The Effect of Foliar Fertilization on the Resistance of Pea (Pisum sativum L.) Seeds to Mechanical Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Field Experiment
- −
- Conventional fertilizers: 131 g of N, 378 g of Mg, 239 g of S, 0.42 g of B, 27.4 g of Cu, 0.56 g of Fe, 130.3 g of Mn, 1.4 g of Zn, 3.5 g of C, 14 g of extract from algae and traces of plant hormones, betaine, amino acids, and thiamine;
- −
- Organic fertilizer: 10.9 g of N, 29.6 g of C, and 1360 g of total amino acids.
2.2. Weather Conditions
- K—value of hydrothermal coefficient,
- P—signifies the monthly sum of rainfall,
- ∑t—monthly sum of air temperatures >0 °C from a given month.
2.3. Sample Preparation
- WW—distilled water weight (g),
- WS—dry sample weight (g),
- Mf—final moisture content of sample (%),
- Mi—initial moisture content (%).
2.4. Evaluation of Pea Seed Properties and Compression Parameters
- φ—sphericity (%),
- L—length (mm),
- W—width (mm),
- T—thickness (mm).
2.5. Measurement of Mechanical Properties
- DR—relative deformation (%),
- D—maximum deformation (mm),
- T—thickness of seed (mm).
2.6. Chemical Composition of Seeds
- NFE—nitrogen free extract,
- CP—crude protein,
- CFa—crude fat,
- CFi—crude fiber,
- A—ash.
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Checa, O.E.; Rodriguez, M.; Wu, X.; Blair, M.W. Introgression of the Afila Gene into Climbing Garden Pea (Pisum sativum L.). Agronomy 2020, 10, 1537. [Google Scholar] [CrossRef]
- Gali, K.K.; Tar’an, B.; Madoui, M.-A.; van der Vossen, E.; van Oeveren, J.; Labadie, K.; Berges, H.; Bendahmane, A.; Lachagari, R.V.B.; Burstin, J. Development of a Sequence-Based Reference Physical Map of Pea (Pisum sativum L.). Front. Plant Sci. 2019, 10, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 2593–2605. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Ohm, J.B.; Chen, B.; Rao, J. Solid dispersion-based spray-drying improves solubility and mitigates beany flavor of pea protein isolate. Food Chem. 2019, 278, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Vázquez, G.; Loarca-Piña, G.; Figueroa-Cárdenas, J.D.; Mendoza, S. Electrospun fibers from blends of pea (Pisum sativum) protein and pullulan. Food Hydrocoll. 2018, 83, 173–181. [Google Scholar] [CrossRef]
- Chan, E.; Masatcioglu, T.M.; Koksel, F. Effects of different blowing agents on physical properties of extruded puffed snacks made from yellow pea and red lentil flours. J. Food Process. Eng. 2019, 42, 12989. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2018, 34, 126147. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, M.; Han, S.; Ma, S.; Zou, Z.; Ding, F.; Li, X.; Li, L.; Tang, B.; Wang, H.; et al. Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Sci. Rep. 2018, 8, 15430. [Google Scholar] [CrossRef] [Green Version]
- Acquah, C.; Zhang, Y.; Dubé, M.A.; Udenigwe, C.C. Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. CRFS 2020, 2, 61–69. [Google Scholar] [CrossRef]
- Faligowska, A.; Panasiewicz, K.; Szymańska, G.; Ratajczak, K.; Sulewska, H.; Pszczółkowska, A.; Kocira, A. Influence of Farming System on Weed Infestation and on Productivity of Narrow-Leaved Lupin (Lupinus angustifolius L.). Agriculture 2020, 10, 459. [Google Scholar] [CrossRef]
- Allred, C.D.; Allred, K.F.; Ju, Y.H.; Goeppinger, T.S.; Doerge, D.R.; Helferich, W.G. Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis 2004, 25, 1649–1657. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Gustaw, W.; Świeca, M.; Baraniak, B. A Study on the Mechanical Properties of Pea Protein Isolate Films. J. Food Process. Preserv. 2013, 38, 1726–1736. [Google Scholar] [CrossRef]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Available online: http://data.europa.eu/eli/reg/2011/1169/oj (accessed on 1 December 2020).
- Fageria, N.K.; Barbosa Filho, M.P.; Moreira, A.; Guimarӑes, C.M. Foliar fertilization of crop plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Singh, D.K.; Singh, A.K.; Singh, M.; Jamir, Z.; Srivastava, O.P. Effect of fertility levels and micronutrients on growth. nodulation. yield and nutrient uptake by pea (Pisum sativum L.). Legum. Res. 2014, 37, 93–97. [Google Scholar] [CrossRef]
- Fernández, V.; Sotiropoulos, T.; Brown, P. Foliar Fertilization. Scientific, Principles and Field Practices; International Fertilizer Industry Association (IFA): Paris, France, 2013; p. 14. [Google Scholar]
- Sulewska, H.; Niewiadomska, A.; Ratajczak, K.; Budka, A.; Panasiewicz, K.; Faligowska, A.; Wolna-Maruwka, A.; Dryjański, L. Changes in Pisum sativum L. Plants and in Soil as a Result of Application of Selected Foliar Fertilizers and Biostimulators. Agronomy 2020, 10, 1558. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Ratajczak, K.; Waraczewska, Z.; Budka, A. The Influence of Bio-Stimulants and Foliar Fertilizers on Yield, Plant Features, and the Level of Soil Biochemical Activity in White Lupine (Lupinus albus L.) Cultivation. Agronomy 2020, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurement. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef]
- Haseeb, M.; Maqbool, N. Influence of Foliar Applied Nitrogen on Reproductive Growth of Sunflower (Helianthus annuus L.) under Water Stress. Agric. Sci. 2015, 6, 1413–1420. [Google Scholar] [CrossRef]
- Banerjee, P.; Visha Kumari, V.; Nath, R.; Bandyopadhyay, P. Seed priming and foliar nutrition studies on relay grass pea after winter rice in lower Gangetic plain. J. Crop. Weed 2019, 15, 72–78. [Google Scholar] [CrossRef]
- Księżak, J. Reaction of pea (Pisum sativum) on natural and mineral fertilization. Fragm. Agron. 2017, 34, 77–92. (In Polish) [Google Scholar]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Bonini, P.; Colla, G.; Rouphael, Y. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Złotek, U.; Wójcik, W. Effect of arachidonic acid elicitation on lettuce resistance towards (Botrytis cinerea). Sci. Hortic. 2014, 179, 16–20. [Google Scholar] [CrossRef]
- Zodape, S.T.; Mukhopadhyay, S.; Eswaran, K.; Reddy, M.P.; Chikara, J. Enhanced yield and nutritional quality in green gram (Phaseolus radiata L) treated with seaweed (Kappaphycus alvarezii) extract. J. Sci. Ind. Res. 2010, 69, 468–471. [Google Scholar]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Matyjaszczyk, E. “Biorationals” in integrated pest management strategies. J. Plant Dis. Prot. 2018, 125, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Kocira, A.; Lamorska, J.; Kornas, R.; Nowosad, N.; Tomaszewska, M.; Leszczyńska, D.; Kozłowicz, K.; Tabor, S. Changes in Biochemistry and Yield in Response to Biostimulants Applied in Bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Koszel, M.; Findura, P. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids. Front. Plant Sci. 2018, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Azadbakht, M.; Ghajarjazi, E.; Amiri, E.; Abdigaol, F. Determination of Some Physical and Mechanical Properties of Pofaki Variety of Pea. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 9, 464–471. [Google Scholar]
- Afkari Siah, A.; Ismailian, M.; Minaie, S.; Pirayesh, A. The effect of mechanical load on the damages to apple after the storage phase. J. Food Sci. 2007, 3, 37–44. [Google Scholar] [CrossRef]
- Tabatabaeefar, A.; Rajabipour, A. Modeling the Mass of Apples by Geometrical attributes. Sci. Hortic 2005, 105, 373–382. [Google Scholar] [CrossRef]
- Kabas, O.; Ozemerzi, A.; Akinci, I. Physical properties of cactus pear grown wild in Turkey. J. Food Eng. 2006, 73, 198–202. [Google Scholar] [CrossRef]
- Zhiguo, L.; Pingpingi, L.; Jizhan, L. Physical and mechanical properties of tomato fruits as related to robot’s harvesting. J. Food Eng. 2011, 103, 170–178. [Google Scholar] [CrossRef]
- Miraei Ashtiani, S.H.; Golzarian, M.R.; Motie, J.B.; Emadi, B.; Jamal, N.N.; Mohammadinezhad, H. Effect of Loading Position and Storage Duration on the Textural Properties of Eggplant. Int. J. Food Prop. 2016, 19, 814–825. [Google Scholar] [CrossRef]
- Arévalos, A.; Redondo, E.; Insfrán, A. Daños mecánicos en productos de la industria agrícola: Revisión de la literatura. Lat. Am. J. Appl. Eng. 2019, 4, 1–14. (In Spanish) [Google Scholar]
- Hashemi, S.M.B.; Khaneghah, A.M. Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Prog. Org. Coat. 2017, 110, 35–41. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Khaneghah, A.M.; Ghahfarrokhi, M.G.; Eş, I. Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Technol. 2017, 125, 26–34. [Google Scholar] [CrossRef]
- Goli, A.; Khazaei, J.; Taheri, M.; Khojamli, A.; Sedaghat, A. Effect of mechanical damage on soybean germination. Int. Acad. J. Sci. Eng. 2016, 3, 48–58. [Google Scholar]
- Petrů, M.; Mašín, I. Application of Mechanics to Plant Seeds as a Granular or Particulate Material. In Advances in Seed Biology; Jimenez-Lopez, J.C., Ed.; InTech: London, UK, 2017; pp. 319–338. [Google Scholar] [CrossRef] [Green Version]
- Paixão, C.S.; Chrispin, C.P.; Silva, R.P.D.; Girio, L.A.; Voltarelli, M.A. Physical and physiological quality of soybean seeds at three speeds of the harvester. Rev. Bras. De Eng. Agric. E Ambient. 2017, 21, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, F.; Pekı̇tkan, F.G.; Esgı̇cı̇, R.; Elicin, A.K. Some mechanical properties of soybean (Glycine max) stems and seeds. Sci. Pap. Ser. A Agron. 2017, 60, 352–355. [Google Scholar]
- Krisnawati, A.; Adie, M.M. Identification of Soybean Genotypes for Pod Shattering Resistance Associated with Agronomical and Morphological Characters. Biosaintifika J. Biol. Biol. Educ. 2017, 9, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Krisnawati, A.; Adie, M.M. Variability on morphological characters associated with pod shattering resistance in soybean. Biodivers. J. Biol. Divers. 2017, 18, 193–200. [Google Scholar] [CrossRef]
- Neves, J.M.; Oliveira, J.A.; Silva, H.P.D.; Reis, R.D.G.; Zuchi, J.; Vieira, A.R. Quality of soybean seeds with high mechanical damage index after processing and storage. Rev. Bras. Eng. Agric. E Ambient. 2016, 20, 1025–1030. [Google Scholar] [CrossRef] [Green Version]
- Kuźniar, P.; Szpunar-Krok, E.; Findura, P.; Buczek, J.; Bobrecka-Jamro, D. Physical and chemical properties of soybean seeds determine their susceptibility to mechanical damage. Zemdirb. Agric. 2016, 103, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, F.; Valizade, S.; Dowlatshah, A. Mechanical damage to green and red lentil seeds. Food Sci. Nutr. 2017, 5, 943–947. [Google Scholar] [CrossRef]
- Shahbazi, F. Crushing Susceptibility of Vetch Seeds Under Impact Loading. Cercet. Agron. Mold. 2017, 50, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Sinha, J.P.; Kaukab, S.; Tomar, B. Study of engineering properties of selected vegetable seeds. Indian J. Agric. Sci. 2019, 89, 1693–1697. [Google Scholar]
- Aghkhani, M.; Ashtiani, S.; Motie, J.B.; Abbaspour-Fard, M. Physical properties of christmas lima bean at different moisture content. Int. Agrophys. 2012, 26, 341–346. [Google Scholar] [CrossRef]
- Champathi Gunathilake, M.C.; Bhat, J.; Singh, I.R.; Tharanga Kahandawala, K.A. Dynamics of the physical properties of soybean during storage under tropical condition. Legum. Res. 2019, 42, 370–374. [Google Scholar] [CrossRef]
- Tavakoli, H.; Rajabipour, A.; Mohtasebi, S.S. Moisture-dependent some engineering properties of soybean. Int. J. Agric. Eng. 2009, 9, 99–101. [Google Scholar]
- Altuntas, E.; Demirtola, H. Effect of moisture content on physical properties of some grain legume seeds. N. Z. J. Crop. Hort 2007, 35, 423–433. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources 2006. First Update 2007. A Framework for International Classification, Correlation and Communication. Available online: http://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf (accessed on 1 December 2020).
- Skowera, B.; Puła, J. Extreme pluviothermal conditions in the spring period in Poland in 1971–2000. Acta Agrophys. 2004, 3, 171–177. (In Polish) [Google Scholar]
- ASAE standard S352.2. Moisture Measurement—Ungrounded Grains and Seeds; American Society of Agricultural Engineers: St Joseph, MI, USA, 2006. [Google Scholar]
- Kibar, H.; Öztürk, T. Physical and mechanical properties of soybean. Int. Agrophys. 2008, 22, 239–244. [Google Scholar]
- Davies, R.M.; Zibokere, D.S. Effect of moisture content on some physical and mechanical properties of three varieties of cowpea (Vigna unguiculata (L) Walp). Agric. Eng. Int. CIGR J. 2011, 13, 1–16. [Google Scholar]
- Razari, M.A.; Emadzadeh, B.; Rafe, A.; Mohammed, A.A. Physical properties of pistachio nut and its kernel as a function of moisture content and variety. Geometric properties. J. Food Eng. 2007, 81, 209–217. [Google Scholar] [CrossRef]
- Gely, M.C.; Pagano, A.M. Effect of moisture content on engineering properties of sorghum grains. Agric. Eng. Int. CIGR J. 2017, 19, 200–209. [Google Scholar]
- Moshenin, N.N. Physical Properties of Plant and Animal Materials; Gordon and Breach Science Publishers: New York, NY, USA, 1986; pp. 8–11. [Google Scholar]
- Shafaei, S.M.; Nourmohamadi-Moghadami, A.; Kamgar, S.; Eghtesad, M. Development and validation of an integrated mechatronic apparatusfor measurement of friction coefficients of agricultural products. Inf. Process. Agric. 2020, 7, 93–108. [Google Scholar] [CrossRef]
- Sharma, V.; Das, L.; Prandhan, R.C.; Naik, N.S.; Bhatnagar, N.; Kurell, R.S. Physical properties of tung seed: An industrial oil yielding crop. Ind. Crop. Prod. 2011, 33, 440–444. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Abbaspour-Fard, M.H.; Emadi, B.; Khazaei, N.B. Modelling and analysis of compressive strength properties of parboiled paddy and milled rice. Int. Agrophys. 2014, 28, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Kulig, R.; Łysiak, G.; Skonecki, S. Prediction of pelleting outcomes based on moisture versus strain hysteresis during the loading of individual pea seeds. Biosyst. Eng. 2015, 129, 226–236. [Google Scholar] [CrossRef]
- Altuntas, E.; Yıldız, M. Effect of moisture content on some physical and mechanical properties of faba bean (Vicia faba L.) grains. J. Food Eng. 2007, 78, 174–183. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International Method. Available online: http://www.eoma.aoac.org/ (accessed on 1 December 2020).
- Rybiński, W.; Bańda, M.; Bocianowski, J.; Börner, A.; Starzycki, M.; Szot, B. Estimation of mechanical properties of seeds of common vetch accessions (Vicia sativa L.) and their chemical composition. Genet. Resour. Crop. Evol. 2015, 62, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, J.; Jeliński, T.; Błaszczak, W.; Konopka, J.; Rybiński, W. The effect of seed size and microstructure of their mechanical properties and frictional behavior. Int. J. Food Prop. 2013, 16, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Rybiński, W.; Rusinek, R.; Szot, B.; Bocianowski, J.; Starzycki, M. Analysis of interspecies physicochemical variation of grain legume seeds. Int. Agrophys. 2014, 28, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Rybiński, W.; Starzycki, M.; Rusinek, R.; Bocianowski, J.; Szot, B. Variation of legume seed’s chemical composition and resistance to mechanical damage. Plant Breed. Acclim. Inst. Bull. 2013, 268, 193–209. (In Polish) [Google Scholar]
- Herák, D.; Kabutey, A.; Sedláček, A.; Gűrdil, G. Mechanical behaviour of several layers of selected plant seeds under compression loading. Res. Agric. Eng. 2012, 58, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Isik, E. Some engineering properties of soybean grains. Am. J. Food Technol. 2007, 2, 115–125. [Google Scholar] [CrossRef]
- Kuźniar, P.; Jarecki, W.; Bobrecka-Jamro, D. Mechanical properties of the selected legume seeds and their weight and thickness. Agric. Eng. 2013, 4, 171–177. [Google Scholar]
- Shahbazi, F.; Dolatshah, A.; Valizadeh, S. Evaluation and modeling the mechanical damage to cowpea seeds under impact loading. Qual. Assur. Saf. Crop. Foods 2014, 6, 453–458. [Google Scholar] [CrossRef]
- Rybiński, W.; Szot, B.; Rusinek, R. Estimation of morphological traits and mechanical properties of grasspea seeds (Lathyrus sativus L.) originating from EU countries. Int. Agrophys. 2008, 22, 261–275. [Google Scholar]
- Oliete, B.; Cases, E.; Saurel, R. Improvement of the techno-functional properties of pea proteins by microfluidization. Int. J. Food Biosyst. Eng. 2017, 4, 57–68. [Google Scholar]
- Davis, J.; Sonesson, U.; Baumgartner, D.U.; Nemecek, T. Environmental impact of four meals with different protein sources: Case studies in Spain and Sweeden. Food Res. Int. 2010, 43, 1874–1884. [Google Scholar] [CrossRef]
- Ghasemian, V.; Ghalavand, A.; Sorooshzadeh, A.; Pirzad, A. The effect of iron, zinc and manganese on quality and quantity of soybean seed. J. Phytol. 2010, 2, 73–79. [Google Scholar]
- Mandić, V.; Simić, A.; Krnjaja, V.; Bijelić, Z.; Tomić, Z.; Stanojković, A.; Ruzić Muslić, D. Effect of foliar fertilization on soybean grain yield. Biotechnol. Anim. Husb. 2015, 31, 133–143. [Google Scholar] [CrossRef]
- Pandey, N.; Pathak, G.C.; Sharma, C.P. Zinc is critically required for pollen function and fertilization in lentil. J. Trace Elem. Med. Boil. 2006, 20, 89–96. [Google Scholar] [CrossRef]
- Shahbazi, F.; Sharafi, R.; Moomevandi, S.J.; Daneshvar, M. Influence of foliar iron fertilization rate on the breakage susceptibility of wheat seeds. J. Plant Nutr. 2015, 38, 2204–2216. [Google Scholar] [CrossRef]
- Shahbazi, F.; Sharafi, R.; Biranvand, F.; Tolabi, N.Z. Influence of different fertilization level of zinc sulphate and plant density on the breakage susceptibility of triticale seeds. Cercet. Agron. Mold. 2012, 4, 152. [Google Scholar] [CrossRef] [Green Version]
Foliar Fertilizers | Fertilizer Characteristics | Term and Dose | ||
---|---|---|---|---|
Conventional fertilizer | BioFol Plex | Biostimulator complexed with humic acids | 2.0% Ntot; 0.3% Mg; 5.0% S; 0.15% B; 0.05% Cu; 0.20% Fe; 0.10% Mn; 0.50% Zn; 1.25% C; 5.0% extract from algae; traces of plant hormones, betaine (C5H11NO2), amino acids, thiamine | Inflorescence emergence (BBCH 51–55), 2.0 L∙ha−1 |
BioFol Mag | 15.0 g/L Ktot; 127.0 g/L MgOtot; 50.0 g/L Ntot | Flowering (BBCH 61–65), 1.0 L∙ha−1 | ||
GranuFol CuMan | Crystalline fertilizer | 43.3%SO3 tot; 5.0% Cu elementary; 25.0% Mn elementary | Inflorescence emergence (BBCH 51–55), 0.52 kg∙ha−1 | |
MultiFol Mag | Liquid fertilizers complexed with humic acids | 3.84% NO3−-N; 12.25% MgOtot | Inflorescence emergence (BBCH 51–55), 1.5 L∙ha−1 | |
Organic fertilizer | Natural Crop SL | Enzymatic L-amino acid concentrate | 9.0% NO2−-N; 24.5% Corg; total >50%, free >2.0% L-amino acids (GLY, PRO, HYP, GLU, ALA, ARG, ASP, SER, HIS, LYS, LEU, VAL, PHE, ILE, THR, TYR, CYS, MET) | I. Inflorescence emergence (BBCH 51–55), 1.0 L∙ha−1 II. Flowering (BBCH 61–65), 1.0 L∙ha−1 |
Variables | Dimensions (mm) | Sphericity (%) | Weight (mg) | Density (kg·m−3) | |||
---|---|---|---|---|---|---|---|
Length | Width | Thickness | |||||
Cultivar | Akord | 7.12 ± 0.46 b* | 6.72 ± 0.53 f | 5.91 ± 0.55 de | 92.1 ± 3.9 de | 221 ± 41 d | 1.47 ± 0.16 a |
Batuta | 7.06 ± 0.34 ab | 6.36 ± 0.45 c | 5.88 ± 0.54 d | 90.9 ± 4.5 bc | 218 ± 28 cd | 1.57 ± 0.19 e | |
Cysterski | 7.08 ± 0.50 ab | 6.22 ± 0.57 a | 5.68 ± 0.59 a | 89.0 ± 4.8 a | 202 ± 35 a | 1.52 ± 0.16 bc | |
Ezop | 7.04 ± 0.42 ab | 6.62 ± 0.46 ef | 6.04 ± 0.55 e | 93.1 ± 3.4 e | 226 ± 33 de | 1.53 ± 0.16 bcd | |
Lasso | 7.08 ± 0.40 ab | 6.45 ± 0.55 cd | 5.83 ± 0.62 bc | 90.8 ± 4.4 bc | 212 b ± 31 c | 1.50 ± 0.15 ab | |
Mecenas | 7.04 ± 0.46 ab | 6.29 ± 0.45 ab | 5.76 ± 0.57 abc | 90.0 ± 4.5 ab | 206 ± 34 ab | 1.52 ± 0.20 bc | |
Mentor | 6.98 ± 0.39 a | 6.45 ± 0.50 cd | 5.73 ± 0.60 ab | 91.1 ± 3.8 cd | 211 ± 33 bc | 1.55 ± 0.15 cde | |
Tarchalska | 7.25 ± 0.50 c | 6.53 ± 0.52 de | 5.95 ± 0.60 de | 90.5 ± 5.1 bc | 233 ± 56 e | 1.56 ± 0.16 de | |
Fertilization | Control | 7.19 ± 0.43 c | 6.48 ± 0.51 b | 5.91 ± 0.67 b | 90.4 ± 4.9 a | 225 ± 34 c | 1.55 ± 0.18 b |
N1 | 6.98 ± 0.45 a | 6.37 ± 0.55 a | 5.74 ± 0.48 a | 90.8 ± 4.1 ab | 207 ± 36 a | 1.53 ± 0.17 ab | |
N2 | 7.06 ± 0.42 b | 6.53 ± 0.51 b | 5.89 ± 0.59 b | 91.6 ± 4.2 b | 217 ± 33 b | 1.51 ± 0.17 a | |
Year | 2015 | 7.25 ± 0.41 c | 6.61 ± 0.49 c | 6.30 ± 0.53 c | 92.4 ± 4.0 c | 232 ± 34 c | 1.46 ± 0.16 a |
2016 | 6.89 ± 0.41 a | 6.25 ± 0.52 a | 5.81 ± 0.44 b | 91.5 ± 4.2 b | 198 ± 33 a | 1.49 ± 0.13 a | |
2017 | 7.10 ± 0.44 b | 6.51 ± 0.51 b | 5.44 ± 0.43 a | 88.9 ± 4.5 a | 219 ± 30 b | 1.63 ± 0.17 b | |
Maen | 7.08 ± 0.08 | 6.46 ± 0.17 | 5.85 ± 0.12 | 90.9 ± 1.25 | 216 ± 10.4 | 1.53 ± 0.17 |
Nutrients | Fertilization | |||
---|---|---|---|---|
Control | N1 | N2 | ||
Organic components and ash (g∙kg−1) | Protein | 255 ± 11.7 a* | 261 ± 11.1 b | 258 ± 11.4 ab |
Fat | 15.3 ± 5.10 a | 18.6 ± 3.40 b | 15.3 ± 5.40 a | |
Fiber | 55.7 ± 9.20 a | 56.7 ± 10.7 a | 56.5 ± 11.1 a | |
Ash | 32.6 ± 6.50 a | 36.9 ± 7.36 b | 32.7 ± 5.89 a | |
NFE | 642 ± 22.0 b | 626 ± 25.0 a | 638 ± 22.0 ab | |
Macronutrients (g∙kg−1) | P | 3.63 ± 0.45 a | 3.47 ± 0.50 a | 3.41 ± 0.46 a |
K | 9.40 ± 0.60 ab | 9.67 ± 0.82 b | 9.21 ± 0.74 a | |
Ca | 0.41 ± 0.10 a | 0.43 ± 0.10 a | 0.41 ± 0.09 a | |
Mg | 1.11 ± 0.16 a | 1.09 ± 0.10 a | 1.04 ± 0.08 a | |
Na | 0.009 ± 0.003 a | 0.010 ± 0.003 a | 0.009 ± 0.003 a | |
Micronutrients (mg∙kg−1) (ppm) | Fe | 54.7 ± 10.1 b | 47.7 ± 6.40 a | 48.0 ± 5.50 a |
Mn | 12.7 ± 2.90 a | 12.4 ± 1.70 a | 11.6 ± 2.40 a | |
Zn | 35.8 ± 7.10 b | 30.0 ± 5.50 a | 30.7 ± 7.50 a | |
Cu | 4.55 ± 0.70 b | 3.93 ± 0.47 a | 4.06 ± 0.69 a |
Variables | Strength Parameters | Length | Width | Thickness | Sphericity | Weight | Density |
---|---|---|---|---|---|---|---|
Cultivar | FD | −0.784 | 0.034 | −0.581 | 0.273 | −0.529 | −0.552 |
DR | −0.045 | −0.386 | 0.083 | −0.222 | −0.208 | 0.081 | |
ED | −0.508 | −0.654 | 0.554 | −0.408 | −0.483 | 0.533 | |
Fertilization | FD | −0.792 | 0.037 | −0.972 | 0.896 | −0.675 | −0.967 |
DR | −0.565 | 0.345 | −0.997 | 0.989 | −0.413 | −0.998 | |
ED | −0.597 | 0.308 | −0.999 | 0.983 | −0.449 | −1.000 | |
Year | FD | −0.999 | −0.990 | 0.022 | −0.149 | −1.000 | 0.031 |
DR | −0.519 | −0.350 | 0.890 | −0.941 | −0.474 | 0.894 | |
ED | −0.739 | −0.599 | 0.726 | −0.807 | −0.702 | 0.732 |
Variables | Strength Parameters | Protein | Fat | Fiber | Ash | NFE |
---|---|---|---|---|---|---|
Cultivar | FD | 0.423 | −0.539 | 0.444 | 0.726 | −0.669 |
DR | 0.212 | −0.103 | −0.265 | 0.332 | −0.069 | |
ED | −0.385 | −0.137 | −0.037 | −0.135 | 0.493 | |
Fertilization | FD | 0.665 | 0.250 | 0.870 | 0.280 | −0.485 |
DR | 0.401 | −0.062 | 0.674 | −0.031 | −0.190 | |
ED | 0.437 | −0.023 | 0.702 | 0.008 | −0.228 | |
Year | FD | 0.758 | 0.797 | 0.250 | 0.577 | −0.665 |
DR | −0.214 | 0.910 | −0.733 | −0.444 | 0.341 | |
ED | 0.070 | 0.990 | −0.512 | −0.174 | 0.063 |
Variables | Strength Parameters | Phosphorus P | Potassium K | Calcium Ca | Magnesium Mg | Sodium Na |
---|---|---|---|---|---|---|
Cultivar | FD | −0.095 | 0.164 | −0.146 | 0.197 | 0.068 |
DR | 0.159 | 0.464 | 0.276 | −0.123 | −0.220 | |
ED | −0.482 | −0.396 | −0.183 | −0.480 | 0.269 | |
Fertilization | FD | −1.000 | −0.169 | 0.339 | −0.918 | −0.216 |
DR | −0.960 | −0.466 | 0.032 | −0.996 | −0.508 | |
ED | −0.970 | −0.431 | 0.071 | −0.991 | −0.474 | |
Years | FD | 0.871 | −0.396 | 0.883 | 0.996 | 0.808 |
DR | −0.019 | −0.996 | 0.833 | 0.556 | 0.902 | |
ED | 0.263 | −0.931 | 0.955 | 0.767 | 0.987 |
Variables | Strength Parameters | Iron Fe | Manganese Mn | Zinc Zn | Copper Cu |
---|---|---|---|---|---|
Cultivar | FD | 0.430 | 0.440 | 0.528 | 0.306 |
DR | 0.609 | 0.406 | 0.526 | 0.469 | |
ED | −0.072 | −0.286 | −0.338 | −0.097 | |
Fertilization | FD | −0.953 | −0.884 | −0.926 | −0.891 |
DR | −0.812 | −0.985 | −0.764 | −0.706 | |
ED | −0.834 | −0.978 | −0.789 | −0.733 | |
Years | FD | −0.898 | 0.432 | 0.988 | 0.703 |
DR | −0.040 | 0.999 | 0.608 | −0.292 | |
ED | −0.319 | 0.945 | 0.807 | −0.011 |
Strength Parameters | Fertilization | Regression Equation (N = 24) | R2 |
---|---|---|---|
FD | Control | y = 443.6232 * − 0.3289 NFE + 28.4667Density * − 1.4539Cultivar ** − 11.5601P * + 26.3420Mg * + 1.1204Ash | 0.88 |
N1 | y = 1079.77 *** − 0.56NFE * − 1.28Fe *** + 14.58Mg + 0.58Sphericity − 1138.43Na * + 0.81Fiber ** + 2.01Zn *** − 73.53Width ** − 5.99P − 484.50Density + 788.85Weight ** − 17.14Cu ** − 1.67Ash * + 0.96Cultivar | 0.95 | |
N2 | y = 457.574 *** + 2.104Zn *** − 14.934Lenght * − 0.560Protein *** + 2283.436Na *** + 9.913P ** + 0.792Sphericity − 16.483Cu * + 0.511Fat | 0.88 | |
DR | Control | y = 6.0496 *** + 0.0161Fat * − 21.0789Na − 0.0065Fiber − 0.6274Mg * + 0.0101Zn | 0.47 |
N1 | y = 6.35363 *** − 1.16344Mg ** + 0.00676Fat + 0.06400K − 0.00906Fe + 0.00658Zn + 0.00469Fiber + 0.37720Density | 0.65 | |
N2 | y = 5.914817 *** + 0.116167K * − 0.031154Ash ** − 0.091189Mn * + 0.121273P + 0.012811Zn + 0.005388Fiber | 0.55 | |
ED | Control | y = 151.1381 *** − 0.1333NFE *** − 0.0527Protein * + 2.3395Cu *** − 1.7349P − 0.3091Lenght − 0.2398Ash * − 0.0295Fe + 8.5723Density * − 0.3934Mn* | 0.86 |
N1 | y = 125.633 *** + 2.915Density−0.164 Fat * − 1.297K ** + 0.037Fe − 0.635Sphericity ** 274.978Na * + 0.050Zn + 7.429Mg − 4.538Ca | 0.76 | |
N2 | y = 105.6475 *** + 6.0873Weight − 0.1550Protein *** + 2.0472P *** − 1.6873Lenght − 4.5094Density − 0.1188 Fat * 176.0050Na * − 0.4142Mn * + 0.7384K* + 0.0460Fe | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpunar-Krok, E.; Kuźniar, P.; Pawlak, R.; Migut, D. The Effect of Foliar Fertilization on the Resistance of Pea (Pisum sativum L.) Seeds to Mechanical Damage. Agronomy 2021, 11, 189. https://doi.org/10.3390/agronomy11010189
Szpunar-Krok E, Kuźniar P, Pawlak R, Migut D. The Effect of Foliar Fertilization on the Resistance of Pea (Pisum sativum L.) Seeds to Mechanical Damage. Agronomy. 2021; 11(1):189. https://doi.org/10.3390/agronomy11010189
Chicago/Turabian StyleSzpunar-Krok, Ewa, Piotr Kuźniar, Renata Pawlak, and Dagmara Migut. 2021. "The Effect of Foliar Fertilization on the Resistance of Pea (Pisum sativum L.) Seeds to Mechanical Damage" Agronomy 11, no. 1: 189. https://doi.org/10.3390/agronomy11010189
APA StyleSzpunar-Krok, E., Kuźniar, P., Pawlak, R., & Migut, D. (2021). The Effect of Foliar Fertilization on the Resistance of Pea (Pisum sativum L.) Seeds to Mechanical Damage. Agronomy, 11(1), 189. https://doi.org/10.3390/agronomy11010189