Physical Crop Postharvest Storage and Protection Methods
Abstract
:1. Introduction
2. Selected Physical Methods of Plant Protection Useful in Storage
2.1. Checked Solutions
2.1.1. Temperature
2.1.2. Physical Radiation or Something
2.1.3. Controlled Atmosphere
2.1.4. Special Packaging
2.1.5. Pressure
2.1.6. Various Sounds
2.2. Ozone and Non-Thermal Plasma
2.2.1. Ozone
2.2.2. Plasma
- -
- volume discharge—discharge column occurs in the gas gap and a surface discharge on dielectric;
- -
- surface discharge, which occurs only on the surface of dielectric;
- -
- coplanar discharge with one or more pairs of electrodes with the opposite polarity and a fixed electrode distance, located within a bulk of dielectric, assures the discharge’s better uniformity.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jamiołkowska, A.; Hetman, B.; Skwaryło-Bednarz, B.; Kopacki, M. Integrowana ochrona roślin w Polsce i Unii Europejskiej oraz prawne podstawy jej funkcjonowania. Ann. UMCS Sec. E Agric. 2017, 71, 103–111. [Google Scholar] [CrossRef]
- Barzman, M.; Barberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kuds, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015. [Google Scholar] [CrossRef]
- Mazur-Wierzbicka, E. The Application of Corporate Social Responsibility in European Agriculture. Misc. Geogr. 2015, 19, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Haladyi, A.; Trzewik, J. Pojęcie strategicznych zasobów naturalnych—Uwagi krytyczne. Przegląd Prawa Ochr. Sr. 2014, 1, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Gamliel, A. Application aspects of integrated pest management. J. Plant Pathol. 2010, 92, S4.23–S4.26. Available online: www.jstor.org/stable/41998884 (accessed on 12 November 2020).
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Valiuskaite, A.; Uselis, N.; Kviklys, D.; Lanauskas, J.; Rasiukevičiūtė, N. The effect of sustainable plant protection and apple tree management on fruit quality and yield. Zemdirb. Agric. 2017, 104, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Sorby, K.; Fleischer, G.; Pehu, E. Integrated Pest Management in Development: Review of Trends and Implementation Strategies; The International Bank for Reconstruction and Development Agriculture and Rural Development Department: Washington, DC, USA, 2003; p. 66. [Google Scholar]
- Jaworska, M. Ochrona Środowiska i Ochrona Roślin; Wydawnictwo UR: Kraków, Poland, 2012; p. 379. [Google Scholar]
- Kierzek, R.; Korbas, M.; Matyjaszczyk, E.; Mrówczyński, M.; Rosada, J.; Tratwal, A.; Węgorek, P. Kodeks Dobrej Praktyki Ochrony Roślin; Wyd. IOR: Poznań, Poland, 2014; Available online: www.ior.poznan.pl/plik,2361,kodeks-dobrej-praktyki-ochrony-roslin-pdf.pdf (accessed on 9 September 2020).
- Popp, J.; Peto, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Katan, J. Physical and culture methods for the management of soil borne pathogens. Crop. Prot. 2000, 19, 725–731. [Google Scholar] [CrossRef]
- Gacek, E.; Głazek, M.; Matyjaszczyk, E.; Pruszyński, G.; Pruszyński, S.; Stobiecki, S. Metody Ochrony w Integrowanej Ochronie Roślin; Wyd. Centrum Doradztwa Rolniczego w Brwinowie: Poznań, Poland, 2016; p. 150. [Google Scholar]
- Mitra, A.; Li, Y.; Klämpf, T.; Shimizu, T.; Jeon, J.; Morfill, G.; Zimmermann, J. Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess. Technol. 2014, 7, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Sauer, J.A.; Shelton, M.D. High temperature controlled atmosphere for post-harvest control of Indian meal moth (Lepidoptera: Pyralidae) on preserved flowers. J. Stored Prod. Res. 2002, 95, 1074–1078. [Google Scholar] [CrossRef]
- Zhou, Y.; Deng, L.; Zeng, K. Enhancement of biocontrol efficacy of Pichia membranaefaciens by hot water treatment in postharvest diseases of citrus fruit. Crop Prot. 2014, 63, 89–96. [Google Scholar] [CrossRef]
- Wang, M.R.; Cui, Z.H.; Jingwei, L.; Hao, X.Y.; Zhao, L.; Wang, Q.C. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Lee, J.K.; Sivertsen, A.; Skjeseth, G.; Haugslien, S.; Clarke, J.L.; Wang, Q.C.; Blystad, D.R. Low Temperature Treatment Affects Concentration and Distribution of Chrysanthemum Stunt Viroid in Argyranthemum. Front. Microbiol. 2016, 7, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Postharvest treatments of fresh produce. Philos. Trans. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef] [Green Version]
- Mielniczuk, E.; Skwaryło-Bednarz, B. Fusarium Head Blight, Mycotoxins and Strategies for Their Reduction. Agronomy 2020, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Carrlee, E. Does low-temperature pest management cause damage? Literature review and observational study of ethnographic artifacts. J. Am. Inst. Conserv. 2003, 42, 141–166. [Google Scholar] [CrossRef]
- Streck, N.A.; Schneider, F.M.; Buriol, G.A. Effect of soil solarization on tomato inside plastic greenhouse. Ciência. Rural 1995, 25. [Google Scholar] [CrossRef] [Green Version]
- Escamilla, D.; Rosso, M.L.; Zhang, B. Identification of fungi associated with soybeans and effective seed disinfection treatments. Food Sci. Nutr. 2019, 7, 3194–3205. [Google Scholar] [CrossRef] [Green Version]
- Woźnica, Z. Herbologia: Podstawy Biologii, Ekologii i Zwalczania Chwastów; Wyd. PWRiL: Poznań, Poland, 2008; p. 430. [Google Scholar]
- Lima, F.; Vieira, K.; Santos, M.; Mendes de Sauza, P. Effects of Radiation Technologies on Food Nutritional Quality. In Descriptive Food Science; BoD–Books on Demand: Norderstedt, Germany, 2018. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaei, F. More About Radioactive Pollution. Health Scope 2012, 1, 99–100. [Google Scholar] [CrossRef] [Green Version]
- Costa, H.S.; Robb, K.L.; Wilen, C.A. Field Trials Measuring the Effects of Ultraviolet-Absorbing Greenhouse Plastic Films on Insect Populations. J. Econ. Entomol. 2002, 95, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Franco, B.D.G.M.; Landgraf, M. Microbiologia dos Alimentos; Atheneu: São Paulo, Brazil, 1996; p. 182. [Google Scholar]
- Ornellas, C.B.D.; Gonçalves, M.P.J.; Silva, P.R.; Martins, R.T. Atitudes do consumidor frente à irradiação de alimentos. Ciência e Tecnol. de Aliment. 2006, 26, 211–213. [Google Scholar] [CrossRef] [Green Version]
- Chu, E.H.; Shin, E.J.; Park, H.J.; Jeong, R.D. Effect of Gamma Irradiation on Botrytis cinerea Causing Gray Mold and Cut Chrysanthemum Flowers. Res. Plant Dis. 2015, 21, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Abbas, H.; Nouraddin, S.; Reza, S.H.; Iraj, B.; Mohammad, B.; Hasan, Z.; Hossein, A.M.; Hadi, F. Effect of gamma radiation on different stages of Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Afr. J. Biotechnol. 2011, 10, 4259–4264. [Google Scholar]
- Ignatowicz, S. Możliwość Wykorzystania Promieniowania Jonizującego w Kwarantannie Roślin. Mater. Ses. Nauk. Inst. Ochr. Roślin 1992, 32, 80–87. [Google Scholar]
- Knipling, E.F. Control of Screw-Worm Fly by Atomic Radiation. Sci. Mon. 1957, 85, 195–202. [Google Scholar]
- Oseto, C.Y. Physical Control of Insects; CRC Press LLC: Boca Raton, FL, USA, 2000; p. 76. [Google Scholar]
- Pickens, L.G.; Thimijan, R.W. Design Parameters That Affect the Performance of UVemitting Traps in Attracting House Flies (Diptera: Muscidae). J. Econ. Entomol. 1986, 79, 1003–1009. [Google Scholar] [CrossRef]
- Schönthaler, J.; Dominik, A. Integrowana Ochrona Roślin w Gospodarstwie; Wyd. Centrum Doradztwa Rolniczego w Brwinowie, Oddział w Radomiu: Radom, Poland, 2012; p. 70. [Google Scholar]
- Navarro, S. Modified Atmospheres for the Control of Stored-Product Insects and Mites. In Insect Management for Food Storage and Processing, 2nd ed.; Heaps, W., Ed.; AACC International: Saint Paul, MN, USA, 2006; pp. 101–141. [Google Scholar] [CrossRef]
- Nawalny, G.; Herbut, P.; Sokołowski, P. Analiza Techniczna i Kierunki Rozwoju Przechowalni Warzyw i Owoców w Rejonie Skalbmierza; Wyd. PAN: Kraków, Poland, 2014; pp. 217–226. [Google Scholar]
- Liu, Y.B. Ultralow oxygen treatment for postharvest control of western flower thrips, Frankiniella occidentalis (Thysanoptera: Thripidae), on iceberg lettuce I. Effects of temperature, time, and oxygen level on insect mortality and lettuce quality. Postharvest Biol. Technol. 2008, 49, 129–134. [Google Scholar] [CrossRef]
- Hammer, P.E.; Yang, S.F.; Reid, M.S.; Marois, J.J. Postharvest control of Botrytis cinerea infections on cut roses using fungistatic storage atmospheres. J. Am. Soc. Hort. Sci. 1990, 115, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Piwoni, A. Health status of two plantations of tulip near Pulawy and fungi isolated from foliar parts and bulbs. Electron. J. Pol. Agric. Univ. 2007, 10. Available online: http://www.ejpau.media.pl/volume10/issue4/art-07.html (accessed on 12 September 2020).
- Highland, H.A. Insect resistance of food packages: A review. J. Food Process. Preserv. 2007, 2, 123–129. [Google Scholar] [CrossRef]
- Conte, A.; Angiolillo, L.; Mastromatteo, M.; Del Nobile, M.A. Technological Options of Packaging to Control Food Quality; InTech: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, J.; Olejarski, P. Alternatywne Metody Zwalczania Owadzich Szkodników Magazynowych; Wyd. Instytut Ochrony Roślin w Poznaniu: Poznań, Poland, 2007; pp. 32–39. [Google Scholar]
- Marsh, R.E.; Erickson, W.A.; Salomon, T.P. Bird Hazing and Frightening Methods and Techniques (with Emphasis on Containment Ponds); University of California Davis: Davis, CA, USA, 1991; p. 236. [Google Scholar]
- Wiech, K.; Bednarek, A.; Grabowski, M.; Goszczyński, W. Ochrona Roślin bez Chemii; Wyd. Działkowiec: Warszawa, Poland, 2001; pp. 81–85. [Google Scholar]
- Streng, A.G. Tables of Ozone Properties. J. Chem. Eng. Data 1961, 6, 431–436. [Google Scholar] [CrossRef]
- Rubin, M.B. The History of Ozone: The Schönbein Period, 1839–1868. Bull. Hist. Chem. 2001, 26, 40–56. [Google Scholar]
- Gotz, W.; Meetham, A.; Dobson, G. The vertical distribution of ozone in the atmosphere . Proc. Roy. Soc. Lond. A 1934, 145, 416–446. [Google Scholar]
- Tanaka, T.; Morino, Y. Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states. J. Mol. Spectrosc. 1970, 33, 538–551. [Google Scholar] [CrossRef]
- Nalepa, C. Oxidizing biocides: Properties and applications. In Association of Water Technologies Fall Meeting; Association of Water Technologies (AWT): Traverse City, MI, USA, 1997. [Google Scholar]
- Shimanouchi, T. Ozone. NIST Natl. Inst. Stand. Technol. U.S. Dep. Commer. 1972, 6, 993–1102. [Google Scholar]
- Ozonek, J. Laboratorium Syntezy Ozonu: Podstawy Procesowe, Pomiary Elektryczne, Ekotechnologie; Wyd. Politechnika Lubelska: Lublin, Poland, 1993; p. 122. [Google Scholar]
- Lunin, V.V.; Popovich, M.P.; Tkachenko, S.N. Physical Chemistry of Ozone; Moscow State University: Moscow, Russia, 1998; p. 480. [Google Scholar]
- Mateer, C.; Heath, D.; Krueger, A. Estimation of total ozone from satellites measurements of backscattered ultraviolet earth radiance. J. Atmosph. Sci. 1971, 28, 1307–1311. [Google Scholar] [CrossRef] [Green Version]
- Hoigné, J. The Handbook of Environmental Chemistry; Springer: Berlin, Germany, 1998; Volume 5, Part C; pp. 83–141. [Google Scholar]
- Wan-Norafikach, O.; Lee, H.L.; Norazizah, A.; Mohamed-Hafiz, A. Repellency effects of an ozone-producing air purifier against medically important insect vectors. Trop. Biomed. 2016, 33, 396–402. [Google Scholar]
- Alternative Disinfectants and Oxidant Guidance Manual; United States Environmental Protection Agency: Washington, DC, USA, April 1999.
- Biń, A. Zastosowanie ozonu w oczyszczaniu wody i uzdatnianiu ścieków. Pol. Instal. 1995, 6, 28–31. [Google Scholar]
- Bursa, S.; Stanisz-Lewicka, M.; Kicinska, M.; Kosmider, J. Dezodoryzacja Gazow i Ściekow Część 1—Dezodoryzacja na drodze ozonowania; Wyd. Politechniki Szczecinskiej: Szczecin, Poland, 1985. [Google Scholar]
- Keivanloo, E.; Namaghi, H.S.; Khoodaparast, M.H.H. Effects of low ozone concentrations and short exposure times on the mortality of immature stages of the Indian meal moth Plodia interpunctella (Lepidoptera: Pyralidae). J. Plant Prot. Res. 2014, 54, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Sugimoto, M.; Yoshida, K. Color Removal of Wastewater by Ozonation. In Proceedings of the 13th Ozone World Congress, Kyoto, Japan, 26–31 October 1997; pp. 37–40. [Google Scholar]
- Beltran, F. Theoretical aspects of the kinetics of competitive first reactions of ozone in O3/H2O2 and O3/UV oxidation process. Ozone Sci. Eng. 1996, 22, 109–127. [Google Scholar]
- Levy, R.; Jouvenaz, D.P.; Cromroy, H.L. Tolerance of tyree species if insects to prolonged exposures to ozone. Environ. Entomol. 1974, 3, 184–185. [Google Scholar] [CrossRef]
- Xu, L. Use of Ozone to Improve the Safety of Fresh Fruits and Vegetables. Food Technol. Mag. 1999, 53, 10. [Google Scholar]
- Takigawa, K.; Ueno, K.; Nagatomo, T.; Mitsugi, F.; Ikegami, T.; Ebihara, K.; Nakamura, N.; Hashimoto, Y.; Yamashita, Y. Experiment of Pest Control with Portable Ozone Mist Device. 2012. Available online: www.ispc-conference.org/ispcproc/ispc21/ID136.pdf (accessed on 15 October 2020).
- Ebihara, K.; Stryczewska, H.; Ikegami, T.; Mitsugi, F.; Pawłat, J. On-site ozone treatment for agricultural soil and related applications. Przegląd Elektrotechniczny 2011, 87, 148–152. [Google Scholar]
- Ladányi, M.; Nowinszky, L.; Kiss, O.; Puskás, J.; Szentkirályi, F.; Barczikay, G. Modelling the impast of tropospheric ozone content on light- and pheromone-trapped insects. Appl. Ecol. Environ. 2012, 10, 471–491. [Google Scholar] [CrossRef]
- Mendez, F.; Maier, D.; Mason, L.J.; Woloshuk, C.P. Penetration of ozone into columns of stored grains and effects on chemical composition and processing performance. J. Stored Prod. Res. 2003, 39, 33–44. [Google Scholar] [CrossRef]
- Hollingsworth, R.G.; Armstrong, J.W. Potential of controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 2005, 98, 289–298. [Google Scholar] [CrossRef]
- Isikber, A.A.; Athanassiou, C. The use of ozone gas for the control of insects and micro-organisms in stored products. J. Stored Prod. Res. 2014, 64. [Google Scholar] [CrossRef]
- Ebihara, K.; Mitsugi, F.; Ikegami, T.; Nakamura, N.; Hashimoto, Y.; Yamashita, Y.; Baba, S.; Stryczewska, H.; Pawłat, J.; Teii, S.; et al. Ozone-mist spray sterilization for pest control in agricultural management. Eur. Phys. J. Appl. Phys. 2013, 61, 2012120420. [Google Scholar] [CrossRef]
- Perez, A.G.; Sanz, C.; Rıos, J.J.; Olıas, R.; Olıas, J.M. Effects of ozone treatment on postharvest strawberry quality. J. Agr. Food Chem. 1999, 47, 1652–1656. [Google Scholar] [CrossRef] [PubMed]
- Tzortzakis, N.; Borland, A.; Singleton, I.; Barnes, J. Impact of atmospheric ozone-enrichment on quality-related attributes of tomatofruit. Postharvest Biol. Technol. 2007, 45, 317–325. [Google Scholar] [CrossRef]
- Carletti, L.; Botondi, R.; Moscetti, R.; Stella, E.; Monarca, D.; Cecchini, M.; Massantini, R. Use of ozone in sanitation and storage of fresh fruits and vegetables. J. Food Agric. Environ. 2013, 11, 585–589. [Google Scholar]
- Krosowiak, K.; Śmigielski, K.; Dziugan, P. Zastosowania ozonu w przemyśle spożywczym. Przemysł Spożywczy 2007, 11, 26–29. [Google Scholar]
- Zambuchini, B.; Giosia, L.; Sturba, M. Study of the ozoneeffect on the shelf-life of minimally processed salad (Review). Postharvest Biol. Tec. 2006, 45, 636–643. [Google Scholar]
- Rodgers, S.L.; Cash, J.N.; Siddiq, M.; Ryser, E.T. A comparisonof different chemical sanitizers for inactivatingEscherichia coliO157: H7 andListeria monocytogenesin solution and on apples, lettuce, strawberries, and cantaloupe. J. Food Prot. 2004, 67, 721–731. [Google Scholar] [CrossRef]
- Łozowicka, B.; Jankowska, M.; Hrynko, I.; Kaczynski, P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ. Monit. Assess. 2016, 188, 51. [Google Scholar] [CrossRef] [Green Version]
- Ong, K.C.; Cash, J.N.; Zabik, M.J.; Siddiq, M.; Jones, A.L. Chlorine and ozone washes for pesticide removal from apples and processed apple sauce. Food Chem. 1996, 55, 153–160. [Google Scholar] [CrossRef]
- Beuchat, L.R. Surface disinfection of raw produce. Dairy Food Environ. Sanit. 1992, 12, 69. [Google Scholar]
- Chwaszcz, B.; Józefczyk, R.; Bilek, M.; Balawajder, M. Ozonowanie jako metoda przedłużania trwałości przechowalniczej owoców maliny w warunkach niechłodniczych. In Technologiczne Kształtowanie Jakości Żywności, 1st ed.; Wójciak, K.M., Dolatowski, Z.J., Eds.; Wyd. Naukowe PTTŻ: Kraków, Poland, 2015; pp. 15–26. [Google Scholar]
- Rice, R.G. Etapy Rozwoju i Aktualne Zastosowania Ozonu w Przetwórstwie Żywności; Zastosowanie Ozonu, Wyd. PAN: Łódź, Poland, 2005; pp. 279–322. [Google Scholar]
- Palou, L.; Crisosto, C.H.; Smilanick, J.L.; Adaskaveg, J.E.; Zoffoli, J.P. Effects of continuous 0.3 ppm ozone exposure on decaydevelopment and physiological responses of peaches and table grapesin cold storage. Postharvest Biol. Tec. 2002, 24, 39–48. [Google Scholar] [CrossRef]
- Vlassi, E.; Vlachos, P.; Kornaros, M. Effect of ozonation on table grapes preservation in cold storage. J. Food Sci. Technol. 2018, 55. [Google Scholar] [CrossRef] [PubMed]
- De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020, 9, 1138. [Google Scholar] [CrossRef]
- Mari, M.; Bertolini, P.; Pratella, G.C. Non-conventional methods for the control of post-harvest pear diseases. J. Appl. Microbiol. 2003, 94, 761–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzortzakis, N.; Singleton, I.; Barnes, J. Impact of low-levelatmospheric ozone-enrichment on black spot and anthracnose rot oftomato fruit. Postharvest Biol. Tec. 2008, 47, 1–9. [Google Scholar] [CrossRef]
- Song, J.; Fan, L.; Forney, C.F. Biological Effects of Corona Discharge on Onions in a Commercial Storage Facility. HortTechnology 2000, 10, 608–612. [Google Scholar] [CrossRef] [Green Version]
- Pazarlar, S.A.; Cetinkaya, N.A.; Bor, M.B.C.; Ozdemir, F.B. Ozone triggers different defence mechanisms against powdery mildew (Blumeria graminis DC. Speer f. sp. tritici) in susceptible and resistant wheat genotypes. Funct. Plant Biol. 2017, 44, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.B. Ultralow oxygen treatment for postharvest control of Nasonovia ribisnigri (Homoptera: Aphididae) on iceberg lettuce. J. Econ. Entomol. 2005, 98, 1899–1904. [Google Scholar] [CrossRef]
- Tseng, C.C.; Li, C. Inactivation of surface viruses by gaseous Ozone. J. Environ. Health 2008, 70, 56–62. [Google Scholar]
- Ignatowicz, S. Skuteczność zabiegów ozonowania w dezaktywacji koronawirusa SARS-CoV-2. Przemysł Spożywczy 2020, 74, 12–18. [Google Scholar] [CrossRef]
- Batakliev, T.; Georgiev, V.; Anachkov, M.; Rakovsky, S.; Zaikov, G.E. Ozone decomposition. Interdiscip. Toxicol. 2014, 7, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Białoszewski, D.; Bocian, E.; Tyski, S. Ozonoterapia Oraz Zastosowanie Ozonu w Dezynfekcji; Wyd. Warszawski Uniwersytet Medyczny: Warszawa, Poland, 2012; pp. 177–183. [Google Scholar]
- Fiscus, E.L.; Booker, F.L.; Burkey, K.O. Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 2005, 28, 997–1011. [Google Scholar] [CrossRef]
- Cape, J.N. Surface ozone concentrations and ecosystem health: Past trends and a guide to future protections. Sci. Total Environ. 2008, 400, 257–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baciak, M.; Warmiński, K.; Bęś, A. Oddziaływanie wybranych gazowych zanieczyszczeń powietrza na rośliny drzewiaste. Leśne Prace Badaw. 2015, 76, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Hunowá, I.; Novotný, R.; Uhlírová, H.; Vráblík, T.; Horálek, J.; Lomský, B.; Srámek, V. The impact of ambient ozone on mountain spruce forests in the Czech Republic as indicated by malondialdehyde. Environ. Pollut. 2010, 158, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Wagg, S.; Mills, G.; Hayes, F.; Wilkinson, S.; Cooper, D.; Daviies, W.J. Reduced soil water availability did not protect two competing grassland species from the negative effects of increasing background ozone. Environ. Pollut. 2012, 1655, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.L.; Le May, H.E.; Bursten, B.E., Jr.; Burdge, J.R. Chemistry: The Central Science, 9th ed.; Pearson College: Hoboken, NJ, USA, 2002; p. 1152. [Google Scholar]
- Chen, F.; Chang, J. Lecture Notes on Principles of Plasma Processing; Springer: New York, NY, USA, 2003; p. 208. [Google Scholar]
- Pawłat, J.; Starek, A.; Sujak, A.; Terebun, P.; Kwiatkowski, M.; Budzeń, M.; Andrejko, D. Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS ONE 2018, 13, e0194349. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. Scattering of Electrons in Ionized Gases. Phys. Rev. 1925, 26, 585. [Google Scholar] [CrossRef]
- Brisset, J.-L.; Pawłat, J. Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: Discharge, post-discharge and plasma activated water. Plasma Chem. Plasma Process. 2015, 36, 355–381. [Google Scholar] [CrossRef]
- Pawłat, J. Electrical Discharges in Humid Environments Generators, Effects, Application; Wyd. Politechnika Lubelska: Lublin, Poland, 2013; p. 142. [Google Scholar]
- Jablonowski, H.; Woedtke, T. Research on plasma medicine-relevant plasma–liquid interaction: What happened in the past five years? Clin. Plasma Med. 2015, 3, 42–52. [Google Scholar] [CrossRef]
- Kogelschatz, U. Silent Discharges and Their Applications—Invited Lecture. In Proceedings of the 10th International Conference on Gas Discharges and Their Applications, Swansea, UK, 13–18 September 1992. [Google Scholar]
- Kogelschatz, U. Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Kogoma, M.; Okazaki, S. Raising of ozone formation efficiency in a homogenous glow discharge plasma at atmospheric pressure. J. Phys. D Appl. Phys. 1994, 27, 1985–1987. [Google Scholar] [CrossRef]
- Pietch, G. Gas Discharges in Ozone Generators. In Proceedings of the Regional Conference on Ozone Generation and Application to Water and Wastewater Treatment, Moscow, Russia, 1988; pp. 13–28. [Google Scholar]
- Haacke, M.; Pietsch, G. Some Features of Dielectric Barrier Discharges. In Proceedings of the XIII International Conference on Gas Discharges and Their Applications, Glasgow, UK, 3–8 September 2000; Department of Electronic and Electrical Engineering, University of Strathclyde: Glasgow, UK, 2000; pp. 267–270. [Google Scholar]
- Gribalov, V.; Murata, T.; Pietsch, G. Modeling of the discharge development in coplanar arrangements. In Proceedings of the XIII International Conference on Gas Discharges and Their Applications, Glasgow, UK, 3–8 September 2000; Department of Electronic and Electrical Engineering, University of Strathclyde: Glasgow, UK, 2000; pp. 275–278. [Google Scholar]
- Čech, J.; Hanusová, J.; St’ahel, P.; Černák, M. Diffuse Coplanar Surface Barrier Discharge in Artificial Air: Statistical Behaviour of Microdischarges. Open Chem. 2015, 13, 528–540. [Google Scholar] [CrossRef]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric Pressure Plasmas: A Review. Spectrochim. Acta Part B 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Kim, C.; Bahn, J.; Lee, S.; Kim, G.; Jun, S.; Lee, K.; Baek, S. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J. Biotechnol. 2010, 150, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Pawłat, J. Atmospheric pressure plasma jet for decontamination purposes . Eur. Phys. J. Appl. Phys. 2013, 61, 2012120431. [Google Scholar] [CrossRef]
- Raniszewski, G.; Wiak, S.; Pietrzak, L.; Szymanski, L.; Kolacinski, Z. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis. Nanomaterials 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Hensel, K.; Kučerová, K.; Tarabová, B.; Janda, M.; Machala, Z. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases 2015, 10, 029515. [Google Scholar] [CrossRef]
- Pawłat, J.; Starek, A.; Sujak, A.; Kwiatkowski, M.; Terebun, P.; Budzeń, M. Effects of atmospheric pressure plasma generated in GlidArc reactor on Lavatera thuringiaca L. seeds’ germination. Plasma Process. Polym. 2017, 15, 201700064. [Google Scholar] [CrossRef]
- Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Tarabová, B.; Kovaľová, Z.; Kučerová, K.; Machala, Z.; Janda, M.; Hensel, K. Evaluation of Oxidative Species in Gaseous and Liquid Phase Generated by Mini-Gliding Arc Discharge. Plasma Chem. Plasma Process. 2019, 39, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Moisan, M.; Barbeau, J.; Crevier, M.-C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 2002, 74, 349. [Google Scholar] [CrossRef]
- Kyzek, S.; Holubova, L.; Medvecka, V.; Zahoranova, A.; Ševčovičova, A.; Galova, E. Genotoxic effect of low temperature plasma treatment on plant seeds. Toxicol. Lett. 2017, 119. [Google Scholar] [CrossRef]
- Wiktor, A.; Śledź, M.; Nowacka, M.; Witrowa-Rajchert, D. Możliwości zastosowania niskotemperaturowej plazmy w technologii żywności. Żywność Nauka Technol. Jakość 2013, 5, 5–14. [Google Scholar]
- Dzimitrowicz, A.; Jamróz, P.; Nowak, P. Sterylizacja za Pomocą Niskotemperaturowej Plazmy, Generowanej w Warunkach Ciśnienia Atmosferycznego; Wyd. Politechnika Wrocławska: Wrocław, Poland, 2014; pp. 195–200. [Google Scholar]
- Brelles, M.G. Biological and Environmental Application of Gas Discharge Plasmas; California State Polytechnic University: Pomona, CA, USA, 2012; p. 282. [Google Scholar]
- Belkind, A.; Gershman, S. Plasma Cleaning and Surface. From Vacuum Technology & Coating. 2008. Available online: https://www.researchgate.net/publication/284486745_Plasma_cleaning_of_surfaces (accessed on 5 December 2020).
- Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Diatczyk, J. RF atmospheric plasma jet surface treatment of paper. J. Phys. D App. Phys. 2016, 49, 374001. [Google Scholar] [CrossRef]
- Melamies, I.A. Pretreatment of LED lights. Turn Future Adhes. 2016, 13, 15–18. [Google Scholar]
- Eliáš, M.; Kloc, P.; Jašek, O.; Mazánková, V.; Trunec, D.; Hrdý, D.; Zajíčková, L. Atmospheric pressure barrier discharge at high temperature: Diagnostics and carbon nanotubes deposition. J. Appl. Phys. 2015, 117, 103301. [Google Scholar] [CrossRef]
- Raniszewski, G. Arc discharge plasma for effective carbon nanotubes synthesis. In Proceedings of the International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors (ELMECO & AoS), Lublin, Poland, 3–6 December 2017. [Google Scholar] [CrossRef]
- Prochazka, M.; Blahova, L.; Krcma, F. Barrier SiO2-like coatings for archaeological artefacts preservation. J. Phys. Conf. Ser. 2016, 768, 012013. [Google Scholar] [CrossRef]
- Mazánková, V.; St’ahel, P.; Matoušková, P.; Brablec, A.; Čech, J.; Prokeš, L.; Buršíková, V.; Stupavská, M.; Lehocký, M.; Ozaltin, K.; et al. Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-oxazoline Based Thin Films for Biomedical Purposes. Polymers 2020, 12, 2679. [Google Scholar] [CrossRef]
- Makhneva, E.; Barillas, L.; Weltmann, K.-D.; Fricke, K. Stability of oxygen-rich plasma-polymerized coatings in aqueous environment editors-pick. Biointerphases 2020, 15, 061001. [Google Scholar] [CrossRef]
- Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Hensel, K.; Michala, Z.; Kovalova, Z.; Kučerová, K.; Tarabová, B.; Janda, M.; Starek, A.; et al. Atmospheric pressure plasmas for agriculture, medicine and surface technology. In Proceedings of the 33rd International Conference on Phenomena in Ionized Gases (ICPIG 2017), Estoril, Portugal, 9–14 July 2017. [Google Scholar]
- Samoń, R.; Czapiński, J.; Grządziel, J.; Płonka, M.; Pawłat, J.; Diatczyk, J. Ocena działania bakteriobójczego niskotemperaturowej plazmy nierównowagowej generowanej w reaktorze RF. Eur. J. Med. Technol. 2014, 2, 17–26. [Google Scholar]
- Šera, B.; Spatenka, P.; Šery, M.; Vrchotova, N.; Hruskova, I. Influence of Plasma Treatment on Wheat and Oat Germination and Early Growth. IEEE Trans. Plasma Sci. 2010, 38, 2963–2974. [Google Scholar] [CrossRef]
- Kordas, L.; Pusz, W.; Czapka, T.; Kacprzyk, R. The Effect of Low-Temperature Plasma on Fungus Colonization of Winter Wheat Grain and Seed Quality. Pol. J. Environ. Stud. 2015, 24, 379–384. [Google Scholar]
- Matra, K. Atmospheric non-thermal argon–oxygen plasma for sunflower seedling growth improvement. Jpn. J. Appl. Phys. 2018, 57, 1S. [Google Scholar] [CrossRef]
- Perez, S.; Biondi, E.; Laurita, R.; Proto, M.; Sarti, F.; Gherardi, M.; Bertaccini, A.; Colombo, V. Plasma activated water as resistance inducer against bacterial leaf spot of tomato. PLoS ONE 2019, 14, e0217788. [Google Scholar] [CrossRef] [PubMed]
- Nishime, T.M.C.; Wannicke, N.; Horn, S.; Weltmann, K.-D.; Brust, H. A Coaxial Dielectric Barrier Discharge Reactor for Treatment of Winter Wheat Seeds. Appl. Sci. 2020, 10, 7133. [Google Scholar] [CrossRef]
- Niemira, B.; Sites, J. Cold plasma inactivates Salmonella stanley and Escherichia coli O157:H7 inoculated on golden delicious Apples. J. Food Prot. 2008, 71, 1357–1365. [Google Scholar] [CrossRef]
- Hayashi, N.; Yagyu, Y. Applications of High Voltage and Plasma to Agricultural Products. J. Inst. Electr. Eng. Jpn. 2016, 136, 798–801. [Google Scholar] [CrossRef]
- Butscher, D.; Zimmermann, D.; Schuppler, M.; von Rohr, R.P. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control. 2016, 60, 636–645. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y.; Li, J.; Li, L.; He, H.; Shao, H.; Dong, Y. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (Bacterial Wilt). PLoS ONE 2014, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Baier, M.; Gorgen, M.; Ehlbeck, J.; Knorr, D.; Herppich, W.B.; Schlueter, O. Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innov. Food Sci. Emerg. Technol. 2014, 22, 147. [Google Scholar] [CrossRef]
- Vaze, N.D.; Park, S.; Brooks, A.D.; Fridman, A.; Joshi, S.G. Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria. PLoS ONE 2017, 12, e0171434. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, M.J.; Dodet, B.; Odic, E. Atmospheric Pressure Humid Argon DBD Plasma for the Application of Sterylization—Measurement and Simulation of Hydrogen, Oxygen, and Hydrogen Peroxide Formation. Int. J. Plasma Environ. Sci. Technol. 2007, 1, 96–101. [Google Scholar]
- Dasan, B.G.; Boyaci, I.H. Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar. Food Bioprocess. Technol. 2017, 11. [Google Scholar] [CrossRef]
- Skryplonek, K. Zimna plazma jako niekonwencjonalna metoda utrwalania żywności. Inżynieria Przetwórstwa Spożywczego 2016, 4, 28–33. [Google Scholar]
- Starek, A.; Pawłat, J.; Chudzik, B.; Kwiatkowski, M.; Terebun, P.; Sagan, A.; Andrejko, D. Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Sci. Rep. 2019, 9, 8407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzimitrowicz, A.; Jamroz, P.; Cyganowski, P.; Bielawska-Pohl, A.; Klimczak, A.; Pohl, P. Application of cold atmospheric pressure plasmas for high-throughput production of safe-to-consume beetroot juice with improved nutritional quality. Food Chem. 2020, 336, 127635. [Google Scholar] [CrossRef]
- Daeschlein, G.; Scholz, S.; von Woedke, T.; Niggemeier, M.; Kindel, E.; Brandenburg, R.; Weltman, K.D.; Jürgen, M. In Vitro Killing of Clinical Fungal Strains by Low-Temperature Atmospheric-Pressure Plasma Jet. IEEE Trans. Plasma Sci. 2011, 39, 815–821. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Metelmann, H.-R.; Weltmann, K.-D. Clinical Plasma Medicine: State and Perspectives of in VivoApplication of Cold Atmospheric Plasma. Contrib. Plasma Phys. 2014, 54, 104–117. [Google Scholar] [CrossRef]
- Liguori, A.; Bigi, A.; Colombo, V.; Focarete, M.; Gherardi, M.; Gualandi, C.; Oleari, M.; Panzavolta, S. Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers. Sci. Rep. 2016, 6, 38542. [Google Scholar] [CrossRef] [Green Version]
- Canal, C.; Fontelo, R.; Hamouda, I.; Guillem-Martia, J.; Cvelbar, U.; Ginebra, M. Plasma-induced selectivity in bone cancer cells Heath. Free Radic. Biol. Med. 2017, 110, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Przekora, A.; Pawlat, J.; Terebun, P.; Duday, D.; Canal, C.; Hermans, S.; Audemar, M.; Labay, C.; Thomann, J.; Ginalska, G. The effect of low temperature atmospheric nitrogen plasma on MC3T3-E1 preosteoblast proliferation and differentiation in vitro. J. Phys. D Appl. Phys. 2019, 52, 275401. [Google Scholar] [CrossRef]
- Tyczkowska-Sieroń, E.; Kapica, R.; Markiewicz, J.; Tyczkowski, J. Linear Microdischarge Jet for Microbiological Applications. Plasma Med. 2018, 8. [Google Scholar] [CrossRef]
- Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.C.; Galibardi, A.; Gullino, M.L. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins 2016, 26, 125. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K.; Tzvetkov, N.T.; Jóźwik, A.; Horbanczuk, O.K.; Polgar, T.; Pieczynska, M.D.; Sampino, S.; Nicoletti, F.; Berindan-Neagoe, I.; Battino, M.; et al. Food toxicology: Quantitative analysis of the research field literature. Int. J. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yong, H.I.; Kim, H.J.; Choe, W.; Yoo, S.J.; Jang, E.J.; Jo, C. Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci. Biotechnol. 2016, 25, 1189–1195. [Google Scholar] [CrossRef]
- Wolny-Koładka, K.; Pawłat, J.; Terbun, P.; Kwiatkowski, M.; Diatczyk, J. Ocena możliwości zastosowania plazmy niskotemperaturowej w celu higienizacji zmieszanych odpadów komunalnych służących do produkcji paliwa alternatywnego. Przegląd Elektrotechniczny 2017, 93, 209–213. [Google Scholar] [CrossRef]
- Laskowska, M.; Bogusławska-Wąs, E.; Kowal, P.; Hołub, M.; Dąbrowski, W. Skuteczność Stosowania Niskotemperaturowej Plazmy w Mikrobiologii i Medycynie; Wyd. ZUT: Szczecin, Poland, 2016; pp. 172–181. [Google Scholar]
- Hawrylak-Nowak, B.; Dresler, S.; Matraszek-Gawron, R.; Oszczęda, R.; Pogorzelec, M. The Water Treated with Low-Frequency Low-Pressure Glow Plasma Enhances the Phytoavailability of Selenium and Promotes The Growth of Selenium-Treated Cucumber Plants. Acta Sci. Pol. Hortorum Cultus 2018, 17, 109–116. [Google Scholar] [CrossRef]
- Mystkowska, J.; Dąbrowski, J.R.; Kowal, K.; Niemirowicz, K.; Car, H. Physical and chemical properties of deionized water and saline treated with low-pressure and low-temperature plasma. Chemik 2013, 67, 722–724. [Google Scholar]
- Saberi, M.; Modarres-Sanavy, S.A.M.; Zare, R.; Ghomi, H. Amelioration of Photosynthesis and Quality of Wheat under Nonthermal Radio Frequency Plasma Treatment. Sci. Rep. 2018, 8, 11655. [Google Scholar] [CrossRef] [Green Version]
- Randeniya, L.K.; de Groot, G.J.J.B. Non-Thermal Plasma Treatment of Agricultural Seeds for Stimulation of Germination, Removal of Surface Contamination and Other Benefits: A Review. Plasma Process. Polym. 2015, 12, 608–623. [Google Scholar] [CrossRef]
- Ling, L.; Jiangang, L.; Minchong, S. Improving Seed Germination and Peanut Yields by Cold Plasma Treatment. Plasma Sci. Technol. 2016, 18, 1027–1033. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, D.L.S.; De Lima Farias, M.; De Oliveira Vitoriano, J.; Alves Junior, C.; Torres, S.B. Use of Atmospheric Plasma in Germination of Hybanthus calceolaria (L.) Schulze-Menz Seeds. Rev. Caatinga 2018, 31, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Śliwka, M. Wykorzystanie Biostymulacji Laserowej Roślin do Zwiększenia Przyrostu ich Biomasy Oraz Zdolności Bioremediacyjnych Obieg Pierwiastków w Przyrodzie; Wyd. Instytut Ochrony Środowiska: Warszawa, Poland, 2005. [Google Scholar]
- Osman, Y.A.H.; El Tobgy, K.M.K.; El Sherbini, E.S.A. Effect of Laser Radiation Treatments on Growth, Yield and Chemical Constituents of Fennel and Coriander Plants. J. Appl. Sci. Res. 2009, 5, 244–252. [Google Scholar]
- Jiang, J.; Li, J.; Dong, Y. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato. Plasma Sci. Technol. 2018, 20. [Google Scholar] [CrossRef] [Green Version]
- Puač, N.; Škoro, N.; Spasić, K.; Živković, S.; Milutinović, M.; Malović, G.; Petrović, Z.L. Activity of catalase enzyme in Paulownia tomentosa seeds during the process ofgermination after treatments with low pressure plasma and plasma activated water. Plasma Process. Polym. 2018, 15, e1700082. [Google Scholar] [CrossRef]
- Bormashenko, E.; Shapira, Y.; Grynyov, R.; Whyman, G.; Bormashenko, J.; Drori, E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J. Exp. Bot. 2015, 66, 4013–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Guo, H.; Zong, J. Influence of low-vacuum helium cold plasma pre-treatment on the rooting and root growth of zoysiagrass (Zoysia Willd.) stolon cuttings. Plasma Sci. Technol. 2019, 21, 055504. [Google Scholar] [CrossRef]
- Tivendale, N.; Cohen, J.D. Analytical History of Auxin. J. Plant Growth Regul. 2015, 34, 708–722. [Google Scholar] [CrossRef]
- Jerzy, M.; Krzymińska, A. Rozmnażanie Wegetatywne Roślin Ozdobnych; Wyd. PWRiL: Poznań, Poland, 2005; pp. 1–132. [Google Scholar]
- Rout, G.R. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regul. 2006, 48, 111–117. [Google Scholar] [CrossRef]
- Szabó, V.; Magyar, L.; Hrotkó, K. Effect of leaf spray treatments on rooting and quality of Prunus mahaleb (L.) Cuttings. Acta Sci. Pol. Hortorum Cultus 2016, 15, 77–87. [Google Scholar]
- Woźniak, M.; Gałązka, A. Mikrobiom ryzosfery i jego korzystny wpływ na rosliny—Aktualna wiedza i perspektywy. Post. Mikrobiol. 2019, 58, 59–69. [Google Scholar] [CrossRef] [Green Version]
Molecular Weight | Specific Gravity in Temp.~180 °C | Freezing Temperature (°C) | Boiling Point (°C) | Condensed Gas Color |
---|---|---|---|---|
ozone O3 48.00 | 1.570 | −192.8 | −111.9 | Dark blue |
oxygen O2 32.00 | 1.118 | −218.9 | −182.9 | Light blue |
State | Color |
---|---|
solid | Red-purple |
liquid | Dark blue (not transparent) |
gaseous | Light blue (transparent in thin layer) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopacki, M.; Pawłat, J.; Skwaryło-Bednarz, B.; Jamiołkowska, A.; Stępniak, P.M.; Kiczorowski, P.; Golan, K. Physical Crop Postharvest Storage and Protection Methods. Agronomy 2021, 11, 93. https://doi.org/10.3390/agronomy11010093
Kopacki M, Pawłat J, Skwaryło-Bednarz B, Jamiołkowska A, Stępniak PM, Kiczorowski P, Golan K. Physical Crop Postharvest Storage and Protection Methods. Agronomy. 2021; 11(1):93. https://doi.org/10.3390/agronomy11010093
Chicago/Turabian StyleKopacki, Marek, Joanna Pawłat, Barbara Skwaryło-Bednarz, Agnieszka Jamiołkowska, Patrycja Maria Stępniak, Piotr Kiczorowski, and Katarzyna Golan. 2021. "Physical Crop Postharvest Storage and Protection Methods" Agronomy 11, no. 1: 93. https://doi.org/10.3390/agronomy11010093
APA StyleKopacki, M., Pawłat, J., Skwaryło-Bednarz, B., Jamiołkowska, A., Stępniak, P. M., Kiczorowski, P., & Golan, K. (2021). Physical Crop Postharvest Storage and Protection Methods. Agronomy, 11(1), 93. https://doi.org/10.3390/agronomy11010093