The Effect of Fertilization with Spent Mushroom Substrate and Traditional Methods of Fertilization of Common Thyme (Thymus vulgaris L.) on Yield Quality and Antioxidant Properties of Herbal Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- cv. “Słoneczko” (Polish cultivar)
- cv. “De Dolj” (Romanian cultivar)
- control treatment—without fertilization
- mineral NPK fertilization (100%): N—50, P—40, K—60 kg ha−1
- spent mushroom substrate (SMS) (100%): 15 t ha−1
- SMS (70%) + NPK (30%): 10.5 t ha−1 + N—15, P—12, K—18 kg ha−1
- SMS (50%) + NPK (50%): 7.5 t ha−1 + N—25, P—20, K—30 kg ha−1
- SMS (30%) + NPK (70%): 4.5 t ha−1 + N—37.5, P—30, K—45 kg ha−1
- fermented cattle manure: 15 t ha−1
- Single rows every 30 cm (seeding rate of 3.5 kg ha−1)
- Single rows every 40 cm (seeding rate of 3.0 kg ha−1).
2.2. Observations
2.3. Study Measurements
2.3.1. Essential Oil
2.3.2. Total Polyphenolic Content
2.3.3. Flavonoid Content
2.3.4. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Content
2.3.5. Antioxidant Activity
2.3.6. Reducing Power of Extracts (FRAP Assay)
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Influence of the Varietal Factor on the Productivity and Quality of Thyme
4.2. Effect of SMS Fertilization on the Yield and Quality of Thyme Raw Material
4.3. Effect of SMS Fertilization on Soil Quality—The Impact of Soil Substrate on the Size and Quality of the Crops
4.4. The Impact of Row Spacing on the Yield and Quality of Thyme Raw Material
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, J.D.; Manicacci, D.; Tarayre, M. Thirty-five years of thyme: A tale of two polymorphisms. BioScience 1998, 48, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Borgen, A.; Davanlou, M. Biological control of com-mon bunt (Tilletia tritici) in organic agriculture. J. Crops Prod. 2000, 3, 157–171. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Haliniarz, M.; Harasim, E.; Kołodziej, B.; Yakimovich, A. Foliar applied biopreparations as a natural method to increase the productivity of garden thyme (Thymus vulgaris L.) and to improve the quality of herbal raw material. Acta Sci. Pol. Hortorum Cultus 2020, 19, 107–118. [Google Scholar] [CrossRef]
- Lau, K.L.; Tsang, Y.Y.; Chiu, S.W. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 2003, 52, 1539–1546. [Google Scholar] [CrossRef]
- Singh, A.D.; Vilkineswary, S.; Abdullah, N.; Sekaran, M. Enzymes from spent mushroom substrate of Pleurotus sajor-caju for the decolourisation and detoxification of textile dyes. World J. Microbiol. Biotechnol. 2011, 27, 535–545. [Google Scholar] [CrossRef]
- Williams, B.C.; McMullans, S.; McCahey, S. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour. Technol. 2001, 79, 227–230. [Google Scholar] [CrossRef]
- Jasińska, A. Spent mushroom compost (SMC)—Retrieved added value product closing loop in agricultural production. Acta Agrar. Debr. 2018, 150, 185–202. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Yakimovich, A.; Kołodziej, B.; Tomczyńska-Mleko, M. Evaluation of spent mushroom substrate, mineral NPK fertilization and manure fertilization on chamomile (Chamomila recutita L. Rausch) yield and raw material quality. Acta Sci. Pol. Hortorum Cultus 2018, 17, 3–16. [Google Scholar] [CrossRef]
- Jordan, S.N.; Mullen, G.J.; Murphy, M.C. Composition variability of spent mushroom compost in Ireland. Bioreosur. Technol. 2008, 99, 411–418. [Google Scholar] [CrossRef]
- Paredes, C.; Medina, E.; Moral, R.; Perez-Murcia, M.D.; Moreno-Caselles, J.; Bustamante, M.A.; Cecilia, J.A. Characterization of the different organic matter fractions of spent mushroom substrate. Commun. Soil Sci. Plant Anal. 2009, 40, 150–161. [Google Scholar] [CrossRef]
- Elsakhawy, T.A.; Abd El-Rahem, W.T. Evaluation of Spent Mushroom Substrate Extract as a Biofertilizer for Growth Improvement of Rice (Oryza sativa L.). Egypt. J. Soil. Sci. 2020, 60, 31–42. [Google Scholar] [CrossRef]
- Machado, A.M.B.; Souse Dias Santos, E.E.C.; Freitas, R.T.F. Spent mushroom substrate of Agaricus bluzei in broiler chicks diet. Rev. Bras. Zootec. 2007, 36, 1113–1118. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, R.S.; Ávila, C.L.S.; Sousa Dias, E.; Bertechini, A.G.; Schwan, R.F. Utilization on the spent substrate of Pleurotas sajor caju mushroom in broiler chicks ration and the effect on broiler chicken performance. Acta Sci. Anim. Sci. 2009, 31, 139–144. [Google Scholar] [CrossRef]
- Curtis, J.; Suess, A. Report: Value-Added Strategies for Spent Mushroom Substrate in BC; British Columbia Ministry of Agricultural and Lands: Victoria, BC, Canada, 2006. [Google Scholar]
- Guo, M.X.; Chorover, J. Leachate mitigation from spent mushroom substrate through intact and repacked subsurface soil columns. Waste Manag. 2006, 26, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Paredes, C.; Bastamante, M.A.; Moral, R.; Moreno-Caselles, J. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 2012, 173, 152–161. [Google Scholar] [CrossRef]
- Maher, M.J.; Smyth, S.; Dodd, V.A.; McCabe, T.; Magette, W.L.; Duggan, J.; Hennerty, M.J. Managing Spent Mushroom Compost; Teagasc: Dublin, Ireland, 2000; pp. 111–121. [Google Scholar]
- Song, L.; Siu-Wai, C. Dual roles of spent mushroom substrate on soil improvement and enhanced drought tolerance of wheat Triticum aestivum. In Proceedings of the International Conferences, 3rd QLIF Congress, Crop Production, Soil Management, Stuttgart, Germany, 20–23 March 2007. [Google Scholar]
- Jordan, S.N.; Mullen, G.J. Spend mushroom legislation in Ireland. Proc. ESAI Environ. 2007, 37–41. [Google Scholar]
- Uzun, I. Use of spent mushroom compost in sustainable fruit production. J. Fruit Ornam. Plant Res. 2004, 12, 157–165. [Google Scholar]
- Roy, S.; Barman, S.; Chakraborty, U.; Chakraborty, B. Evaluation of spent mushroom substrate as biofertilizer for growth improvement of Capsicum annuum L. J. Appl. Biol. Biotechnol. 2015, 3, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.R.; Watabe, M.; Stewart, T.A.; Millar, B.C.; Moore, J.E. Pelleted organo-mineral fertilizers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands. Waste Manag. 2007, 27, 1117–1128. [Google Scholar] [CrossRef]
- Polat, E.; Uzun, I.H.; Topcuoglu, B.; Önal, K.; Onus, A.N.; Karaca, M. Effects of spent mushroom compost on quality and productivity of cucumber (Cucumis dativus L.) grown in green-houses. Afr. J. Biotechnol. 2009, 8, 176–180. [Google Scholar]
- Salomez, J.; De Bolle, S.; Sleutel, S.; De Neve, S.; Hofman, G. Nutrient Legislation in Flanders (Belgium). In Proceedings, More Sustainability in Agriculture: New Fertilizers and Fertilization Management; CRA, Agricultural Research Council: Rome, Italy, 2009; pp. 546–551. [Google Scholar]
- Kwiatkowski, C.A. Yield and quality of chamomile (Chamomilla recutita (L.) Rausch.) raw material depending on selected foliar sprays and plant spacing. Acta Sci. Pol. Hortorum Cultus 2015, 14, 143–156. [Google Scholar]
- Kwiatkowski, C.A.; Haliniarz, M.; Harasim, E. Weed infestation and health of organically grown Chamomile (Chamomilla recutita (L.) Rausch) depending on selected foliar sprays and row spacing. Agriculture 2020, 10, 168. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Yakimovich, A. Effect of nitrogen fertilization and plant density on seed yield and fat content and quality of pot marigold (Calendula officinalis L.) under climatic conditions of Belarus. Acta Sci. Pol. Hortorum Cultus 2020, 19, 3–12. [Google Scholar] [CrossRef]
- Panaitescu, L.; Niță, S.; Lungu, M.L.; Niță, L.D.; Shenk, I. Contributions to the implementation of sustainable technologies for the cultivation of thyme (Thymus vulgaris L.) in the dobrodgea plateau. Res. J. Agric. Biol. Sci. 2019, 51, 172–177. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Polish Pharmacopoeia IX; PTFarm: Warszawa, Poland, 2011.
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Viticult 1977, 28, 49–55. [Google Scholar]
- Chen, J.H.; Ho, C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 1997, 45, 2374–2378. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eudoxie, G.; Alexander, I.A. Spent Mushroom Substrate as a Transplant Media Replacement for Commercial Peat in Tomato Seedling Production. J. Agric. Sci. 2011, 3, 41–49. [Google Scholar] [CrossRef]
- Zhang, R.H.; Duan, Z.Q.; Li, Z.G. Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere 2012, 22, 333–342. [Google Scholar] [CrossRef]
- Ashrafi, R.; Rajib, R.R.; Sultana, R.; Rahman, M.; Mian, M.H.; Shanta, F.H. Effect of spent mushroom compost on yield and fruit quality of tomato. Asian J. Med. Biol. Res. 2015, 1, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, A.; Ando, K.; Yoshioka, A.; Murata, K.; Kokubo, Y.; Morimoto, N.; Ube, N.; Yabuta, Y.; Ueno, M.; Tebayashi, S.; et al. Induction of defense responses by extracts of spent mushroom substrates in rice. J. Pestic. Sci. 2019, 44, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, E.; Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Moral, R. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 2009, 100, 4227–4232. [Google Scholar] [CrossRef]
- Sendi, H.; Mohamed, M.T.M.; Anwar, M.P.; Saud, H.M. Spent mushroom waste as a media replacement for peat moss in kai-lan (Brassica oleracea var. Alboglabra) production. Sci. World J. 2013, 8. [Google Scholar] [CrossRef]
- Prabu, M.; Jeyanthi, C.; Kumuthakalavalli, R. Spent mushroom substrate: An enriched organic manure for improving the yield of Vigna unguiculata (L.) Walp (Cowpea) leguminous crop. SIRJ-APBBP 2014, 1, 7–14. [Google Scholar]
- Afagh, H.V.; Saadatmand, S.; Riahi, H.; Khavari-Nejad, R.A. Influence of Spent Mushroom Compost (SMC) as an Organic Fertilizer on Nutrient, Growth, Yield, and Essential Oil Composition of German Chamomile (Matricaria recutita L.). Commun. Soil Sci. Plant Anal. 2019, 50, 1–11. [Google Scholar] [CrossRef]
- Cao, G.; Prior, R.L. The measurement of oxygen radical absorbance capacity in biological samples. Meth. Enzymol. 1999, 229, 50–62. [Google Scholar] [CrossRef]
- Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules 2010, 15, 3200–3210. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Rouseff, R.L.; Nagy, S. Health and nutritional benefits of citrus fruit components. Food Technol. 1994, 11, 125–132. [Google Scholar]
- Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem. 2003, 51, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, J.; Wong, D.C.L.; Yarus, M.J.; Forney, L.J. Autoradiographic method for isolation of diverse microbial species with unique catabolic traits. Appl. Environ. Microbiol. 1996, 62, 4180–4185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerrits, J.P.G. Composition, use and legislation of spent mushroom substrate in Netherlands. Compost Sci. Util. 1994, 2, 24–30. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effect of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Bavec, M.; Narodoslawsky, M.; Bavec, F.; Turinek, M. Ecological impact of wheat and spelt production under industrial and alternative farming systems. Renew. Agric. Food. Syst. 2012, 27, 242–250. [Google Scholar] [CrossRef]
- Guo, M.; Chorover, J. Solute release from weathering of spent mushroom substrate under controlled conditions. Compost. Sci. Util. 2004, 12, 225–234. [Google Scholar] [CrossRef]
- Salomon, I. Growing conditions and the essential oil of chamomile (Chamomilla recutita (L.) Raushert). J. Herbs Spice Med. Plants 1994, 2, 31–37. [Google Scholar] [CrossRef]
- Shakib, A.; Nejad, A.R.; Khalighi, A.H.M. Changes in seed and oil yield of Calendula officinalis L. as affected by different levels of nitrogen and plants density. Res. Crops 2010, 11, 728–732. [Google Scholar]
Year | pH 1 M KCl | Content of | |||
---|---|---|---|---|---|
P (mg kg−1 soil) | K (mg kg−1 soil) | Mg (mg kg−1 soil) | Humus (%) | ||
2017 | 6.3 | 137 | 182 | 68 | 1.35 |
2018 | 6.1 | 129 | 174 | 63 | 1.33 |
2019 | 6.2 | 125 | 170 | 61 | 1.29 |
Organic Material | Air Dry Matter (%) | Macronutrient Content (g kg−1 DM) | |||
---|---|---|---|---|---|
C | N | P | K | ||
Mushroom substrate | 28.4 | 36.4 | 26.2 | 10.7 | 13.8 |
Farmyard manure | 26.1 | 415.2 | 22.5 | 13.1 | 19.9 |
Fertilization | Cv. “Słoneczko” | Cv. “De Dolj” | Mean for Row Spacing | Mean | |||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | ||
A | 0.98 | 0.85 | 0.91 | 0.89 | 0.78 | 0.83 | 0.93 | 0.81 | 0.87 a |
B | 2.09 | 1.91 | 2.00 | 1.95 | 1.73 | 1.84 | 2.02 | 1.82 | 1.92 b |
C | 1.95 | 1.82 | 1.88 | 1.80 | 1.75 | 1.77 | 1.87 | 1.78 | 1.82 c |
D | 2.07 | 1.90 | 1.98 | 1.92 | 1.70 | 1.81 | 1.99 | 1.80 | 1.89 d |
E | 2.08 | 1.89 | 1.98 | 1.99 | 1.72 | 1.85 | 2.03 | 1.80 | 1.91 b |
F | 2.12 | 1.86 | 1.99 | 1.88 | 1.71 | 1.79 | 2.00 | 1.78 | 1.89 d |
G | 1.92 | 1.81 | 1.86 | 1.84 | 1.69 | 1.76 | 1.88 | 1.78 | 1.83 c |
Mean | 1.03 | 0.86 | 0.94 a | 0.89 | 0.72 | 0.80 b | 0.96 a | 0.79 b | - |
HSD(0.05) | for cultivars—0.079; for fertilization—0.089; for row spacing—0.088; for interaction cultivar × row spacing—n.s.; for interaction cultivar × fertilization—n.s.; for interaction row spacing × fertilization—n.s.; for interaction cultivar × row spacing × fertilization—n.s. |
Fertilization | Cv. “Słoneczko” | Cv. “De Dolj” | Mean for Row Spacing | Mean | |||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | ||
A | 2.53 | 2.53 | 2.53 | 2.33 | 2.33 | 2.33 | 2.43 | 2.43 | 2.43 a |
B | 3.67 | 3.73 | 3.69 | 3.33 | 3.33 | 3.33 | 3.50 | 3.53 | 3.51 b |
C | 3.57 | 3.86 | 3.72 | 3.29 | 3.38 | 3.34 | 3.43 | 3.62bc | 3.53 b |
D | 3.48 | 3.48 | 3.48 | 3.48 | 3.67 | 3.58 | 3.48 | 3.58 | 3.53 b |
E | 3.38 | 3.53 | 3.45 | 3.48 | 3.43 | 3.46 | 3.43 | 3.48 | 3.46 b |
F | 3.86 | 3.33 | 3.60 | 3.29 | 3.48 | 3.39 | 3.58 | 3.41 | 3.49 b |
G | 3.48 | 3.48 | 3.48 | 3.57 | 3.57 | 3.57 | 3.53 | 3.53 | 3.53 b |
Mean | 3.42 | 3.42 | 3.42 a | 3.25ac | 3.31 | 3.28 b | 3.34 a | 3.37 b | - |
HSD(0.05) | for cultivars—0.01; for fertilization—0.03; for row spacing—0.01; for interaction cultivar × row spacing—0.02; for interaction cultivar × fertilization—0.04; for interaction row spacing × fertilization—0.04; for interaction cultivar × row spacing × fertilization—n.s. |
Fertilization | Cv. “Słoneczko” | Cv. “De Dolj” | Mean for Row Spacing | Mean | |||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30cm | Mean | 40 cm | 30 cm | ||
A | 624.26 | 631.16 | 627.71 | 676.00 | 589.77 | 632.89 | 650.13 | 610.47 | 630.30 a |
B | 910.52 | 934.67 | 922.60 | 827.75 | 838.09 | 832.92 | 869.14 | 886.38 | 877.76 b |
C | 1662.39 | 1714.13abc | 1688.26ab | 1238.17 | 1296.81 | 1267.49 | 1450.28 | 1505.47bc | 1477.88 c |
D | 1093.32 | 1114.01 | 1103.67 | 1013.99 | 1031.24 | 1022.62 | 1053.66 | 1072.63 | 1063.14 d |
E | 879.48 | 903.63 | 891.56 | 769.12 | 793.26 | 781.19 | 824.30 | 848.44 | 836.37 b |
F | 727.73 | 731.18 | 729.45 | 838.09 | 831.20 | 834.65 | 782.91 | 781.19 | 782.05 b |
G | 724.28 | 703.59 | 713.93 | 734.63 | 717.38 | 726.00 | 729.45 | 710.48 | 719.97 b |
Mean | 946.00 | 961.77ac | 953.88 a | 871.11 | 871.11 | 871.11 b | 908.55 a | 916.44 b | - |
HSD(0.05) | for cultivars—7.49; for fertilization—61.38; for row spacing—7.53; for interaction cultivar × row spacing—14.04; for interaction cultivar × fertilization—34.70; for interaction row spacing × fertilization—34.68; for interaction cultivar × row spacing × fertilization—52.06. |
Fertilization | Cv. “Słoneczko” | Cv. “De Dolj” | Mean for Row Spacing | Mean | |||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | ||
A | 17.631 | 17.959 | 17.795 | 19.218 | 15.868 | 17.543 | 18.425 | 16.913 | 17.669 a |
B | 21.737 | 22.577 | 22.157 | 27.194 | 25.095 | 26.144 | 24.465 | 23.836 | 24.150 a |
C | 58.258 | 64.555abc | 61.407 | 45.790 | 50.240 | 48.015 | 52.024 | 57.397bc | 54.711 b |
D | 43.019 | 42.180 | 42.599 | 37.269 | 37.689 | 37.479 | 40.144 | 39.934 | 40.039 b |
E | 35.170 | 36.009 | 35.590 | 31.517 | 33.071 | 32.294 | 33.343 | 34.540 | 33.942 c |
F | 36.429 | 34.750 | 35.590 | 27.614 | 28.662 | 28.138 | 32.021 | 31.706 | 31.864 c |
G | 22.996 | 20.066 | 21.531 | 23.835 | 20.477 | 22.156 | 23.416 | 20.272 | 21.844 a |
Mean | 33.606 | 34.014 | 33.810 a | 30.348 | 30.157 | 30.253 b | 31.977 a | 32.085 a | - |
HSD(0.05) | for cultivars—0.58; for fertilization—8.57; for row spacing—n.s.; for interaction cultivar × row spacing—n.s.; for interaction cultivar × fertilization—2.59; for interaction row spacing × fertilization—2.57; for interaction cultivar × row spacing × fertilization—3.86. |
Fertilization | Cv. “Słoneczko” | Cv. “De Dolj” | Mean for Row Spacing | Mean | |||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | ||
A | 16.137 | 15.526 | 15.832 | 18.092 | 15.068 | 16.580 | 17.115 | 15.297 | 16.206 a |
B | 11.860 | 11.401 | 11.631 | 24.539 | 23.775 | 24.157 | 18.199 | 17.588 | 17.894 a |
C | 67.616 | 68.838 | 68.227ab | 48.827 | 51.882 | 50.354 | 58.221 | 60.360bc | 59.291 b |
D | 40.119 | 45.619 | 42.869 | 35.995 | 43.633 | 39.814 | 38.057 | 44.626 | 41.341 c |
E | 37.370 | 35.843 | 36.606 | 36.301 | 33.398 | 34.850 | 36.835 | 34.621 | 35.728 d |
F | 32.635 | 33.857 | 33.246 | 27.899 | 28.663 | 28.281 | 30.267 | 31.260 | 30.764 d |
G | 26.677 | 24.691 | 25.684 | 23.928 | 23.194 | 23.561 | 25.302 | 23.943 | 24.623 e |
Mean | 33.202 | 33.682 | 33.442 a | 30.797 | 31.373 | 31.085 b | 32.000 a | 32.528 a | - |
HSD(0.05) | for cultivars—0.97; for fertilization—6.13; for row spacing—n.s.; for interaction cultivar × row spacing—n.s.; for interaction cultivar × fertilization—4.36; for interaction row spacing × fertilization—4.38; for interaction cultivar × row spacing × fertilization—n.s. |
Fertilization | Cv. “Słoneczko” | Cv. “De Dolj” | Mean for Row Spacing | Mean | |||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | ||
A | 5.90 | 5.67 | 5.78 | 6.64 | 5.49 | 6.07 | 6.27 | 5.58 | 5.92 a |
B | 4.26 | 4.09 | 4.18 | 9.35 | 9.05 | 9.20 | 6.81 | 6.57 | 6.69 a |
C | 28.98 | 30.20 | 29.59 | 20.35 | 22.68 | 21.52 | 24.67 | 26.44bc | 25.55 b |
D | 16.27 | 19.91 | 18.09 | 14.56 | 17.72 | 16.14 | 15.41 | 18.81 | 17.11 c |
E | 15.13 | 14.50 | 14.82 | 14.69 | 13.49 | 14.09 | 14.91 | 14.00 | 14.45 d |
F | 10.19 | 9.41 | 9.80 | 9.11 | 8.82 | 8.97 | 9.65 | 9.12 | 9.38 e |
G | 12.53 | 13.01 | 12.77 | 10.67 | 10.97 | 10.82 | 11.60 | 11.99 | 11.79 f |
Mean | 13.32 | 13.83 | 13.57 a | 12.20 | 12.60 | 12.40 b | 12.76 a | 13.22 b | - |
HSD(0.05) | for cultivars—0.37; for fertilization—2.69; for row spacing—0.39; for interaction cultivar × row spacing—n.s.; for interaction cultivar × fertilization—1.78; for interaction row spacing × fertilization—1.76; for interaction cultivar × row spacing × fertilization—n.s. |
Fertilization | Cv. “Słoneczko” | Cv. “De Dolj” | Mean for Row Spacing | Mean | |||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | ||
A | 13.577 | 11.860 | 12.719 | 13.483 | 10.561 | 12.022 | 13.530 | 11.211 | 12.370 a |
B | 6.616 | 6.131 | 6.373 | 20.049 | 19.240 | 19.645 | 13.333 | 12.685 | 13.009 a |
C | 48.733 | 50.253 | 49.493ab | 28.371 | 32.170 | 30.271 | 38.552 | 41,212bc | 39.882 b |
D | 30.126 | 28.227 | 29.176 | 28,796 | 25.188 | 26.992 | 29.461 | 26.707 | 28.084 c |
E | 22.315 | 20.211 | 21.263 | 19.402 | 18.625 | 19.013 | 20.858 | 19.418 | 20.138 d |
F | 17.545 | 24.382 | 20.964 | 12.417 | 21.913 | 17.165 | 14.981 | 23.148 | 19.064 d |
G | 28.627 | 29.922 | 29.274 | 23.610 | 24.419 | 24.014 | 26.118 | 27.170 | 26.644 c |
Mean | 23.934 | 24.427 | 24.180 a | 20.875 | 21.731 | 21.303 b | 22.405 a | 23.079 a | - |
HSD(0.05) | for cultivars—0.81; for fertilization—2.23; for row spacing—n.s.; for interaction cultivar × row spacing—n.s.; for interaction cultivar × fertilization—3.74; for interaction row spacing × fertilization—3.77; for interaction cultivar × row spacing × fertilization—n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, C.A.; Harasim, E. The Effect of Fertilization with Spent Mushroom Substrate and Traditional Methods of Fertilization of Common Thyme (Thymus vulgaris L.) on Yield Quality and Antioxidant Properties of Herbal Material. Agronomy 2021, 11, 329. https://doi.org/10.3390/agronomy11020329
Kwiatkowski CA, Harasim E. The Effect of Fertilization with Spent Mushroom Substrate and Traditional Methods of Fertilization of Common Thyme (Thymus vulgaris L.) on Yield Quality and Antioxidant Properties of Herbal Material. Agronomy. 2021; 11(2):329. https://doi.org/10.3390/agronomy11020329
Chicago/Turabian StyleKwiatkowski, Cezary A., and Elżbieta Harasim. 2021. "The Effect of Fertilization with Spent Mushroom Substrate and Traditional Methods of Fertilization of Common Thyme (Thymus vulgaris L.) on Yield Quality and Antioxidant Properties of Herbal Material" Agronomy 11, no. 2: 329. https://doi.org/10.3390/agronomy11020329
APA StyleKwiatkowski, C. A., & Harasim, E. (2021). The Effect of Fertilization with Spent Mushroom Substrate and Traditional Methods of Fertilization of Common Thyme (Thymus vulgaris L.) on Yield Quality and Antioxidant Properties of Herbal Material. Agronomy, 11(2), 329. https://doi.org/10.3390/agronomy11020329