Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- type of biostimulant: Algex, Tytanit, Asahi SL, and a control (no biostimulant addition);
- nitrogen application rate: 0 (control); 120 and 180 kg·ha−1.
2.2. Weather Conditions
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pramanick, B.; Brahmachari, K.; Ghosh, A.; Zodape, S.T. Effect of seaweed saps on growth and yield improvement of trans-planted rice in old alluvial soil of West Bengal. Bangladsh J. Bot. 2014, 43, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Shahabivand, S.; Padash, A.; Aghaee, A.; Nasiri, Y.; Rezaei, P.F. Plant biostimulants (Funneliformis mosseae and humic sub-stances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran. J. Plant Physiol. 2018, 8, 2333–2344. [Google Scholar]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Koszel, M.; Findura, P. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids. Front. Plant Sci. 2018, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.H.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671. [Google Scholar] [CrossRef] [Green Version]
- Talar-Krasa, M.; Wolski, K.; Biernacik, M. Biostimulants and possibilities of their usage in grassland. Grassl. Sci. 2019, 65, 205–209. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant and sea-weed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant biostimulants: Importance of the quality and yield of horticultural crops and the im-provement of plant tolerance to abiotic stress—A review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, N.A.; Cominelli, E.; Galbiati, M.; Tonelli, C. The Future of Science: Food and Water for Life. Plant Cell 2009, 21, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Rayorath, P.; Jithesh, M.N.; Farid, A.; Khan, W.; Palanisamy, R.; Hankins, S.D.; Critchley, A.T.; Prithiviraj, B. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. Environ. Boil. Fishes 2007, 20, 423–429. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. Environ. Boil. Fishes 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Parađiković, N.; Vinković, T.; Vrček, I.V.; Žuntar, I.; Bojić, M.; Medić-Šarić, M. Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; Braun, G.; Norrie, J.; Hodges, D.M. Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Can. J. Plant Sci. 2014, 94, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.S.S.; Fleming, C.C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Environ. Boil. Fishes 2013, 26, 465–490. [Google Scholar] [CrossRef]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.-M.; Pan, D. Titanium as a Beneficial Element for Crop Production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [Green Version]
- El-Nabarawy, M.A. Mitigation of dark induced senescence. 1—By some amino acids. Ann. Agric. Sci. Moshtohor 2001, 39, 225–232. [Google Scholar]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. 2010, 125, 263–269. [Google Scholar] [CrossRef]
- Haider, M.W.; Ayyub, C.H.M.; Pervez, M.A.; Asad, H.U.; Manan, A.; Raza, S.A.; Ashraf, I. Impact of foliar application of seaweed extract on growth, yield and quality of potato (Solanum tuberosum L.). Soil. Environ. 2012, 31, 157–162. [Google Scholar]
- Povero, G.; Mejia, J.F.; Di Tommaso, D.; Piaggesi, A.; Warrior, P. A Systematic Approach to Discover and Characterize Natural Plant Biostimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F. Microalgae as multi-functional options in modern agriculture: Current trends, prospects and challenges. Biotechnol. Adv. 2018, 36, 1255–1273. [Google Scholar] [CrossRef] [PubMed]
- Sultana, V.; Ehteshamul-Haque, S.; Ara, J.; Athar, M. Comparative efficacy of Brown, Green and red Seaweeds in the control of Root infesting fungi and okra. Int. J. Environ. Sci. Technol. 2005, 2, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Matysiak, K. Kelpak—A natural regulator of plant growth and development. Sel. Ecol. Issues Mod. Agric. 2005, 375, 188–193. [Google Scholar]
- Ertani, A.; Pizzeghello, D.; Baglieri, A.; Cadili, V.; Tambone, F.; Gennari, M.; Nardi, S. Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J. Geochem. Explor. 2013, 129, 103–111. [Google Scholar] [CrossRef]
- Szparaga, A.; Kocira, S.; Kocira, A.; Czerwińska, E.; Swieca, M.; Lorencowicz, E.; Kornas, R.; Koszel, M.; Oniszczuk, T. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic bi-ostimulants. Front. Plant Sci. 2018, 9, 1401. [Google Scholar] [CrossRef]
- Brzóska, F.; Śliwiński, B. Jakość pasz objętościowych w żywieniu przeżuwaczy i metody jej oceny Cz. II. Metody analizy i oceny wartości pokarmowej pasz objętościowych. Wiad. Zootech. 2011, 4, 57–68. [Google Scholar]
- Belanger, G.; Virkajarvi, P.; Duru, M.; Tremblay, G.F.; Saarijarvi, K. Herbage nutritive in less–favoured areas of cool regions. Grassl. Sci. Eur. 2013, 18, 57–70. [Google Scholar]
- Baert, J.; Van Waes, C. Improvement of the digestibility of tall fescue (Festuca arundinacea Schreb.) inspired by perennial ryegrass (Lolium perenne L.). Grassl. Sci. Eur. 2014, 19, 172–174. [Google Scholar]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Karr-Lilienthal, L.; Kadzere, C.; Grieshop, C.; Fahey, G. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livest. Prod. Sci. 2005, 97, 1–12. [Google Scholar] [CrossRef]
- Joubert, J.M.; Lefranc, G. Seaweed biostimulants in agriculture: Recent studies on mode of action two types of products from alga: Growth and nutri-tion stimulants and stimulants of plant Demence reactions. Book of abstracts: Biostimulants in modern agriculture, Warsaw, Poland, 2008; p. 16.
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition—principles, classification scheme and correlations. Soil Sci. Ann. 2019, 70, 71–97. [Google Scholar]
- Van-Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Godlewska, A.; Ciepiela, G.A. The effect of growth regulator on dry matter yield and some chemical components in selected grass species and cultivars. Soil Sci. Plant Nutr. 2016, 62, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.D.A.; Santos, J.L.; Oliveira, L.S.; Soares, M.R.S.; Dos Santos, S.M.S. Biostimulants on mineral nutrition and fiber quality of cotton crop. Rev. Bras. Eng. Agrícola Ambient. 2016, 20, 1062–1066. [Google Scholar] [CrossRef] [Green Version]
- Dayan, J.; Schwarzkopf, M.; Avni, A.; Aloni, R. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol. J. 2010, 8, 425–435. [Google Scholar] [CrossRef]
- Hedden, P.; Thomas, S.G. Gibberellin biosynthesis and its regulation. Biochem. J. 2012, 444, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Kocira, S.; Szparaga, A.; Findura, P.; Treder, K. Modification of Yield and Fiber Fractions Biosynthesis in Phaseolus vulgaris L. by Treatment with Biostimulants Containing Amino Acids and Seaweed Extract. Agronomy 2020, 10, 1338. [Google Scholar] [CrossRef]
- Szparaga, A.; Kuboń, M.; Kocira, S.; Czerwińska, E.; Pawłowska, A.; Hara, P.; Kobus, Z.; Kwaśniewski, D. Towards Sustainable Agriculture—Agronomic and Economic Effects of Biostimulant Use in Common Bean Cultivation. Sustainability 2019, 11, 4575. [Google Scholar] [CrossRef] [Green Version]
- Szkutnik, J.; Kacorzyk, P.; Szewczyk, W. The content change of total protein and crude fibre depending on the dose of ferti-lization and phonological phase of grasses. Grassl. Sci. Pol. 2012, 15, 185–191. [Google Scholar]
- Godlewska, A.; Ciepiela, G. Carbohydrate and lignin contents in perennial ryegrass (Lolium perenne L.) treated with sea bamboo (Ecklonia maxima) extract against the background of nitrogen fertilisation regime. Appl. Ecol. Environ. Res. 2020, 18, 6087–6097. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, E.; Jankowski, K.; Kania, P.; Gałecka, M. The Effect on Tytanit Foliar Application on the Yield and Nutritional Value of Festulolium braunii. Agronomy 2020, 10, 848. [Google Scholar] [CrossRef]
- Du Jardin, P. The Science of Plant Biostimulants—A Bibliographic Analysis, European Commission (Contract 30–CE0455515/00–96, Ad hoc Study on Biostimulants Products); European Commission: Luxembourg, Germany, 2012. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- De Vasconcelos, A.C.F.; Chaves, L.H.G. Biostimulants and Their Role in Improving Plant Growth under Abiotic Stresses. In Biostimulants in Plant Science; IntechOpen: London, UK, 2020. [Google Scholar]
- Bettoni, M.M.; Mogor, A.F.; Pauletti, V.; Goicoechea, N.; Aranjuelo, I.; Garmendia, I. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Comp. Anal. 2016, 51, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Borowiecki, J. The effect of nitrogen fertilization on fielding and feeding value of Festulolium braunii var. Felopa. Pamiętnik Puławski 2002, 131, 39–48. [Google Scholar]
- Särkijärvi, S.; Niemeläinen, O.; Sormunen-Cristian, R. Changes in chemical composition of different grass species and -mixtures in equine pasture during grazing season. Energy Protein Metab. Nutr. 2012, 132, 45–48. [Google Scholar] [CrossRef]
- Ciepiela, G.A.; Godlewska, A.; Jankowska, J. The effect of seaweed Ecklonia maxima extract and mineral nitrogen on fodder grass chemical composition. Environ. Sci. Pollut. Res. 2015, 23, 2301–2307. [Google Scholar] [CrossRef] [Green Version]
- Karolewski, P.; Jagodziński, A.M. Share of carbon in defense compounds against biotic factors in woody plants. Sylwan 2013, 157, 831–841. [Google Scholar]
- Chen, J.-Y.; Wen, P.-F.; Kong, W.-F.; Pan, Q.-H.; Zhan, J.; Li, J.-M.; Wan, S.-B.; Huang, W.-D. Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol. Technol. 2006, 40, 64–72. [Google Scholar] [CrossRef]
- Poisa, L.; Adamovičs, A.; Platače, R.; Teirumnieka, Ē. Evaluationof the factors that affect the lignin kontent in the Reed ca-narygrass Phalaris arundinacea L.) in Latvia. In Proceedings of the Word Renewable Energy Congress, Linkőping, Sweden, 8–13 May 2011; pp. 224–231. [Google Scholar]
- Stachowicz, T. Racjonalne Wykorzystanie Użytków Zielonych w Gospodarstwie Ekologicznym; Centrum Doradztwa Rolniczego w Brwinowie oddział w Radomiu: Radom, Poland, 2010; pp. 9–24. [Google Scholar]
Years | Means Monthly Air Temperatures (°C) | Means in Growing Season (IV–IX) (°C) | |||||
---|---|---|---|---|---|---|---|
Month | |||||||
IV | V | VI | VII | VIII | IX | ||
2014 | 9.7 | 13.7 | 15.1 | 20.4 | 17.8 | 13.7 | 15.1 |
2015 | 8.1 | 12.3 | 16.5 | 14.3 | 21.1 | 8.8 | 13.5 |
Mean of many years (2006–2015) | 9.6 | 14.0 | 17.2 | 19.9 | 18.4 | 13.6 | 15.5 |
Years | Monthly Precipitation (mm) | Sum in Season (IV–IX) (mm) | |||||
Month | |||||||
IV | V | VI | VII | VIII | IX | ||
2014 | 39.5 | 79.3 | 50.3 | 62.5 | 66.3 | 26.7 | 325 |
2015 | 29.7 | 100.6 | 41.1 | 68.3 | 12.0 | 77.5 | 329 |
Mean of many years (2006–2015) | 26.9 | 68.9 | 64.6 | 55.8 | 65.3 | 44.3 | 326 |
Dose of N kg ha−1 (B) | Biostimulant (A) | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cut (C) | Mean | Cut (C) | Mean | ||||||
1 | 2 | 3 | 1 | 2 | 3 | ||||
0 | Control | 508 a | 542 a | 508 a | 519 a | 480 a | 496 a | 498 a | 491 a |
Algex | 409 b | 469 b | 423 b | 434 b | 398 b | 422 b | 409 b | 410 b | |
Tytanit | 456 c | 499 c | 472 c | 476 c | 436 c | 460 c | 455 c | 450 c | |
Asahi SL | 438 c | 493 c | 466 c | 466 d | 426 c | 445 d | 455 c | 442 d | |
120 | Control | 489 a | 527 a | 497 a | 504 a | 455 a | 487 a | 484 a | 475 a |
Algex | 420 b | 441 b | 425 b | 429 b | 376 b | 422 b | 410 b | 403 b | |
Tytanit | 450 c | 476 c | 455 c | 460 c | 429 c | 451 c | 444 c | 442 c | |
Asahi SL | 444 c | 475 c | 452 c | 457 c | 412 d | 453 c | 438 c | 434 d | |
180 | Control | 474 a | 520 a | 485 a | 493 a | 452 a | 482 a | 499 a | 478 a |
Algex | 388 b | 441 b | 413 b | 414 b | 386 b | 402 b | 402 b | 397 b | |
Tytanit | 441 c | 477 c | 459 c | 459 c | 415 c | 453 c | 445 c | 437 c | |
Asahi SL | 431 d | 477 c | 445 d | 451 d | 406 c | 447 c | 425 d | 426 d | |
Mean | Control | 490 a | 530 a | 497 a | 506 a | 462 a | 488 a | 494 a | 481 a |
Algex | 406 b | 450 b | 420 b | 426 b | 387 b | 415 b | 407 b | 403 b | |
Tytanit | 449 c | 484 c | 462 c | 465 c | 427 c | 455 c | 448 c | 443 c | |
Asahi SL | 438 d | 482 c | 454 d | 458 d | 415 d | 448 c | 439 d | 434 d | |
0 | Mean | 453 a | 501 a | 467 a | 474 a | 435 a | 455 a | 454 a | 448 a |
120 | 451 a | 480 b | 457 b | 463 b | 418 b | 453 a | 444 b | 438 b | |
180 | 433 b | 479 b | 451 c | 454 c | 414 b | 446 b | 443 b | 434 b | |
Mean | 446 A | 486 B | 458 C | 464 | 423 A | 451 B | 447 C | 440 | |
LSD0.05 | AxB—5.05 | AxB—7.16 | |||||||
A—2.92 | AxC—5.05 | A—4.13 | AxC—7.16 | ||||||
B—2.30 | BxC—3.98 | B—3.26 | BxC—5.64 | ||||||
C—2.30 | AxBxC—8.75 | C—3.26 | AxBxC—12.39 |
Dose of N kg ha−1 (B) | Biostimulant (A) | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cut (C) | Mean | Cut (C) | Mean | ||||||
1 | 2 | 3 | 1 | 2 | 3 | ||||
0 | Control | 328 a | 323 a | 349 a | 333 a | 303 a | 334 a | 311 a | 316 a |
Algex | 269 b | 275 b | 304 b | 282 b | 252 b | 298 b | 266 b | 272 b | |
Tytanit | 298 c | 308 c | 327 c | 311 c | 287 c | 314 c | 287 c | 296 c | |
Asahi SL | 293 d | 307 c | 324 c | 308 d | 278 d | 313 c | 280 d | 291 d | |
120 | Control | 332 a | 319 a | 343 a | 332 a | 295 a | 338 a | 307 a | 313 a |
Algex | 274 b | 275 b | 279 b | 276 b | 245 b | 285 b | 264 b | 265 b | |
Tytanit | 296 c | 295 c | 327 c | 306 c | 272 c | 321 c | 285 c | 293 c | |
Asahi SL | 291 d | 294 c | 323 c | 303 d | 262 c | 311 d | 280 c | 285 d | |
180 | Control | 318 a | 324 a | 343 a | 328 a | 297 a | 347 a | 303 a | 316 a |
Algex | 245 b | 265 b | 291 b | 267 b | 243 b | 277 b | 255 b | 258 b | |
Tytanit | 286 c | 300 c | 309 c | 299 c | 274 c | 314 c | 285 c | 291 c | |
Asahi SL | 277 d | 292 d | 306 c | 292 d | 259 d | 304 d | 278 d | 280 d | |
Mean | Control | 326 a | 322 a | 345 a | 331 a | 298 a | 339 a | 307 a | 315 a |
Algex | 263 b | 272 b | 292 b | 275 b | 247 b | 287 b | 262 b | 265 b | |
Tytanit | 293 c | 301 c | 321 c | 305 c | 278 c | 316 c | 286 c | 293 c | |
Asahi SL | 287 d | 298 d | 318 d | 301 d | 266 d | 310 d | 280 d | 285 d | |
0 | Mean | 297 a | 303 a | 326 a | 309 a | 280 a | 315 a | 286 a | 294 a |
120 | 298 a | 296 b | 318 b | 304 b | 268 b | 314 a | 284 a | 289 b | |
180 | 282 b | 295 b | 312 c | 297 c | 268 b | 311 a | 280 a | 286 c | |
Mean | 292 A | 298 B | 319 C | 303 | 272 A | 313 B | 283 C | 290 | |
LSD0.05 | AxB—2.77 | AxB—3.57 | |||||||
A—1.60 | AxC—2.77 | A—2.06 | AxC—3.57 | ||||||
B—1.26 | BxC—2.18 | B—1.62 | BxC—2.81 | ||||||
C—1.26 | AxBxC—4.79 | C—1.62 | AxBxC—6.18 |
Dose of N kg ha−1 (B) | Biostimulant (A) | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cut (C) | Mean | Cut (C) | Mean | ||||||
1 | 2 | 3 | 1 | 2 | 3 | ||||
0 | Control | 42.9 a | 41.7 a | 44.2 a | 42.9 a | 36.9 a | 49.9 a | 42.2 a | 43.0 a |
Algex | 34.4 b | 33.5 b | 41.7 b | 36.5 b | 29.7 b | 41.7 b | 35.2 b | 35.5 b | |
Tytanit | 36.3 c | 36.6 c | 44.2 c | 39.0 c | 33.9 c | 47.6 c | 38.4 c | 40.0 c | |
Asahi SL | 36.1 c | 38.1 d | 44.1 c | 39.4 c | 33.8 c | 44.0 d | 38.4 c | 38.8 d | |
120 | Control | 43.0 a | 41.6 a | 45.2 a | 43.3 a | 35.4 a | 50.1 a | 41.5 a | 42.3 a |
Algex | 31.5 b | 32.3 b | 34.7 b | 32.8 b | 28.7 b | 38.8 b | 34.5 b | 34.0 b | |
Tytanit | 37.2 c | 38.2 c | 40.9 c | 38.8 c | 31.0 c | 46.2 c | 37.6 c | 38.3 c | |
Asahi SL | 36.9 c | 35.2 d | 37.2 d | 36.4 d | 30.9 c | 47.3 d | 36.0 d | 38.1 c | |
180 | Control | 39.6 a | 40.5 a | 44.2 a | 41.4 a | 35.9 a | 47.7 a | 40.2 a | 41.3 a |
Algex | 28.2 b | 33.6 b | 41.7 b | 34.5 b | 26.6 b | 35.6 b | 34.3 b | 32.2 b | |
Tytanit | 33.7 c | 35.4 c | 44.2 c | 37.8 c | 31.2 c | 44.1 c | 37.4 c | 37.6 c | |
Asahi SL | 33.2 c | 35.3 c | 44.1 c | 37.5 c | 28.8 d | 40.7 d | 37.4 c | 35.6 d | |
Mean | Control | 41.8 a | 41.3 a | 44.5 a | 42.6 a | 36.1 a | 49.2 a | 41.3 a | 42.2 a |
Algex | 31.4 b | 33.1 b | 39.4 b | 34.6 b | 28.3 b | 38.7 b | 34.7 b | 33.9 b | |
Tytanit | 35.7 c | 36.8 c | 43.1 c | 38.5 c | 32.0 c | 45.9 c | 37.8 c | 38.6 c | |
Asahi SL | 35.4 c | 36.2 c | 41.8 d | 37.8 d | 31.2 c | 44.0 d | 37.3 c | 37.5 d | |
0 | Mean | 37.4 a | 37.5 a | 43.6 a | 39.5 a | 33.6 a | 45.8 a | 38.6 a | 39.3 a |
120 | 37.1 b | 36.8 b | 39.5 b | 37.8 b | 31.5 b | 45.6 a | 37.4 b | 38.2 b | |
180 | 33.6 c | 36.2 c | 43.6 c | 37.8 b | 30.6 c | 42.0 b | 37.3 b | 36.7 c | |
Mean | 36.1 A | 36.8 B | 42.2 C | 38.4 | 31.9 A | 44.5 | 37.8 | 38.0 | |
LSD0.05 | AxB—0.56 | AxB—0.53 | |||||||
A—0.32 | AxC—0.56 | A—0.31 | AxC—0.53 | ||||||
B—0.56 | BxC—0.44 | B—0.24 | BxC—0.42 | ||||||
C—0.97 | AxBxC—0.97 | C—0.24 | AxBxC—0.92 |
Dose of N kg ha−1 (B) | Biostimulant (A) | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cut (C) | Mean | Cut (C) | Mean | ||||||
1 | 2 | 3 | 1 | 2 | 3 | ||||
0 | Control | 40.3 a | 36.7 a | 39.8 a | 38.9 a | 48.3 a | 38.8 a | 45.0 a | 44.0 a |
Algex | 67.2 b | 48.8 b | 59.9 b | 58.6 b | 62.6 b | 48.4 b | 55.2 b | 55.4 b | |
Tytanit | 57.4 c | 41.1 c | 47.4 c | 48.6 c | 55.6 c | 43.2 c | 47.6 c | 48.8 c | |
Asahi SL | 62.4 d | 45.0 d | 51.5 d | 52.9 d | 58.1 d | 43.5 c | 52.6 d | 51.4 d | |
120 | Control | 49.6 a | 36.6 a | 45.6 a | 44.0 a | 53.5 a | 37.6 a | 45.0 a | 45.4 a |
Algex | 64.4 b | 54.8 b | 60.0 b | 59.7 b | 70.2 b | 51.9 b | 58.1 b | 60.1 b | |
Tytanit | 58.3 c | 42.9 c | 48.0 c | 49.7 c | 58.4 c | 42.0 c | 47.4 c | 49.3 c | |
Asahi SL | 58.8 c | 50.9 d | 55.5 d | 55.1 d | 61.3 d | 46.4 d | 53.5 d | 53.7 d | |
180 | Control | 54.5 a | 40.3 a | 42.8 a | 45.9 a | 54.8 a | 42.2 a | 47.3 a | 48.1 a |
Algex | 73.9 b | 55.0 b | 53.3 b | 60.7 b | 67.6 b | 59.7 b | 66.7 b | 64.7 b | |
Tytanit | 61.6 c | 48.7 c | 46.4 c | 52.3 c | 60.0 c | 45.4 c | 50.4 c | 51.9 c | |
Asahi SL | 64.2 c | 50.0 c | 48.8 c | 54.4 d | 64.2 d | 50.6 d | 53.5 d | 56.1 d | |
Mean | Control | 48.1 a | 37.9 a | 42.7 a | 42.9 a | 52.2 a | 39.5 a | 45.8 a | 45.8 a |
Algex | 68.5 b | 52.9 b | 57.7 b | 59.7 b | 66.8 b | 53.4 b | 60.0 b | 60.1 b | |
Tytanit | 59.1 c | 44.3 c | 47.3 c | 50.2 c | 58.0 c | 43.5 c | 48.5 c | 50.0 c | |
Asahi SL | 61.8 d | 48.6 d | 51.9 d | 54.1 d | 61.2 d | 46.8 d | 53.2 d | 53.7 d | |
0 | Mean | 56.8 a | 42.9 a | 49.7 a | 49.8 a | 56.1 a | 43.5 a | 50.1 a | 49.9 a |
120 | 57.8 b | 46.3 b | 52.3 b | 52.1 b | 60.9 b | 44.5 a | 51.0 a | 52.1 b | |
180 | 63.6 c | 48.5 c | 47.8 c | 53.3 c | 61.6 b | 49.5 b | 54.5 b | 55.2 c | |
Mean | 59.4 A | 45.9 B | 49.9 C | 51.7 | 59.6 A | 45.8 B | 51.9 C | 52.4 | |
LSD0.05 | AxB—1.75 | AxB—1.59 | |||||||
A—1.01 | AxC—1.75 | A—0.92 | AxC—1.59 | ||||||
B—0.80 | BxC—1.38 | B—0.72 | BxC—1.25 | ||||||
C—0.80 | AxBxC—3.04 | C—0.72 | AxBxC—2.75 |
Cut | Crude Fiber Fractions | ||
---|---|---|---|
NDF | ADF | ADL | |
1 | −0.919103 * | −0.858000 * | −0.809516 * |
2 | −0.767312 * | −0.648491 * | −0.643842 * |
3 | −0.837756 * | −0.733603 * | −0.696548 * |
Independently of cut | −0.844911 * | −0.739215 * | −0.791868 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godlewska, A.; Ciepiela, G.A. Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime. Agronomy 2021, 11, 39. https://doi.org/10.3390/agronomy11010039
Godlewska A, Ciepiela GA. Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime. Agronomy. 2021; 11(1):39. https://doi.org/10.3390/agronomy11010039
Chicago/Turabian StyleGodlewska, Agnieszka, and Grażyna Anna Ciepiela. 2021. "Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime" Agronomy 11, no. 1: 39. https://doi.org/10.3390/agronomy11010039
APA StyleGodlewska, A., & Ciepiela, G. A. (2021). Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime. Agronomy, 11(1), 39. https://doi.org/10.3390/agronomy11010039