Composition, Physicochemical Features, and Covalent Gelling Properties of Ferulated Pectin Extracted from Three Sugar Beet (Beta vulgaris L.) Cultivars Grown under Desertic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pectin Extraction and Purification
2.3. Pectin Yield
2.4. Pectin Characterization
2.5. Ferulated Pectin Gel Casting
2.6. Texture Profile Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Pectin Yield
3.2. Pectin Composition
3.3. Ferulated Pectin Gelling Capability and Texture Profile Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smulders, M.J.; Esselink, G.D.; Everaert, I.; De Riek, J.; Vosman, B. Characterisation of Sugar Beet (Beta vulgaris L. ssp. vulgaris) Varieties Using Microsatellite Markers. BMC Genet. 2010, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fissore, E.N.; Ponce, N.M.A.; Matkovic, L.; Stortz, C.A.; Rojas, A.M.; Gerschenson, L.N. Isolation of Pectin-Enriched Products from Red Beet (Beta vulgaris L. var. conditiva) Wastes: Composition and Functional Properties. Food Sci. Technol. Int. 2011, 17, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Wefers, D.; Tyl, C.E.; Bunzel, M. Novel Arabinan and Galactan Oligosaccharides from Dicotyledonous Plants. Front. Chem. 2014, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ralet, M.C.; André-Leroux, G.; Quéméner, B.; Thibault, J.F. Sugar Beet (Beta vulgaris) Pectins Are Covalently Cross-Linked through Diferulic Bridges in the Cell Wall. Phytochemistry 2005, 66, 2800–2814. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Mu, T.; Zhang, M.; Sun, H.; Chen, J.; Yu, M. Effects of PH and High Hydrostatic Pressure on the Structural and Rheological Properties of Sugar Beet Pectin. Food Hydrocoll. 2016, 60, 161–169. [Google Scholar] [CrossRef]
- Williams, P.A.; Mazoyer, J.; Senan, C.; Viebke, C.; Boulenguer, P.; Sayers, C. Elucidation of the Emulsification Properties of Sugar Beet Pectin. J. Agric. Food Chem. 2005, 53, 3592–3597. [Google Scholar] [CrossRef]
- Chen, H.M.; Fu, X.; Luo, Z.G. Effect of Molecular Structure on Emulsifying Properties of Sugar Beet Pulp Pectin. Food Hydrocoll. 2016, 54, 99–106. [Google Scholar] [CrossRef]
- Prandi, B.; Baldassarre, S.; Babbar, N.; Bancalari, E.; Vandezande, P.; Hermans, D.; Bruggeman, G.; Gatti, M.; Elst, K.; Sforza, S. Pectin Oligosaccharides from Sugar Beet Pulp: Molecular Characterization and Potential Prebiotic Activity. Food Funct. 2018, 9, 1557–1569. [Google Scholar] [CrossRef]
- Maxwell, E.G.; Colquhoun, I.J.; Chau, H.K.; Hotchkiss, A.T.; Waldron, K.W.; Morris, V.J.; Belshaw, N.J. Modified Sugar Beet Pectin Induces Apoptosis of Colon Cancer Cells via an Interaction with the Neutral Sugar Side-Chains. Carbohydr. Polym. 2016, 136, 923–929. [Google Scholar] [CrossRef]
- Aarabi, A.; Honarvar, M.; Mizani, M.; Faghihian, H. Determination of Total Phenolic Compounds, Antioxidant Activity and Ferulic Acid in Extracts of Sugar Beet Pulp. J. Biol. Chem. 2015, 43, 251–257. [Google Scholar] [CrossRef]
- Rösch, C.; Taverne, N.; Venema, K.; Gruppen, H.; Wells, J.M.; Schols, H.A. Effects of in Vitro Fermentation of Barley β–Glucan and Sugar Beet Pectin Using Human Faecal Inocula on Cytokine Expression by Dendritic Cells 3. Mol. Nutr. Food Res. 2016, 61, 1–23. [Google Scholar] [CrossRef]
- Meijerink, M.; Rösch, C.; Taverne, N.; Venema, K. Structure Dependent-Immunomodulation by Sugar Beet Arabinans via a SYK Tyrosine Kinase-Dependent Signaling Pathway. Front. Immunol. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kuuva, T.; Lantto, R.; Reinikainen, T.; Buchert, J.; Autio, K. Rheological Properties of Laccase-Induced Sugar Beet Pectin Gels. Food Hydrocoll. 2003, 17, 679–684. [Google Scholar] [CrossRef]
- Jiménez León, J.; Rascón Chu, A.; López Elías, J.; Sánchez Villegas, A. Effect of Variety and Seedtime on the Productive Potential of Sugar Beet. Biotecnia 2020, 22, 5–10. [Google Scholar]
- Geerkens, C.H.; Nagel, A.; Just, K.M.; Miller-Rostek, P.; Kammerer, D.R.; Schweiggert, R.M.; Carle, R. Mango Pectin Quality as Influenced by Cultivar, Ripeness, Peel Particle Size, Blanching, Drying, and Rrradiation. Food Hydrocoll. 2015, 51, 241–251. [Google Scholar] [CrossRef]
- Abid, M.; Cheikhrouhou, S.; Renard, C.M.G.C.; Bureau, S.; Cuvelier, G.; Attia, H.; Ayadi, M.A. Characterization of Pectins Extracted from Pomegranate Peel and their Gelling Properties. Food Chem. 2017, 215, 318–325. [Google Scholar] [CrossRef]
- Alvarado-Padilla, J.; Ávila-Casillas, E.; Camarillo-Pulido, M.; Ochoa-Espinoza, X.; Zamarripa-Colmenero, A. Producción de remolacha azucarera en el valle de Mexicali. INIFAP. 2011. Folleto Técnico No. 19. Available online: https://www.compucampo.com/tecnicos/produccion-remolachaazucarera-mexicali.pdf (accessed on 15 May 2019).
- Li, D.Q.; Du, G.M.; Jing, W.W.; Li, J.F.; Yan, J.Y.; Liu, Z.Y. Combined Effects of Independent Variables on Yield and Protein Content of Pectin Extracted from Sugar Beet Pulp by Citric Acid. Carbohydr. Polym. 2015, 129, 108–114. [Google Scholar] [CrossRef]
- Yapo, B.M.; Robert, C.; Etienne, I.; Wathelet, B.; Paquot, M. Effect of Extraction Conditions on the Yield, Purity and Surface Properties of Sugar Beet Pulp Pectin Extracts. Food Chem. 2007, 100, 1356–1364. [Google Scholar] [CrossRef]
- Carvajal-Millan, E.; Rascón-Chu, A.; Márquez-Escalante, J.A.; Micard, V.; Ponce de León, N.; Gardea, A. Maize Bran Gum: Extraction, Characterization and Functional Properties. Carbohydr. Polym. 2007, 69, 280–285. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Wu, J.; Xu, W.; Wang, X.; Lü, X. Improvement of Simultaneous Determination of Neutral Monosaccharides and Uronic Acids by Gas Chromatography. Food Chem. 2017, 220, 198–207. [Google Scholar] [CrossRef]
- Vansteenkiste, E.; Babot, C.; Rouau, X.; Micard, V. Oxidative Gelation of Feruloylated Arabinoxylan as Affected by Protein. Influence on Protein Enzymatic Hydrolysis. Food Hydrocoll. 2004, 18, 557–564. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; AOAC International: Arlington, TX, USA, 2002. [Google Scholar]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Levigne, S.; Thomas, M.; Ralet, M.-C.; Quemener, B.; Thibault, J.-F. Determination of the Degrees of Methylation and Acetylation of Pectins Using a C18 Column and Internal Standards. Food Hydrocoll. 2002, 16, 547–550. [Google Scholar] [CrossRef]
- Urias-Orona, V.; Rascón-Chu, A.; Lizardi-Mendoza, J.; Carvajal-Millán, E.; Gardea, A.A.; Ramírez-Wong, B. A Novel Pectin Material: Extraction, Characterization and Gelling Properties. Int. J. Mol. Sci. 2010, 11, 3686–3695. [Google Scholar] [CrossRef] [Green Version]
- Carvajal-Millan, E.; Guigliarelli, B.; Belle, V.; Rouau, X.; Micard, V. Storage Stability of Laccase Induced Arabinoxylan Gels. Carbohydr. Polym. 2005, 59, 181–188. [Google Scholar] [CrossRef]
- Guo, X.M.; Zhu, S.M.; Tang, Q.; Yu, S.J. Characterisation of the Turbid Particles in the Extraction of Sugar Beet Pectins. Food Chem. 2014, 162, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Rascón-Chu, A.; Martínez-López, A.L.; Carvajal-Millán, E.; Ponce de León-Renova, N.E.; Márquez-Escalante, J.A.; Romo-Chacón, A. Pectin from Low Quality “Golden Delicious” Apples: Composition and Gelling Capability. Food Chem. 2009, 116, 101–103. [Google Scholar] [CrossRef]
- Guo, X.; Meng, H.; Zhu, S.; Tang, Q.; Pan, R.; Yu, S. Stepwise Ethanolic Precipitation of Sugar Beet Pectins from the Acidic Extract. Carbohydr. Polym. 2016, 136, 316–321. [Google Scholar] [CrossRef]
- Yapo, B.M. Pectin Quantity, Composition and Physicochemical Behaviour as Influenced by the Purification Process. Food Res. Int. 2009, 42, 1197–1202. [Google Scholar] [CrossRef]
- Popov, S.V.; Ovodov, Y.S. Polypotency of the Immunomodulatory Effect of Pectins. Biochemistry 2013, 78, 823–835. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers 2018, 10, 1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wei, G.; Liu, F.; Banerjee, G.; Joshi, M. Characterization of Two Homogalacturonan Pectins with Immunomodulatory Activity from Green Tea. Int. J. Mol. Sci. 2014, 15, 9963–9978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Meng, H.; Zhu, S.; Tang, Q.; Pan, R.; Yu, S. Developing Precipitation Modes for Preventing the Calcium-Oxalate Contamination of Sugar Beet Pectins. Food Chem. 2015, 182, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, E.G.; Belshaw, N.J.; Waldron, K.W.; Morris, V.J. Pectin—An Emerging New Bioactive Food Polysaccharide. Trends Food Sci. Technol. 2012, 24, 64–73. [Google Scholar] [CrossRef]
- Gómez, B.; Gullón, B.; Yáñez, R.; Schols, H.; Alonso, J.L. Prebiotic Potential of Pectins and Pectic Oligosaccharides Derived from Lemon Peel Wastes and Sugar Beet Pulp: A Comparative Evaluation. J. Funct. Foods 2016, 20, 108–121. [Google Scholar] [CrossRef]
- Gullón, B.; Gómez, B.; Martínez-Sabajanes, M.; Yáñez, R.; Parajó, J.C.; Alonso, J.L. Pectic Oligosaccharides: Manufacture and Functional Properties. Food Sci. Technol. 2013, 30, 153–161. [Google Scholar] [CrossRef]
- Islamova, Z.I.; Ogai, D.K.; Abramenko, O.I.; Lim, A.L.; Abduazimov, B.B.; Malikova, M.K.; Rakhmanberdyeva, R.K.; Khushbaktova, Z.A.; Syrov, V.N. Comparative Assessment of the Prebiotic Activity of Some Pectin Polysaccharides. Pharm. Chem. J. 2017, 51, 288–291. [Google Scholar] [CrossRef]
- Leclere, L.; Cutsem, P.; Van Michiels, C. Anti-Cancer Activities of PH- or Heat-Modified Pectin. Front. Pharmacol. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Lan, Y.; Zheng, Y.; Liu, F.; Zhao, D.; Mayo, K.H.; Zhou, Y.; Tai, G. Identification of the Bioactive Components from PH-Modified Citrus Pectin and Their Inhibitory Effects on Galectin-3 Function. Food Hydrocoll. 2016, 58, 113–119. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, F.; Liu, X.; Ange, K.; Zhang, A.; Li, Q.; Linhardt, R.J. Isolation of a Lectin Binding Rhamnogalacturonan-I Containing Pectic Polysaccharide from Pumpkin. Carbohydr. Polym. 2017, 163, 330–336. [Google Scholar] [CrossRef]
- Funami, T.; Nakauma, M.; Ishihara, S.; Tanaka, R.; Inoue, T.; Phillips, G.O. Structural Modifications of Sugar Beet Pectin and the Relationship of Structure to Functionality. Food Hydrocoll. 2011, 25, 221–229. [Google Scholar] [CrossRef]
- Aarabi, A.; Mizani, M.; Honarvar, M.; Faghihian, H.; Gerami, A. Extraction of Ferulic Acid from Sugar Beet Pulp by Alkaline Hydrolysis and Organic Solvent Methods. J. Food Meas. Charact. 2016, 10, 42–47. [Google Scholar] [CrossRef]
- Dobberstein, D.; Bunzel, M. Separation and Detection of Cell Wall-Bound Ferulic Acid Dehydrodimers and Dehydrotrimers in Cereals and Other Plant Materials by Reversed Phase High-Performance Liquid Chromatography with Ultraviolet Detection. J. Agric. Food Chem. 2010, 58, 8927–8935. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Meng, H.; Zhu, S.; Zhang, T.; Yu, S. Purifying Sugar Beet Pectins from Non-Pectic Components by Means of Metal Precipitation. Food Hydrocoll. 2015, 51, 69–75. [Google Scholar] [CrossRef]
- Mulay, S.R.; Kulkarni, O.P.; Rupanagudi, K.V.; Migliorini, A.; Darisipudi, M.; Vilaysane, A.; Muruve, D.; Shi, Y.; Munro, F.; Liapis, H.; et al. Calcium Oxalate Crystals Induce Renal Inflammation by NLRP3-Mediated IL-1 β Secretion. J. Clin. Investig. 2013, 123, 236–246. [Google Scholar] [CrossRef]
- Ralla, T.; Salminen, H.; Edelmann, M.; Dawid, C.; Hofmann, T.; Weiss, J. Sugar Beet Extract (Beta vulgaris L.) as a New Natural Emulsifier: Emulsion Formation. J. Agric. Food Chem. 2017, 65, 4153–4160. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, S.; Liu, Y.; Yin, L. Emulsifying Properties and Functional Compositions of Sugar Beet Pectins Extracted under Different Conditions. J. Dispers. Sci. Technol. 2018, 39, 484–490. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Li, Z.; McClements, D.J. Comparison of Emulsifying Properties of Food-Grade Polysaccharides in Oil-in-Water Emulsions: Gum Arabic, Beet Pectin, and Corn Fiber Gum. Food Hydrocoll. 2017, 66, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Leroux, J.; Langendorff, V.; Schick, G.; Vaishnav, V.; Mazoyer, J. Emulsion Stabilizing Properties of Pectin. Food Hydrocoll. 2003, 17, 455–462. [Google Scholar] [CrossRef]
- Drusch, S. Sugar Beet Pectin: A Novel Emulsifying Wall Component for Microencapsulation of Lipophilic Food Ingredients by Spray-Drying. Food Hydrocoll. 2007, 21, 1223–1228. [Google Scholar] [CrossRef]
- Chen, H.M.; Fu, X.; Luo, Z.G. Esterification of Sugar Beet Pectin Using Octenyl Succinic Anhydride and Its Effect as an Emulsion Stabilizer. Food Hydrocoll. 2015, 49, 53–60. [Google Scholar] [CrossRef]
- Huang, X.; Li, D.; Wang, L.-J. Effect of Particle Size of Sugar Beet Pulp on the Extraction and Property of Pectin. J. Food Eng. 2018, 218, 44–49. [Google Scholar] [CrossRef]
- Karnik, D.; Jung, J.; Hawking, S.; Wicker, L. Sugar Beet Pectin Fractionated Using Isopropanol Differs in Galacturonic Acid, Protein, Ferulic Acid and Surface Hydrophobicity. Food Hydrocoll. 2016, 60, 179–185. [Google Scholar] [CrossRef]
- Robert, C.; Emaga, T.H.; Wathelet, B.; Paquot, M. Effect of Variety and Harvest Date on Pectin Extracted from Chicory Roots (Cichorium intybus L.). Food Chem. 2008, 108, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Sayah, M.Y.; Chabir, R.; Benyahia, H.; Kandri, Y.R.; Chahdi, F.O.; Touzani, H.; Errachidi, F. Yield, Esterification Degree and Molecular Weight Evaluation of Pectins Isolated from Orange and Grapefruit Peels under Different Conditions. PLoS ONE. 2016, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers 2018, 10, 762. [Google Scholar] [CrossRef] [Green Version]
- Synytsya, A.; Čopíková, J.; Matějka, P.; Machovič, V. Fourier Transform Raman and Infrared Spectroscopy of Pectins. Carbohydr. Polym. 2003, 54, 97–106. [Google Scholar] [CrossRef]
- Fissore, E.N.; Rojas, A.M.; Gerschenson, L.N.; Williams, P.A. Butternut and Beetroot Pectins: Characterization and Functional Properties. Food Hydrocoll. 2013, 31, 172–182. [Google Scholar] [CrossRef]
- Zaidel, D.N.A.; Chronakis, I.S.; Meyer, A.S. Enzyme Catalyzed Oxidative Gelation of Sugar Beet Pectin: Kinetics and Rheology. Food Hydrocoll. 2012, 28, 130–140. [Google Scholar] [CrossRef]
- Vural, H.; Javidipour, I.; Ozbas, O.O. Effects of Interesterified Vegetable Oils and Sugarbeet Fiber on the Quality of Frankfurters. Meat Sci. 2004, 67, 65–72. [Google Scholar] [CrossRef]
- Javidipour, I.; Vural, H.; Özbaş, Ö.Ö.; Tekin, A. Effects of Interesterified Vegetable Oils and Sugar Beet Fibre on the Quality of Turkish-Type Salami. Int. J. Food Sci. Technol. 2005, 40, 177–185. [Google Scholar] [CrossRef]
- Berrin, A.; Hüseyin, G.; Furkan, T.C.; Sadettin, T. Effect of Sugar Beet Fiber Concentrations on Rheological Properties of Meat Emulsions and Their Correlation with Texture Profile Analysis. Food Bioprod. Process. 2016, 100, 118–131. [Google Scholar] [CrossRef]
- Norsker, M.; Jensen, M.; Adler-Nissen, J. Enzymatic Gelation of Sugar Beet Pectin in Food Products. Food Hydrocoll. 2000, 14, 237–243. [Google Scholar] [CrossRef]
Cadet | SV MEI | Cor | |
---|---|---|---|
Yield (%) | 5.0 ± 0.6 a | 6.3 ± 0.8 a | 5.8 ± 0.7 a |
Galacturonic acid (%) | 55.0 ± 3 ab | 62.7 ± 0.4 b | 47.0 ± 4 a |
Neutral sugars: | |||
Rhamnose (%) | 6.3 ± 0.5 b | 4.4 ± 0.3 a | 3.5 ± 0.3 a |
Fucose (%) | 1.2 ± 0.1 b | 0.63 ± 0.05 a | 0.74 ± 0.07 a |
Arabinose (%) | 3.3 ± 0.4 a | 6.2 ± 0.6 b | 7.1 ± 0.7 b |
Xylose (%) | 1.4 ± 0.2 a | 1.1 ± 0.1 a | 1.2 ± 0.1 a |
Mannose (%) | 1.3 ± 0.2 b | 1.0 ± 0.1 a | 1.0 ± 0.1 a |
Galactose(%) | 7.1 ± 0.5 b | 5.1 ± 0.7 a | 6.3 ± 0.6 ab |
Glucose (%) | 1.00 ± 0.01 b | 1.18 ± 0.05 c | 0.62 ± 0.05 a |
Total neutral sugars (%) | 21.6 ± 0.9 a | 19.6 ± 1.0 a | 20.5 ± 1.0 a |
FA (mg/g) | 5.5 ± 0.1 c | 3.5 ± 0.1 a | 4.7 ± 0.2 b |
Feruloyl dimers (mg/g) | 0.26 ± 0.03 b | 0.16 ± 0.02 a | 0.25 ± 0.04 b |
Ash (%) | 2.13 ± 0.06 b | 2.2 ± 0.2 b | 1.8 ± 0.1 a |
Protein (%) | 10.3 ± 0.5 b | 8.7 ± 0.7 a | 8.6 ± 0.8 a |
DM (%) | 57.4 ± 4.1 b | 50.8 ± 1.1 a | 55.5 ± 2.3 ab |
DA (%) | 26.1 ± 2.4 b | 19.64 ± 0.81 a | 23.1 ± 1.6 b |
[η] (mL/g) | 225 ± 14 a | 255 ± 18 a | 202 ± 4 a |
Mw * (KDa) | 616 | 665 | 642 |
Cultivar | Hardness (N) | Fracturability (N) | Adhesiveness (N/s) | Springiness (mm) | Cohesiveness | Gumminess (N) | Chewiness (N) |
---|---|---|---|---|---|---|---|
Cadet | 6.65 ± 0.42 a | 2.03 ± 0.27 a | −12.2 ± 1.4 a | 0.92 ± 0.01 b | 0.29 ± 0.02 b | 1.91 ± 0.23 a | 1.76 ± 0.23 a |
SV MEI | 1.12 ± 0.09 b | 1.55 ± 0.81 a | −7.21 ± 0.76 b | 0.95 ± 0.01 a | 0.58 ± 0.05 a | 0.68 ± 0.18 b | 0.64 ± 0.16 b |
Cor | 1.04 ± 0.14 b | 2.26 ± 0.17 a | −5.47 ± 0.28 b | 0.95 ± 0.006 a | 0.27 ± 0.03 b | 0.47 ± 0.11 b | 0.57 ± 0.12 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Espinoza, C.; Sanchez-Villegas, J.A.; Lopez-Franco, Y.; Carvajal-Millan, E.; Troncoso-Rojas, R.; Carvallo-Ruiz, T.; Rascon-Chu, A. Composition, Physicochemical Features, and Covalent Gelling Properties of Ferulated Pectin Extracted from Three Sugar Beet (Beta vulgaris L.) Cultivars Grown under Desertic Conditions. Agronomy 2021, 11, 40. https://doi.org/10.3390/agronomy11010040
Lara-Espinoza C, Sanchez-Villegas JA, Lopez-Franco Y, Carvajal-Millan E, Troncoso-Rojas R, Carvallo-Ruiz T, Rascon-Chu A. Composition, Physicochemical Features, and Covalent Gelling Properties of Ferulated Pectin Extracted from Three Sugar Beet (Beta vulgaris L.) Cultivars Grown under Desertic Conditions. Agronomy. 2021; 11(1):40. https://doi.org/10.3390/agronomy11010040
Chicago/Turabian StyleLara-Espinoza, Claudia, Jose A. Sanchez-Villegas, Yolanda Lopez-Franco, Elizabeth Carvajal-Millan, Rosalba Troncoso-Rojas, Tania Carvallo-Ruiz, and Agustin Rascon-Chu. 2021. "Composition, Physicochemical Features, and Covalent Gelling Properties of Ferulated Pectin Extracted from Three Sugar Beet (Beta vulgaris L.) Cultivars Grown under Desertic Conditions" Agronomy 11, no. 1: 40. https://doi.org/10.3390/agronomy11010040
APA StyleLara-Espinoza, C., Sanchez-Villegas, J. A., Lopez-Franco, Y., Carvajal-Millan, E., Troncoso-Rojas, R., Carvallo-Ruiz, T., & Rascon-Chu, A. (2021). Composition, Physicochemical Features, and Covalent Gelling Properties of Ferulated Pectin Extracted from Three Sugar Beet (Beta vulgaris L.) Cultivars Grown under Desertic Conditions. Agronomy, 11(1), 40. https://doi.org/10.3390/agronomy11010040