± 0.92 b | 2.07 ± 0.07 c |
Cu | 43.00 ± 4.76 d | 40.50 ± 10.75 d | 54.50 ± 4.43 c | 85.50 ± 5.26 a | 72.00 ± 2.83 b |
Mn | 131.00 ± 14.09 a | 106.50 ± 8.23 b | 96.00 ± 4.00 bc | 79.50 ± 24.08 c | 70.50 ± 18.43 c |
Fe | 658.50 ± 91.31 a | 328.00 ± 84.27 b | 272.67 ± 11.02 b | 321.00 ± 25.32 b | 265.00 ± 20.94 b |
Zn | 102.15 ± 6.40 b | 113.75 ± 19.72 b | 119.20 ± 18.75 b | 192.10 ± 71.33 a | 154.80 ± 53.00 ab |
Treatment | W9.0 | W4.5 | DW4.5 | PW4.5 | T |
---|---|---|---|---|---|
Roots | 0.24 ± 0.05 b | 2.01 ± 0.31 a | 2.02 ± 0.07 a | 2.34 ± 2.12 a | 1.51 ± 0.83 ab |
Shoots | 5.25 ± 1.00 d | 6.25 ± 0.48 cd | 9.01 ± 1.68 a | 6.01 ± 0.95 cd | 7.64 ± 0.58 bc |
Flowers | 1.42 ± 0.26 c | 2.53 ± 0.37 b | 1.63 ± 0.13 c | 3.59 ± 0.27 a | 3.22 ± 0.82 a |
Plants | 6.91 ± 1.17 c | 10.79 ± 0.87 b | 12.66 ± 1.68 a | 11.94 ± 0.47 ab | 12.37 ± 0.92 ab |
Treatment | W9.0 | W4.5 | DW4.5 | PW4.5 | T |
---|---|---|---|---|---|
Roots | 1.06 ± 0.00 c | 12.22 ± 4.65 bc | 7.35 ± 1.66 c | 23.70 ± 10.02 a | 22.39 ± 6.49 ab |
Shoots | 70.56 ± 5.91 ab | 48.96 ± 14.94 b | 61.58 ± 25.93 b | 46.48 ± 8.76 b | 86.60 ± 14.23 a |
Flowers | 12.25 ± 5.56 c | 32.37 ± 4.76 b | 42.17 ± 3.25 a | 24.12 ± 1.54 b | 32.20 ± 9.13 b |
Plants | 83.87 ± 5.44 c | 93.56 ± 7.60 bc | 111.10 ± 26.12 b | 94.30 ± 15.84 bc | 141.20 ± 15.40 a |
Treatment | W9.0 | W4.5 | DW4.5 | PW4.5 | T |
---|---|---|---|---|---|
Roots | 7.83 ± 0.21 c | 100.40 ± 8.53 b | 71.22 ± 12.92 bc | 59.07 ± 67.30 bc | 204.07 ± 42.56 a |
Shoots | 74.90 ± 19.13 c | 121.59 ± 5.17 ab | 140.63 ± 0.05 ab | 101.20 ± 27.44 bc | 153.04 ± 43.40 a |
Flowers | 81.69 ± 58.53 a | 139.21 ± 39.24 a | 93.71 ± 7.66 ab | 102.69 ± 6.90 a | 60.41 ± 15.00 ab |
Plants | 164.42 ± 62.79 d | 361.21 ± 29.42 ab | 305.56 ± 13.20 bc | 262.96 ± 63.87 c | 417.53 ± 55.59 a |
Treatment | W9.0 | W4.5 | DW4.5 | PW4.5 | T |
---|---|---|---|---|---|
Roots | 3.59 ± 0.21 c | 34.36 ± 5.34 b | 26.39 ± 2.87 b | 32.14 ± 12.44 b | 63.97 ± 23.63 a |
Shoots | 43.80 ± 4.85 bc | 40.70 ± 4.24 c | 56.41 ± 4.78 a | 38.26 ± 7.97 c | 51.09 ± 6.95 ab |
Flowers | 54.61 ± 3.21 a | 45.70 ± 11.08 a | 27.94 ± 3.40 b | 34.16 ± 1.60 b | 30.19 ± 7.27 b |
Plants | 102.01 ± 4.01 c | 120.77 ± 9.65 b | 110.74 ± 7.70 bc | 104.56 ± 8.71 bc | 145.25 ± 19.88 a |
Treatment | Roots DW | Shoots DW | Flowers DW | Plant DW |
---|---|---|---|---|
W9.0 | 0.02 ± 0.01 c | 0.62 ± 0.08 c | 0.23 ± 0.05 c | 0.86 ± 0.13 c |
W4.5 | 0.22 ± 0.02 b | 0.78 ± 0.06 b | 0.50 ± 0.07 a | 1.50 ± 0.12 b |
DW4.5 | 0.23 ± 0.04 b | 1.07 ± 0.07 a | 0.56 ± 0.07 a | 1.86 ± 0.14 a |
PW4.5 | 0.39 ± 0.04 a | 0.88 ± 0.19 a | 0.38 ± 0.09 b | 1.50 ± 0.15 ab |
T | 0.35 ± 0.06 a | 0.83 ± 0.10 b | 0.36 ± 0.08 b | 1.53 ± 0.18 b |
Treatment | Leaf Size | SLA | WC (DW Basis) | Number of Flowers | ||
---|---|---|---|---|---|---|
Closed | Open | Dead | ||||
W9.0 | 10 ± 1 b | 989 ± 105 a | 460.53 ± 11.59 b | 0.5 ± 0.8 b | 0.9 ± 1.3 b | 8.1 ± 3.4 ns |
W4.5 | 17 ± 4 a | 1165 ± 122 a | 533.08 ± 27.37 a | 0.8 ± 1.2 b | 6.3 ± 4.8 a | 7.1 ± 4.2 ns |
DW4.5 | 15 ± 1 a | 1095 ± 96 a | 503.70 ± 13.26 a | 0.8 ± 0.8 b | 6.5 ± 3.1 a | 8.4 ± 5.7 ns |
PW4.5 | 8 ± 2 b | 722 ± 304 b | 527.36 ± 11.03 a | 1.4 ± 1.2 a | 6.0 ± 4.0 a | 9.0 ± 5.1 ns |
T | 14 ± 1 a | 1098 ± 85 a | 529.23 ± 34.22 a | 1.0 ± 1.4 ab | 6.0 ± 4.3 a | 6.5 ± 4.0 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza, B.M.; Carmassi, G.; Diara, C.; Pardossi, A.; Lao, M.T.; Jiménez-Becker, S. Effects of Fertigation with Untreated and Treated Leachates from Municipal Solid Waste on the Microelement Status and Biometric Parameters of Viola × wittrockiana. Agronomy 2021, 11, 186. https://doi.org/10.3390/agronomy11010186
Plaza BM, Carmassi G, Diara C, Pardossi A, Lao MT, Jiménez-Becker S. Effects of Fertigation with Untreated and Treated Leachates from Municipal Solid Waste on the Microelement Status and Biometric Parameters of Viola × wittrockiana. Agronomy. 2021; 11(1):186. https://doi.org/10.3390/agronomy11010186
Chicago/Turabian StylePlaza, Blanca María, Giulia Carmassi, Cecilia Diara, Alberto Pardossi, María Teresa Lao, and Silvia Jiménez-Becker. 2021. "Effects of Fertigation with Untreated and Treated Leachates from Municipal Solid Waste on the Microelement Status and Biometric Parameters of Viola × wittrockiana" Agronomy 11, no. 1: 186. https://doi.org/10.3390/agronomy11010186
APA StylePlaza, B. M., Carmassi, G., Diara, C., Pardossi, A., Lao, M. T., & Jiménez-Becker, S. (2021). Effects of Fertigation with Untreated and Treated Leachates from Municipal Solid Waste on the Microelement Status and Biometric Parameters of Viola × wittrockiana. Agronomy, 11(1), 186. https://doi.org/10.3390/agronomy11010186