First Case of Multiple Resistance to EPSPS and PSI in Eleusine indica (L.) Gaertn. Collected in Rice and Herbicide-Resistant Crops in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbicides and Adjuvants Used
2.2. Plant Material
2.3. Dose-Response Assays
2.4. Shikimic Accumulation Assay
2.5. Electrical Conductivity Test
2.6. Foliar Retention
2.7. Increase in Herbicide Effectiveness with Adjuvants
2.8. Alternative Control with POST Herbicides
2.9. Statistical Analyses
3. Results
3.1. Dose-Response Assay
3.2. Shikimic Acid Accumulation
3.3. Electrical Conductivity Test (EC)
3.4. Foliar Retention
3.5. Increase in Herbicide Effectiveness
3.6. Alternative Chemical Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feola, G.; Agudelo Vanegas, L.A.; Contesse Bamón, B.P. Colombian agriculture under multiple exposures: A review and research agenda. Clim. Dev. 2015, 7, 278–292. [Google Scholar] [CrossRef]
- Vargas Escobar, E.A.; Baena García, D.; Vargas Sánchez, J.E. Análisis de estabilidad y adaptabilidad de híbridos de maíz de alta calidad proteica en diferentes zonas agroecológicas de Colombia. Acta Agronómica 2015, 65, 72–79. [Google Scholar] [CrossRef]
- Silva Garzon, D. Tres lógicas de acción y reacción para la monopolización de los mercados de semillas en Colombia. Rev. Colomb. Antropol. 2019, 55, 9–37. [Google Scholar] [CrossRef]
- Brookes, G. Genetically modified (GM) crop use in Colombia: Farm level economic and environmental contributions. GM Crops Food 2020, 11, 140–153. [Google Scholar] [CrossRef]
- Hoyos, V.; Martínez, M.J.; Plaza, G. Malezas asociadas a los cultivos de cítricos, guayaba, maracuyá y piña en el departamento del Meta, Colombia. Rev. Colomb. Cienc. Hortícolas 2015, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, S.J.; Hoyos, C.V.; Plaza, T.G. Phytosociology of weeds associated with rice crops in the department of Tolima, Colombia. Agron. Colomb. 2015, 33, 64–73. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. 2020. Available online: www.weedscience.org (accessed on 5 November 2020).
- Giraldo-Cañas, D. Las Gramíneas en Colombia: Riqueza, Distribución, Endemismo, Invasión, Migración, Usos y Taxonomías Populares; Biblioteca José Jerónimo Triana; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogota, Colombia, 2013. [Google Scholar]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weed: Distribution and Biology; University of Hawaii Press: Honolulu, HI, USA, 1977. [Google Scholar]
- Holm, L.G.; Pancho, J.V.; Herberger, J.P.; Plucknett, D.L. A Geographical Atlas of World Weeds; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Hawkes, T.R. Mechanisms of resistance to paraquat in plants. Pest. Manag. Sci. 2014, 70, 1316–1323. [Google Scholar] [CrossRef]
- Duke, S.O. The history and current status of glyphosate. Pest. Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef]
- Steinrücken, H.C.; Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980, 94, 1207–1212. [Google Scholar] [CrossRef]
- Tahmasebi, B.K.; Alcántara-de la Cruz, R.; Alcántara, E.; Torra, J.; Domínguez-Valenzuela, J.A.; Cruz-Hipólito, H.E.; Rojano-Delgado, A.M.; De Prado, R. Multiple resistance evolution in bipyridylium-resistant Epilobium ciliatum after recurrent selection. Front. Plant. Sci. 2018, 9. [Google Scholar] [CrossRef]
- Alcántara-de la Cruz, R.; Moraes de Oliveira, G.; Bianco de Carvalho, L.; Fátima das Graças Fernandes da Silva, M. Herbicide resistance in Brazil: Status, impacts, and future challenges. In Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production; IntechOpen: London, UK, 2020; pp. 1–25. [Google Scholar]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pestic. Biochem. Physiol. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Vazquez-Garcia, J.G.; Travlos, I.; Tataridas, A.; Kanatas, P.; Domínguez-Valenzuela, J.A.; De Prado, R. Effect of adjuvant on glyphosate effectiveness, retention, absorption and translocation in Lolium rigidum and Conyza canadensis. Plants 2020, 9, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-García, J.G.; Castro, P.; Torra, J.; Alcántara-de la Cruz, R.A.; De Prado, R. Resistance evolution to EPSPS inhibiting herbicides in false barley (Hordeum murinum) harvested in Southern Spain. Agronomy 2020, 10, 992. [Google Scholar] [CrossRef]
- Menza-Franco, H.D. Resistencia de Eleusine indica al glifosato en cafetales de la zona cafetalera central de Colombia. Cenicafé 2006, 57, 146–157. [Google Scholar]
- Palma-Bautista, C.; Tataridas, A.; Kanatas, P.; Travlos, I.S.; Bastida, F.; Domínguez-Valenzuela, J.A.; De Prado, R. Can control of glyphosate susceptible and resistant Conyza sumatrensis populations be dependent on the herbicide formulation or adjuvants? Agronomy 2020, 10, 1599. [Google Scholar] [CrossRef]
- Shaner, D.L.; Nadler-Hassar, T.; Henry, W.B.; Koger, C.H. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 2005, 53, 769–774. [Google Scholar] [CrossRef]
- Brunharo, C.A.C.G.; Hanson, B.D. Vacuolar sequestration of paraquat is involved in the resistance mechanism in Lolium perenne L. spp. multiflorum. Front. Plant. Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Huang, H.; Wei, S.; Cui, H.; Li, X.; Zhang, C. Glyphosate resistance in Eleusine indica: EPSPS overexpression and P106A mutation evolved in the same individuals. Pestic. Biochem. Physiol. 2020, 164, 203–208. [Google Scholar] [CrossRef]
- Gherekhloo, J.; Fernández-Moreno, P.T.; Alcántara-de la Cruz, R.; Sánchez-González, E.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; De Prado, R. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Sci. Rep. 2017, 7, 6702. [Google Scholar] [CrossRef]
- Takano, H.K.; Mendes, R.R.; Scoz, L.B.; Lopez Ovejero, R.F.; Constantin, J.; Gaines, T.A.; Westra, P.; Dayan, F.E.; Oliveira, R.S. Proline-106 EPSPS mutation imparting glyphosate resistance in goosegrass (Eleusine indica) emerges in South America. Weed Sci. 2019, 67, 48–56. [Google Scholar] [CrossRef]
- Yu, Q.; Jalaludin, A.; Han, H.; Chen, M.; Sammons, R.D.; Powles, S.B. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant. Physiol. 2015, 167, 1440–1447. [Google Scholar] [CrossRef] [Green Version]
- Seng, C.T.; Van Lun, L.; San, C.T.; Sahid, I.B. Initial report of glufosinate and paraquat multiple resistance that evolved in a biotype of goosegrass (Eleusine indica) in Malaysia. Weed Biol. Manag. 2010, 10, 229–233. [Google Scholar] [CrossRef]
- Jalaludin, A.; Yu, Q.; Powles, S.B. Multiple resistance across glufosinate, glyphosate, paraquat and ACCase-inhibiting herbicides in an Eleusine indica population. Weed Res. 2015, 55, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Buker, R.S.; Steed, S.T.; Stall, W.M. Confirmation and control of a paraquat-tolerant goosegrass (Eleusine indica) biotipe. Weed Technol. 2002, 16, 309–313. [Google Scholar] [CrossRef]
- Dayan, F.E.; Owens, D.K.; Corniani, N.; Silva, F.M.L.; Watson, S.B.; Howell, J.; Shaner, D.L. Biochemical markers and enzyme assays for herbicide mode of action and resistance studies. Weed Sci. 2015, 63, 23–63. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Li, J.; Liu, S.; Zhu, X.; Chen, Y.; Shen, X. Effects of spermidine and salinity stress on growth and biochemical response of paraquat-susceptibe and -resistant goosegrass (Eleusine indica L.). Weed Biol. Manag. 2019, 19, 75–84. [Google Scholar] [CrossRef]
- Nandula, V.K.; Vencill, W.K. Herbicide Absorption and translocation in plants using radioisotopes. Weed Sci. 2015, 63, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.B.; Dario, G.; Alves, K.A.; Gandolfo, M.A. Influence of the glyphosate formulations on wettability and evaporation time of droplets on different targets. Planta Daninha 2015, 33, 599–606. [Google Scholar] [CrossRef]
- Pacanoski, Z. Herbicides and Adjuvants. In Herbicides, Physiology of Action, and Safety; IntechOpen: London, UK, 2015. [Google Scholar]
- Santier, S.; Chamel, A. Reassessment of the role of cuticular waxes in the transfer of organic molecules through plant cuticles. Plant. Physiol. Biochem. 1998, 36, 225–231. [Google Scholar] [CrossRef]
- De Oliveira, R.B.; Antuniassi, U.R.; Mota, A.A.B.; Chechetto, R.G. Potential of adjuvants to reduce drift in agricultural spraying. Eng. Agrícola 2013, 33, 986–992. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-García, J.G.; Golmohammadzadeh, S.; Palma-Bautista, C.; Rojano-Delgado, A.M.; Domínguez-Valenzuela, J.A.; Cruz-Hipólito, H.E.; De Prado, R. New case of false-star-grass (Chloris distichophylla) population evolving glyphosate resistance. Agronomy 2020, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Davidson, B.; Cook, T.; Chauhan, B.S. Alternative options to glyphosate for control of large Echinochloa colona and Chloris virgata plants in cropping fallows. Plants 2019, 8, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scavo, A.; Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Doğan, M.N.; Jabran, K.; Unay, A. Integrated weed management in cotton. In Recent Advances in Weed Management; Springer: New York, NY, USA, 2014; pp. 197–220. ISBN 9781493910199. [Google Scholar]
Active Ingredient | MOA a | Trade Name | Field Doses |
---|---|---|---|
Flazasulfuron | ALS | Terafit 25% | 50 |
Imazamox | ALS | Pulsar 40 | 40 |
Clethodim | ACCasa | Centurion Plus 12% | 100 |
Quizalofop | ACCasa | Leopard 5% | 100 |
Glufosinate | GS | Finale 15% | 500 |
Tembotrione | HPPD | Laudis 20% | 120 |
Oxyfluorfen | PPO | Goal Supreme 24% | 480 |
Atrazine | PSII | Atazinax-FLO 47.5% | 2000 |
Diuron | PSII | Diuron 80% | 1800 |
Population | Dry Weight Reduction | Plant Survival | ||||||
---|---|---|---|---|---|---|---|---|
b | d | GR50 | RF b | b | d | LD50 | RF b | |
Glyphosate | ||||||||
R | 1.8 | 100.4 | 1574.4 ± 54.4 | 13.3 | 3.09 | 99.4 | 3204.44 ± 129.8 | 9.8 |
S | 1.5 | 99.82 | 118.43 ± 6.7 | 2.09 | 95.1 | 327.3 ± 24.7 | ||
Paraquat | ||||||||
R | 1.3 | 101.6 | 449.5 ± 28.2 | 3.3 | 2.09 | 100.1 | 1450.81 ± 61.5 | 7.2 |
S | 1.9 | 99.3 | 135.6 ± 7.5 | 2.17 | 102.1 | 199.80 ± 9.71 |
Treatment a | S | R | ||||
---|---|---|---|---|---|---|
Fw (g) | IE-C | IE-T | Fw (g) | IE-C | IE-T | |
Control | 2.40 | - | - | 1.72 | - | - |
Gly | 1.14 ± 0.12 a | 52 | - | 0.94 ± 0.07 a | 46 | - |
Gly + Retenol | 0.76 ± 0.08 b | 68 | 37 | 0.68 ± 0.06 b | 61 | 28 |
Gly + Trend | 0.49 ± 0.05 c | 79 | 58 | 0.74 ± 0.07 b | 57 | 22 |
Par | 1.04 ± 0.07 a | 57 | - | 0.87 ± 0.07 a | 51 | - |
Par + Retenol | 0.12 ± 0.03 b | 95 | 89 | 0.34 ± 0.06 bc | 80 | 61 |
Par + Trend | 0 ± 0 c | 100 | 100 | 0.24 ± 0.05 c | 86 | 77 |
Herbicide | Visual Control a | Fresh Weight Reduction | ||
---|---|---|---|---|
S | R | S | R | |
Control | 0 b | 0 b | 0 c | 0 c |
Flazasulfuron | 100 a | 95 a | 93.3 ± 5.9 b | 90.4 ± 3.9 b |
Clethodim | 100 a | 100 a | 100 a | 100 a |
Quizalofop | 100 a | 100 a | 100 a | 100 a |
Glufosinate | 100 a | 100 a | 100 a | 100 a |
Tembotrione | 100 a | 100 a | 100 a | 100 a |
Oxyfluorfen | 100 a | 100 a | 100 a | 100 a |
Atrazina | 100 a | 100 a | 100 a | 100 a |
Diuron | 100 a | 100 a | 100 a | 100 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza, G.; Hoyos, V.; Vázquez-García, J.G.; Alcántara-de la Cruz, R.; De Prado, R. First Case of Multiple Resistance to EPSPS and PSI in Eleusine indica (L.) Gaertn. Collected in Rice and Herbicide-Resistant Crops in Colombia. Agronomy 2021, 11, 96. https://doi.org/10.3390/agronomy11010096
Plaza G, Hoyos V, Vázquez-García JG, Alcántara-de la Cruz R, De Prado R. First Case of Multiple Resistance to EPSPS and PSI in Eleusine indica (L.) Gaertn. Collected in Rice and Herbicide-Resistant Crops in Colombia. Agronomy. 2021; 11(1):96. https://doi.org/10.3390/agronomy11010096
Chicago/Turabian StylePlaza, Guido, Verónica Hoyos, José G. Vázquez-García, Ricardo Alcántara-de la Cruz, and Rafael De Prado. 2021. "First Case of Multiple Resistance to EPSPS and PSI in Eleusine indica (L.) Gaertn. Collected in Rice and Herbicide-Resistant Crops in Colombia" Agronomy 11, no. 1: 96. https://doi.org/10.3390/agronomy11010096
APA StylePlaza, G., Hoyos, V., Vázquez-García, J. G., Alcántara-de la Cruz, R., & De Prado, R. (2021). First Case of Multiple Resistance to EPSPS and PSI in Eleusine indica (L.) Gaertn. Collected in Rice and Herbicide-Resistant Crops in Colombia. Agronomy, 11(1), 96. https://doi.org/10.3390/agronomy11010096