Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops: Problems and Solutions
Abstract
:1. Introduction
2. Soils More Sensitive to Physical Degradation
2.1. Soils Sensitive to Clay Dispersion
2.2. Soils Sensitive to Crusting
2.3. Soils Sensitive to Compaction
2.4. Soils Sensitive to Water Erosion
3. Assessment of Soil Physical–Hydrological Quality
3.1. Soil Structure Characterization
3.2. Soil Structure and Hydrological Behaviour
3.3. Visual Soil Structure Evaluation
4. The Estimation of the Effective Available Water Capacity in the Root-Zone
4.1. Estimating Effective Available Water Capacity
4.2. Relevance of an Effective AWC Estimation, a Case Study
5. Solutions to Restore Soil Physical-Hydrological Functions
5.1. Subsoiling
5.2. Surface and Sub-Surface Drainage
5.3. Organic Amendments
5.4. Cover Crops
- -
- Temporary CC: generally annual variety of legumes, cereals and other species, yearly sowed and incorporated into the soil for green manure, or in some cases left on the surface as mulching.
- -
- Permanent CC: perennial grass species, either sowed using selected varieties or natural grass cover, mowed from once to several times per year and left on the ground for mulching.
5.5. Bio-Inoculants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Air Capacity |
AS | Aggregate stability |
AWC | Available water capacity |
BD | Bulk Density |
Cl | Clodiness |
MWD | Mean Weight Diameter |
PMAC | Macropore volume |
PR | Penetration resistance |
Rc | Rooting capacity, is the volume of potential rooting |
Rd | Rooting depth, is the depth of rooting up to an impeding layer |
RFC | Relative Field Capacity |
SI | Stability structure index |
St | Stoniness, is the volume of the soil occupied by unaltered stones |
WRC | Water Retention Curve |
References
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)–Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; p. 650. [Google Scholar]
- Veerman, C.; Pinto Correia, T.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciela, E. Caring for Soil is Caring for Life. In Interim Report for the Mission Board for Soil Health and Food; European Commission: Brussels, Belgium, 2020; p. 52. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Hartemink, A.E. Soil erosion: Perennial crop plantations. In Encyclopedia of Soil Science; Taylor and Francis: New York, NY, USA, 2006; pp. 1613–1617. [Google Scholar]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerwald, K.; et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Ribes-Dasi, M. Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 2002, 105, 105–140. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Agnelli, A.E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G. Short-term recovery of soil physical, chemical, micro-and mesobiological functions in a new vineyard under organic farming. Soil 2015, 1, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Moreira, A.; Fernández-Raga, M.; Pulido, M.; di Prima, S.; et al. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Polge de Combret-Champart, L.; Guilpart, N.; Merot, A.; Capillon, A.; Gary, C. Determinants of the degradation of soil structure in vineyards with a view to conversion to organic farming. Soil Use Manag. 2013, 29, 557–566. [Google Scholar] [CrossRef]
- Beylich, A.; Oberholzer, H.R.; Schrader, S.; Höper, H.; Wilke, B.M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res. 2010, 109, 133–143. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Concepcion Ramos, M. Soil alteration due to erosion, ploughing and levelling of vineyards in north east Spain. Soil Use Manag. 2009, 25, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Costantini, E.A.C.; Castaldini, M.; Diago, M.P.; Giffard, B.; Lagomarsino, A.; Schroers, H.J.; Priori, S.; Valboa, G.; Agnelli, A.E.; Akca, E.; et al. Effects of soil erosion on agro-ecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards. J. Environ. Manag. 2018, 223, 614–624. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 2015, 106, 192. [Google Scholar]
- Soil Science Glossary Terms Committee; Soil Science Society of America. Glossary of Soil Science Terms; ASA-CSSA-SSSA: Madison, WI, USA, 2008. [Google Scholar]
- FAO. Available online: http://www.fao.org/soils-portal/soil-degradation-restoration/en/ (accessed on 28 December 2020).
- Pagliai, M.; Vignozzi, N. Soil porosity as an indicator of soil health. Ann. Arid Zone 2006, 45, 259–286. [Google Scholar]
- Lal, R.; Hall, G.F.; Miller, F.P. Soil Degradation: I. Basic Processes. Land Degrad. Rehabil. 1989, 1, 51–69. [Google Scholar] [CrossRef]
- Lal, R. (Ed.) Soil Quality and Soil Erosion; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- USDA-NRCS. Soil Quality: Selecting Physical Indicators to Assess Soil Function. In Soil Quality Technical Note No.10; Soil Quality National Technology Development Team, East National Technology Support Center, Natural Resources Conservation Service (NRCS): Greensboro, NC, USA, 2008. [Google Scholar]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrick, C. Soil structure and soil organic matter. I. Distribution of aggregate size classes and aggregated associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Obalum, S.E.; Chibuike, G.U.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef]
- Soane, B.D. The role of organic matter in soil compactability: A review of some practical aspects. Soil Tillage Res. 1990, 16, 179–201. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Siddiky, M.R.K.; Kohler, J.; Cosme, M.; Rillig, M.C. Soil biota effects on soil structure: Interactions between arbuscular mycorrhizal fungal mycelium and collembola. Soil Biol. Biochem. 2012, 50, 33–39. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdá, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Biddoccu, M.; Ferraris, S.; Pitacco, A.; Cavallo, E. Temporal variability of soil management effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North- West Italy. Soil Tillage Res. 2017, 165, 46–48. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, M.; Plaut, Z.; Ben-Hur, M. Water salinity and sodicity effects on soil structure and hydraulic properties. Adv. Hortic. Sci. 2010, 154–160. [Google Scholar]
- Richards, L.A. (Ed.) Diagnosis and improvements of saline and alkali soils. In Agriculture Handbook 60; USDA: Riverside, CA, USA, 1954; p. 160. [Google Scholar]
- Rengasamy, P.; Marchuk, A. Cation ratio of soil structural stability (CROSS). Soil Res. 2011, 49, 280–285. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S.; Oster, J.D.; Sposito, G.; Minhas, P.S.; Cheraghi, S.A.; Murtaza, G.; Mirzabaev, A.; Saqib, M. High magnesium waters and soils: Emerging environmental and food security constraints. Sci. Total Environ. 2018, 642, 1108–1117. [Google Scholar] [CrossRef]
- Keren, R. Specific effect of magnesium on soil erosion and water infiltration. Soil Sci. Soc. Am. J. 1991, 55, 783–787. [Google Scholar] [CrossRef]
- Oster, J.; Jayawardane, N.S. Agricultural management of sodic soils. In Sodic Soils: Distribution, Properties, Management and Environmental Consequences; Sumner, M.E., Naidu, R., Eds.; Oxford University Press: Oxford, UK, 1998; pp. 125–147. [Google Scholar]
- European Commission. European Commission—Thematic Strategy for Soil Protection; [SEC(2006)620] [SEC(2006)1165] [COM/2006/0231]; European Commission: Bruxelles, Belgium, 2006. [Google Scholar]
- Loch, R.J.; Foley, J.L. Measurement of aggregate breakdown under rain: Comparison with tests of water stability and relationships with field measurements of infiltration. Aust. J. Soil Res. 1994, 32, 701–720. [Google Scholar] [CrossRef]
- Pagliai, M.; Bisdom, E.B.A.; Ledin, S. Changes in surface structure (crusting) after application of sewage sludges and pig slurry to cultivated agricultural soils in northern Italy. Geoderma 1983, 30, 35–53. [Google Scholar] [CrossRef]
- Usón, A.; Poch, R.M. Effects of tillage and management practices on soil crust morphology under a Mediterranean environment. Soil Tillage Res. 2000, 54, 191–196. [Google Scholar] [CrossRef]
- Laker, M.C.; Nortjé, G.P. Review of existing knowledge on soil crusting in South Africa. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2019; Volume 155, pp. 189–242. [Google Scholar]
- Chesworth, W. Crusts, Crusting. In Encyclopedia of Soil Science; Chesworth, W., Ed.; Encyclopedia of Earth Sciences Series; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Morin, J. Improving Water Management in the Semi-arid Region of Cameroon. In Study Report for the 1989 Season to GIARA (German-Israel Agricultural Research Agreement); Ministry of Foreign Affairs: Tel Aviv, Israel, 1989. [Google Scholar]
- FAO. Methodology for assessing soil degradation. In Report on the FAO/UNEP Expert Consultation; FAO: Rome, Italy, 1978. [Google Scholar]
- Collinet, J.; Valentin, C. Evaluation of factors influencing water erosion in West Africa using rainfall simulation. In Challenges in Africa Hydrology and Water Resources; IAHS Publ. No. 144; UKCEH Wallingford: Oxfordshire, UK, 1984; pp. 451–461. [Google Scholar]
- Poesen, J.; Ingelmo, S. Runoff and sediment yield from topsoil with different porosity as affected by rock fragment cover and position. Catena 1992, 19, 451–474. [Google Scholar] [CrossRef]
- Becerra, A.T.; Botta, G.F.; Bravo, X.L.; Tourn, M.; Melcon, F.B.; Vazquez, J.; Rivero, D.; Linares, P.; Nardon, G. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil Tillage Res. 2010, 107, 49–56. [Google Scholar] [CrossRef]
- Ferrero, A.; Usowicz, B.; Lipiec, J. Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil Tillage Res. 2005, 84, 127–138. [Google Scholar] [CrossRef]
- Duiker, S.W. Effects of Soil Compaction; Penn State Extension: University Park, PA, USA, 2004. [Google Scholar]
- Horn, R.; Taubner, H.; Wuttke, M.; Baumgartl, T. Soil physical properties related to soil structure. Soil Tillage Res. 1994, 30, 187–216. [Google Scholar] [CrossRef]
- Willett, M.; Smith, T.J.; Peterson, A.B.; Hinman, H. Growing profitable apple orchards in replant sites: An interdisciplinary team approach in Washington State. Hort. Technol. 1994, 4, 175–180. [Google Scholar] [CrossRef]
- Perret, P.; Koblet, W. Soil compaction induced iron-chlorosis in grape vineyards: Presumed involvement of soil ethylene. J. Plant Nutr. 1984, 7, 533–539. [Google Scholar] [CrossRef]
- Eckelmann, W.; Baritz, R.; Bialousz, S.; Bielek, P.; Carre, F.; Houšková, B.; Jones, R.J.A.; Kibblewhite, M.G.; Kozak, J.; Le Bas, C.; et al. Common Criteria for Risk Area Identification according to Soil Threats. In European Soil Bureau Research Report No.20, EUR 22185 EN; Office for Official Publications of the European Communities: Luxembourg, 2006; p. 94. [Google Scholar]
- Bradford, J.M.; Gupta, S.C. Soil compressibility. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Properties, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 479–492. [Google Scholar]
- Horn, R.; Lebert, M. Soil compactability and compressibility. In Soil Compaction in Crop Production, Developments in Agricultural Engineering; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Volume 11, pp. 45–69. [Google Scholar]
- Imhoff, S.; Da Saliva, A.P.; Fallow, D. Susceptibility to compaction, load support capacity and soil compressibility of Hapludox. Soil Sci. Soc. Am. J. 2004, 68, 17–24. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Rücknagel, J.; Götze, P.; Hofmann, B.; Christen, O.; Marschall, K. The influence of soil gravel content on compaction behaviour and pre-compression stress. Geoderma 2013, 209, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Verbist, K.; Baetens, J.; Cornelis, W.M.; Gabriels, D.; Torres, C.; Soto, G. Hydraulic conductivity as influenced by stoniness in degraded drylands of Chile. Soil Sci. Soc. Am. J. 2009, 73, 471–484. [Google Scholar] [CrossRef]
- Kemper, W.D.; Nick, A.D.; Corey, A.T. Accumulation of water in soils under gravel and sand mulches. Soil Sci. Soc. Am. J. 1994, 58, 56–63. [Google Scholar] [CrossRef]
- Magier, J.; Ravina, I. Rock fragments and soil depth as factors in land evolution. In Erosion and Productivity of Soils Containing Rock Fragments; Special Publication no. 13; Soil Science Society of America: Madison, WI, USA, 1984; pp. 13–30. [Google Scholar]
- Dexter, A.R. Soil physical quality: Part II. Friability, tillage, tilth and hard-setting. Geoderma 2004, 120, 215–225. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.A.; Weesies, D.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agriculture Handbook No. 703; USDA: Washington, DC, USA, 1997.
- Bonilla, C.A.; Johnson, O.I. Soil erodibility mapping and its correlation with soil properties in Central Chile. Geoderma 2012, 189, 116–123. [Google Scholar] [CrossRef]
- Yang, X.; Gray, J.; Chapman, G.; Zhu, Q.; Tulau, M.; McInnes-Clarke, S. Digital mapping of soil erodibility for water erosion in New South Wales, Australia. Soil Res. 2018, 56, 158–170. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Costantini, E.A.; Lorenzetti, R. Soil degradation processes in the Italian agricultural and forest ecosystems. Ital. J. Agron. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Johannes, A.; Weisskopf, P.; Schulin, R.; Boivin, P. Soil structure quality indicators and their limit values. Ecol. Indic. 2019, 104, 686–694. [Google Scholar] [CrossRef]
- Jahn, R.; Blume, H.P.; Asio, V.B.; Spaargaren, O.; Schad, P. Guidelines for Soil Description; FAO: Rome, Italy, 2006. [Google Scholar]
- Costantini, E.A.C.; Barbetti, R.; Bucelli, P.; L’Abate, G.; Lulli, L.; Pellegrini, S.; Storchi, P. Land Peculiarities of the Vine Cultivation Areas in the Province of Siena (Italy), with Indications concerning the Viticultural and Oenological Results of Sangiovese Vine. Boll. Soc. Geol. 2006, 6, 147–159. [Google Scholar]
- Guimaraes, R.M.L.; Lamande, M.; Munkholm, L.J.; Ball, B.C.; Keller, T. Opportunities and future directions for visual soil evaluation methods in soil structure research. Soil Tillage Res. 2017, 173, 104–113. [Google Scholar] [CrossRef]
- Dexter, A.R. Advances in characterization of soil structure. Soil Tillage Res. 1988, 11, 199–238. [Google Scholar] [CrossRef]
- Mangalassery, S.; Sjögersten, S.; Sparkes, D.L.; Sturrock, C.J.; Mooney, S.J. The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases. Soil Tillage Res. 2013, 132, 39–46. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 2014, 68, 4–9. [Google Scholar] [CrossRef]
- Barthès, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Zorita, M.; Perfect, E.; Grove, J.H. Disruptive methods for assessing soil structure. Soil Tillage Res. 2002, 64, 3–22. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage intensity effects on soil structure indicators. A US Meta-Analysis. Sustainability 2020, 12, 2071. [Google Scholar] [CrossRef] [Green Version]
- Kemper, W.D.; Roseneau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part I: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Monogr. 9. ASA and SSSA: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Fajardo, M.; McBratney, A.B.; Field, D.J.; Minasny, B. Soil slaking assessment using image recognition. Soil Tillage Res. 2016, 163, 119–129. [Google Scholar] [CrossRef]
- Flynn, K.D.; Bagnall, D.K.; Morgan, C.L.S. Evaluation of SLAKES, a smartphone application for quantifying aggregate stability, in high-clay soils. Soil Sci. Soc. Am. J. 2020, 84, 345–353. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Vignozzi, N.; Agnelli, A.E.; Brandi, G.; Gagnarli, E.; Goggioli, D.; Lagomarsino, A.; Pellegrini, S.; Simoncini, S.; Simoni, S.; Valboa, G.; et al. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Appl. Soil Ecol. 2019, 134, 64–76. [Google Scholar] [CrossRef]
- Pagliai, M. Soil porosity aspects. Int. Agrophys. 1988, 4, 215–232. [Google Scholar]
- Gucci, R.; Caruso, G.; Bertolla, C.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M.; Sifola, I.; Pellegrini, S.; Pagliai, M.; et al. Changes in soil properties and tree performance induced by soil management in a high-density olive orchard. Eur. J. Agron. 2012, 41, 18–27. [Google Scholar] [CrossRef]
- Palese, A.M.; Vignozzi, N.; Celano, G.; Agnelli, A.E.; Pagliai, M.; Xiloyannis, C. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil Tillage Res. 2014, 144, 96–109. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; Deyn, G.D.; de Goede, R. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Branquinho, C.; Nunes, A.; Schwilch, G.; Stavi, I.; Valdecantos, A.; Zucca, C. Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems. Solid Earth 2016, 7, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, R.M.L.; Ball, B.C.; Tormena, C.A. Improvements in the visual evaluation of soil structure. Soil Use Manag. 2011, 27, 395–403. [Google Scholar] [CrossRef]
- Boizard, H.; Peigné, J.; Sasal, M.C.; de Fátima Guimarães, M.; Piron, D.; Tomis, V.; Vian, J.-F.; Cadoux, S.; Ralisch, R.; Tavares Filho, J.; et al. Developments in the “profil cultural” method for an improved assessment of soil structure under no-till. Soil Tillage Res. 2017, 173, 93–103. [Google Scholar] [CrossRef]
- Shepherd, T.G. Visual Soil Assessment, Field Guide for Pastoral Grazing and Cropping on Flat to Rolling Country, 2nd ed.; Horizons Regional Council: Palmerstone, New Zealand, 2009.
- Ball, B.C.; Batey, T.; Munkholm, L.J. Field assessment of soil structural quality—A development of the Peerlkamp test. Soil Use Manag. 2007, 23, 329–337. [Google Scholar] [CrossRef]
- Roger-Estrade, J.; Richard, G.; Caneill, J.; Boizard, H.; Defossez, P.; Manichon, H. Morphological characterisation of soil structure in tilled fields: From diagnosis methods to modelling of structural changes over time. Soil Tillage Res. 2004, 79, 33–49. [Google Scholar] [CrossRef]
- Peigné, J.; Vian, J.-F.; Cannavacciuola, M.; Lefeure, V.; Gautronneau, Y.; Boizard, H. Assessment of soil structure in the transition layer between topsoil and subsoil using the profil cultural method. Soil Tillage Res. 2013, 127, 13–25. [Google Scholar] [CrossRef]
- McKenzie, D.C. Rapid assessment of soil compaction damage II. Relationships between the SOILpak score, strength and aeration measurements, clod shrinkage parameters and image analysis data on a vertisol. Austral. J. Soil Res. 2001, 39, 127–141. [Google Scholar] [CrossRef]
- Ball, B.C.; Batey, T.; Munkholm, L.J.; Guimarães, R.M.L.; Boizard, H.; McKenzie, D.C.; Peigné, J.; Tormena, C.A.; Hargreaves, P. The numeric visual evaluation of subsoil structure (SubVESS) under agricultural production. Soil Tillage Res. 2015, 148, 85–96. [Google Scholar] [CrossRef]
- Franco, H.H.S.; Guimarães, R.M.L.; Tormena, C.A.; Cherubin, M.R.; Favilla, H.S. Global applications of the Visual Evaluation of Soil Structure method: A systematic review and meta-analysis. Soil Tillage Res. 2019, 190, 61–69. [Google Scholar] [CrossRef]
- Germer, S.; van Dongen, R.; Kern, J. Decomposition of cherry tree prunings and their short-term impact on soil quality. Appl. Soil Ecol. 2017, 117, 156–164. [Google Scholar] [CrossRef]
- Ghiglieno, I.; Simonetto, A.; Donna, P.; Tonni, M.; Valenti, L.; Bedussi, F.; Gilioli, G. Soil Biological Quality Assessment to Improve Decision Support in the Wine Sector. Agronomy 2019, 9, 593. [Google Scholar] [CrossRef] [Green Version]
- Soto, R.L.; Padilla, M.C.; de Vente, J. Participatory selection of soil quality indicators for monitoring the impacts of regenerative agriculture on ecosystem services. Ecosyst. Serv. 2020, 45, 101–157. [Google Scholar]
- Collet, C.; Vast, F.; Richter, C.; Koller, R. Cultivation profile: A visual evaluation method of soil structure adapted to the analysis of the impacts of mechanical site preparation in forest plantations. Eur. J. For. Res. 2020, 58, 1–12. [Google Scholar] [CrossRef]
- Mueller, L.; Kay, B.D.; Hu, C.; Li, Y.; Schindler, U.; Behrendt, A.; Shepherd, T.G.; Ball, B.C. Visual assessment of soil structure: Evaluation of methodologies on sites of Canada, China and Germany. Part I: Comparing visual methods and linking them with soil physical data and grain yields of cereals. Soil Tillage Res. 2009, 103, 178–187. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M.; Espigares, T.; Merino-Martin, L.; Nicolau, J.M. Water-related ecological impacts of rill erosion processes in Mediterranean-dry reclaimed slopes. Catena 2011, 3, 114–124. [Google Scholar] [CrossRef]
- NRCS. Procedure for Making Known Moisture Soil Samples for Irrigation Water Management Purposes; Soil Technical Note 1; USDA: Portland, OR, USA, 2013. Available online: https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=nrcseprd803007&ext=pdf (accessed on 28 December 2020).
- Costantini, E.A.C. (Ed.) Manual of Methods for Soil and Land Evaluation; Science Publisher: Enfield, NH, USA, 2009; p. 549. ISBN 978-1-57808-571-2. [Google Scholar]
- Kassel, D.K.; Nielsen, D.R. Field capacity and available water capacity. In Methods of Soil Analysis Part 1: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 901–926. [Google Scholar]
- Ugolini, F.C.; Corti, G.; Agnelli, A.; Piccardi, F. Mineralogical, physical, and chemical properties of rock fragments in soil. Soil Sci. 1996, 161, 521–542. [Google Scholar] [CrossRef]
- Davie, S.; Isbister, B. Identifying Soil Compaction; Department of Primary Industries and Regional Development: Perth, Australia, 2018. Available online: https://www.agric.wa.gov.au/soil-compaction/identifying-soil-compaction (accessed on 15 November 2020).
- Daddow, R.L.; Warrington, G. Growth-Limiting Soil Bulk Densities as Influenced by Soil Texture; USDA Forest Service: Washington, DC, USA, 1983; p. 17.
- Dexter, A.R. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality: Part III: Unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma 2004, 120, 227–239. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N. The soil pore system as an indicator of soil quality. Adv. GeoEcol. 2002, 35, 69–80. [Google Scholar]
- Costantini, E.A.C.; Agnelli, A.; Bucelli, P.; Ciambotti, A.; Dell’Oro, V.; Natarelli, L.; Pellegrini, S.; Perria, R.; Priori, S.; Storchi, P.; et al. Unexpected relationships between δ 13 C and wine grape performance in organic farming. OENO One 2013, 47, 269–285. [Google Scholar] [CrossRef]
- Storchi, P.; Costantini, E.A.C.; Bucelli, P. The influence of climate and soil on viticultural and enological parameters of “Sangiovese” grapevines under non-irrigated conditions. Acta Hortic. 2005, 689, 333–340. [Google Scholar] [CrossRef]
- Scalabrelli, G.; D’Onofrio, C.; Macchia, A.; Rosellini, D.; Bertuccioli, M.; Boselli, M. Comportamento agronomico del vitigno Sangiovese in 11 zone del Chianti Classico. In Proc. Int. Symposium “Sangiovese”; ARSIA: Firenze, Italy, 2006; pp. 530–539. [Google Scholar]
- van Leeuwen, C.; Tregoat, O.; Chone, X.; Bois, B.; Pernet, D.; Gaudillere, J.P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? OENO One 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Froehlich, H.A.; Miles, D.W.R.; Robbins, R.W. Soil bulk density recovery on compacted skid trails in central Idaho. Soil Sci. Soc. Am. J. 1985, 49, 1015–1017. [Google Scholar] [CrossRef]
- Webb, R.H. Recovery of severely compacted soils in the Mojave Desert, California, USA. Arid Land Res. Manag. 2002, 16, 291–305. [Google Scholar] [CrossRef]
- Raper, R.L.; Bergtold, J.S. In-row subsoiling: A review and suggestions for reducing cost of this conservation tillage operation. Appl. Eng. Agric. 2007, 23, 463–471. [Google Scholar] [CrossRef]
- Scanlan, C.A.; Davies, S.L. Soil mixing and redistribution by strategic deep tillage in a sandy soil. Soil Tillage Res. 2019, 185, 139–145. [Google Scholar] [CrossRef]
- Medeiros, J.C.; Figueiredo, G.C.; Mafra, Á.L.; Rosa, J.D.; Yoon, S.W. Deep subsoiling of a subsurface-compacted typical Hapludult under citrus orchard. Rev. Bras. Cienc. Solo 2013, 37, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Shahgoli, G.; Saunders, C.; Desbiolles, J.; Fielke, J. The effect of oscillation angle on the performance of oscillatory tillage. Soil Tillage Res. 2009, 104, 97–105. [Google Scholar] [CrossRef]
- Tomasone, R.; Cedrola, C.; Pagano, M.; Colorio, G.; Pochi, D. An oscillating subsoiler for loosening compacted soils in orchards. Acta Hortic. 2011, 919, 147–152. [Google Scholar] [CrossRef]
- Xirui, Z.; Chao, W.; Zhishui, C.; Zhiwei, Z. Design and experiment of a bionic vibratory subsoiler for banana fields in southern China. Int. J. Agric. Biol. Eng. 2016, 9, 75–83. [Google Scholar]
- Shahgoli, G.; Fielke, J.; Desbiolles, J.; Saunders, C. Optimising oscillation frequency in oscillatory tillage. Soil Tillage Res. 2010, 106, 202–210. [Google Scholar] [CrossRef]
- Cho, Y.; Cho, H.; Ma, K.; Park, M.; Kim, B. Effect of subsoiling on soil physical properties and fruit quality in organic conversion kiwifruit (Actinidia chinensis’ Haegeum’). Acta Hortic. 2013, 1001, 347–352. [Google Scholar]
- Xi, X.; Zhang, R. Design and Experiment of Orchard Gas Explosion Subsoiling and Fertilizer Injection Machine. Int. J. Mech. Mechatron. Eng. 2018, 12, 485–489. [Google Scholar]
- Pal, D.K.; Bhattacharyya, T.; Ray, S.K.; Chandran, P.; Srivastava, P.; Durge, S.L.; Bhuse, S.R. Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the Peninsular India in redefining the sodic soils. Geoderma 2006, 136, 210–228. [Google Scholar] [CrossRef]
- Lebron, I.; Suarez, D.L.; Yoshida, T. Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Sci. Soc. Am. J. 2002, 66, 92–98. [Google Scholar] [CrossRef]
- Jones, A.; Stolbovoy, V.; Rusco, E.; Gentile, A.R.; Gardi, C.; Marechal, B.; Montanarella, L. Climate change in Europe. 2. Impact on soil. A review. In Agronomy for Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef] [Green Version]
- FAO. Manual on Integrated Soil Management and Conservation Practices; FAO Land and Water Bulletin 8: Rome, Italy, 2000; p. 230. [Google Scholar]
- Martínez, J.R.F.; Zuazo, V.H.D.; Raya, A.M. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci. Total Environ. 2006, 358, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.J.; García-Muñoz, S.; Muñoz-Organero, G.; Bienes, R. Soil conservation beneath grass cover in hillside vineyards under Mediterranean climatic conditions (Madrid, Spain). Land Degrad. Dev. 2010, 21, 122–131. [Google Scholar] [CrossRef]
- Morvan, X.; Naisse, C.; Malam Issa, O.; Desprats, J.F.; Combaud, A.; Cerdan, O. Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use Manag. 2014, 30, 372–381. [Google Scholar] [CrossRef]
- Corti, G.; Cavallo, E.; Cocco, S.; Biddoccu, M.; Brecciaroli, G.; Agnelli, A. Evaluation of erosion intensity and some of its consequences in vineyards from two hilly environments under a Mediterranean type of climate, Italy. In Soil Erosion Issues in Agriculture; InTech: Rijeka, Croatia, 2011; pp. 113–160. [Google Scholar]
- Ondrasek, G.; Rengel, Z.; Petosic, D.; Filipovic, V. Land and water management strategies for the improvement of crop production. In Emerging Technologies and Management of Crop Stress Tolerance; Academic Press: Cambridge, MA, USA, 2014; pp. 291–313. [Google Scholar]
- Tuohy, P.; Humphreys, J.; Holden, N.M.; Fenton, O. Runoff and subsurface drain response from mole and gravel mole drainage across episodic rainfall events. Agric. Water Manag. 2016, 169, 129–139. [Google Scholar] [CrossRef]
- Mulqueen, J. The development of gravel mole drainage. J. Agric. Eng. Res. 1985, 32, 143–151. [Google Scholar] [CrossRef]
- Cass, A.; McGrath, M. Compost benefits and quality for viticultural soils. In Proc. Soil Environ. Vine Mineral Nutrition Symp; American Society For Enology and Viticulture: San Diego, CA, USA, 2004; pp. 134–143. [Google Scholar]
- Al-Widyan, M.I.; Al-Abed, N.; Al-Jalil, H. Effect of composted olive cake on soil physical properties. Commun. Soil Sci. Plant Anal. 2005, 36, 1199–1212. [Google Scholar] [CrossRef]
- Mondini, C.; Fornasier, F.; Sinicco, T.; Sivilotti, P.; Gaiotti, F.; Mosetti, D. Organic amendment effectively recovers soil functionality in degraded vineyards. Eur. J. Agron. 2018, 101, 210–221. [Google Scholar] [CrossRef]
- Baldi, E.; Cavani, L.; Margon, A.; Quartieri, M.; Sorrenti, G.; Marzadori, C.; Toselli, M. Effect of compost application on the dynamics of carbon in a nectarine orchard ecosystem. Sci. Total Environ. 2018, 637, 918–925. [Google Scholar] [CrossRef]
- Brinton, W.F. Compost quality standards and guidelines. In Final Report by Woods End Research Laboratories for the New York State Association of Recyclers; New York State Association of Recyclers: New York, NY, USA, 2000. [Google Scholar]
- Vignozzi, N.; Andrenelli, M.C.; L’Abate, G.; Pellegrini, S. Effect of management of topsoil structure. EQA-Int. J. Environ. Qual. 2018, 31, 11–15. [Google Scholar]
- Bedini, S.; Pellegrino, E.; Avio, L.; Pellegrini, S.; Bazzoffi, P.; Argese, E.; Giovannetti, M. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol. Biochem. 2009, 41, 1491–1496. [Google Scholar] [CrossRef]
- Luna, L.; Miralles, I.; Andrenelli, M.C.; Gispert, M.; Pellegrini, S.; Vignozzi, N.; Solé-Benet, A. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena 2016, 143, 256–264. [Google Scholar] [CrossRef]
- Ramos, M.C. Metals in vineyard soils of the Penedès area (NE Spain) after compost application. J. Environ. Manag. 2006, 78, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Cavagnaro, T.R. Biologically regulated nutrient supply systems: Compost and arbuscular mycorrhizas-a review. Adv. Agron. 2015, 129, 293–321. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Sorrenti, G.; Masiello, C.A.; Toselli, M. Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma 2016, 272, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-García, M.; Sánchez-Monedero, M.A.; Roig, A.; López-Cano, I.; Moreno, B.; Benitez, E.; Cayuela, M.L. Compost vs. biochar amendment: A two-year field study evaluating soil C build-up and N dynamics in an organically managed olive crop. Plant Soil 2016, 408, 1–14. [Google Scholar] [CrossRef]
- Bass, A.M.; Bird, M.I.; Kay, G.; Muirhead, B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci. Total Environ. 2016, 550, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crop. Res. 2012, 132, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; pp. 785–811. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K.; Doran, J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, S.A.; Celi, L.; Stanchi, S.; Said-Pullicino, D.; Zanini, E.; Bonifacio, E. Effects of permanent grass versus tillage on aggregation and organic matter dynamics in a poorly developed vineyard soil. Soil Res. 2016, 54, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Priori, S.; D’Avino, L.; Agnelli, A.E.; Valboa, G.; Knapic, M.; Schroers, H.J.; Akca, E.; Tangolar, S.; Kìraz, M.E.; Giffard, B.; et al. Effect of organic treatments on soil carbon and nitrogen dynamics in vineyard. EQA-Int. J. Environ. Qual. 2018, 31, 1–10. [Google Scholar]
- Agnelli, A.; Bol, R.; Trumbore, S.E.; Dixon, L.; Cocco, S.; Corti, G. Carbon and nitrogen in soil and vine roots in harrowed and grass-covered vineyards. Agric. Ecosyst. Environ. 2014, 193, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.E.; Giayetto, A.; Cichón, L.; Fernández, D.; Aruani, M.C.; Curetti, M. Cover crops influence soil properties and tree performance in an organic apple (Malus domestica Borkh) orchard in northern Patagonia. Plant Soil 2007, 292, 193–203. [Google Scholar] [CrossRef]
- Celette, F.; Findeling, A.; Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 2009, 30, 41–51. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Marques, M.J. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Tillage Res. 2011, 117, 211–223. [Google Scholar] [CrossRef]
- Gómez, J.A.; Llewellyn, C.; Basch, G.; Sutton, P.B.; Dyson, J.S.; Jones, C.A. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manag. 2011, 27, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.E.; Robles, A.B.; Sanchez-Navarro, A.; Gonzalez-Rebollar, J.L. Soil responses to different management practices in rainfed orchards in semiarid environments. Soil Tillage Res. 2011, 112, 85–91. [Google Scholar] [CrossRef]
- Gómez, J.A. Sustainability using cover crops in Mediterranean tree crops, olives and vines–Challenges and current knowledge. Hung. Geogr. Bull. 2017, 66, 13–28. [Google Scholar] [CrossRef] [Green Version]
- García-González, I.; Hontoria, C.; Gabriel, J.L.; Alonso-Ayuso, M.; Quemada, M. Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 2018, 322, 81–88. [Google Scholar] [CrossRef]
- Morlat, R.; Jacquet, A. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Vitic. 2003, 54, 1–7. [Google Scholar]
- Steenwerth, K.; Belina, K.M. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Albaladejo, J.; Almagro, M.; Martínez-Mena, M. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil Tillage Res. 2015, 153, 66–75. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Penetration of cover crop roots through compacted soils. Plant Soil 2010, 331, 31–43. [Google Scholar] [CrossRef]
- Zhong, Z.; Wang, W.; Wang, Q.; Wu, Y.; Wang, H.; Pei, Z. Glomalin amount and compositional variation, and their associations with soil properties in farmland, northeastern China. J. Soil Sci. Plant Nutr. 2017, 180, 563–575. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.; Oves, M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Geelen, D. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, H.; Pereira, S.I.; Vega, A.; Castro, P.M.; Marques, A.P. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J. Environ. Manag. 2020, 257, 109982. [Google Scholar] [CrossRef]
- Behrooz, A.; Vahdati, K.; Rejali, F.; Lotfi, M.; Sarikhani, S.; Leslie, C. Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 2019, 54, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Horticult. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Basile, B.; Rouphael, Y.; Colla, G.; Soppelsa, S.; Andreotti, C. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Sci. Horticult. 2020, 267, 109330. [Google Scholar] [CrossRef]
- Gamalero, E.; Lingua, G.; Berta, G.; Glick, B.R. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol. 2009, 55, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.D.; Zhu, Y.G.; Duan, J.; Xiao, X.Y.; Smith, S.E. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ. Pollut. 2007, 147, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil Ecol. 2019, 138, 10–18. [Google Scholar] [CrossRef]
Method | Measurement | Sample Size | Level of Expertise | Reproducibility | Duration | Cost |
---|---|---|---|---|---|---|
Whole profile evaluation | Qualitative | Horizon | High | Medium | Half an hour + pit | Low |
Topsoil evaluation | Semi-quantitative | Full size of a spade and 20 cm depth | Medium | Medium | Half an hour | Low |
Bulk density | Quantitative | Hundreds cm3 | Low | High | Half an hour + drying | Low |
Aggregate size distribution and stability | Quantitative | Tens to hundred g | Medium | Low | A few hours | Low |
Mercury porosimetry | Quantitative | A few cm3 | Low | High | A few hours | Medium |
Water retention curve | Quantitative | Hundreds cm3 to dm3 | Medium | High | Days to weeks | Medium |
Gas adsorption | Quantitative | 1 to tens mm3 | High | Medium | A few hours to days | Medium |
Imaging techniques | Quantitative | 1 cm3 to dm3 | High | Medium | A few hours + sample preparation | High |
Water Retention Curve Indicators | Equations | Optimal Ranges [76] | Measure Units |
---|---|---|---|
Macropore volume (PMAC) | = θs (ψ = 0 kPa) − θm (ψ = −1 kPa) | ≥0.07 | m3·m−3 |
Air Capacity (AC) | = θs (ψ = 0 kPa) − θFC (ψ = −10 kPa) | ≥0.14 | m3·m−3 |
Available Water Capacity (AWC) | = θFC (ψ = −10 kPa) − θWP (ψ = −1500 kPa) | ≥0.15 | m3·m−3 |
Relative Field Capacity (RFC) | = (θFC/θs) | 0.6–0.7 | - |
Dexter S-index | ≥0.035 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priori, S.; Pellegrini, S.; Vignozzi, N.; Costantini, E.A.C. Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops: Problems and Solutions. Agronomy 2021, 11, 68. https://doi.org/10.3390/agronomy11010068
Priori S, Pellegrini S, Vignozzi N, Costantini EAC. Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops: Problems and Solutions. Agronomy. 2021; 11(1):68. https://doi.org/10.3390/agronomy11010068
Chicago/Turabian StylePriori, Simone, Sergio Pellegrini, Nadia Vignozzi, and Edoardo A. C. Costantini. 2021. "Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops: Problems and Solutions" Agronomy 11, no. 1: 68. https://doi.org/10.3390/agronomy11010068
APA StylePriori, S., Pellegrini, S., Vignozzi, N., & Costantini, E. A. C. (2021). Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops: Problems and Solutions. Agronomy, 11(1), 68. https://doi.org/10.3390/agronomy11010068