Influence of Atomization Nozzles and Spraying Intervals on Growth, Biomass Yield, and Nutrient Uptake of Butter-Head Lettuce under Aeroponics System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Climate Conditions
2.2. Aeroponic System and Nozzles
2.3. Measurement of Droplet Sizes
2.4. Plant Material and Experimental Arrangement
2.5. Measurement of the Power of Hydrogen (pH) and Electrical Conductivity (EC)
2.6. Vegetative Growth Parameters of Lettuce Plants
2.7. Root Characteristic Analysis
2.8. Nutrient Uptake
2.9. Statistical Analysis
3. Results
3.1. Droplet Size Measurement
3.2. Effect of Droplet Sizes and Spraying Intervals on the pH and EC Values of Hoagland’s Nutrient Solution
3.3. Vegetative Growth Parameters
3.3.1. Shoot Growth Parameters
3.3.2. Correlation between Shoot Growth Parameter208B
3.3.3. Total Biomass Yield and Edible Yield
3.4. Root Characteristics
Correlation between Root Characteristics
3.5. Ratio of Roots to Shoots
3.6. Nutrient Uptake
Correlation between Nutrient Uptakes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Tunio, M.H.; Gao, J.; Talpur, M.A.; Lakhiar, I.A.; Chandio, F.A.; Shaikh, S.A.; Solangi, K.A. Effects of Different Irrigation Frequencies and Incorporation of Rice Straw on Yield and Water Productivity of Wheat Crop. Int. J. Agric. Biol. Eng. 2020, 13, 138–145. [Google Scholar]
- Touliatos, D.; Dodd, I.C.; McAinsh, M. Vertical Farming Increases Lettuce Yield per Unit Area Compared to Conventional Horizontal Hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Müller, M.; Six, J. Can Soil-Less Crop Production Be a Sustainable Option for Soil Conservation and Future Agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Anbarashan, P.; Gopalsamy, P. Enumeration of Arthropods Density in Context to Plant Diversity and Agricultural (Organic and Conventional) Management Systems. Int. J. Agric. Res. 2011, 6, 805–818. [Google Scholar]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on Urban Buildings: Present Practice and Specific Novelties of Zero-Acreage Farming (ZFarming). Renew. Agric. Food Syst. 2015, 30, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential Impacts of Climate Change on Vegetable Production and Product Quality–A Review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of Protected Vegetable Cultivation on Climate Change and Adaptation Strategies for Cleaner Production–a Review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Pavlou, G.C.; Ehaliotis, C.D.; Kavvadias, V.A. Effect of Organic and Inorganic Fertilizers Applied during Successive Crop Seasons on Growth and Nitrate Accumulation in Lettuce. Sci. Hortic. 2007, 111, 319–325. [Google Scholar] [CrossRef]
- Singh, H.; Poudel, M.R.; Dunn, B.L.; Fontanier, C.; Kakani, G. Effect of Greenhouse CO2 Supplementation on Yield and Mineral Element Concentrations of Leafy Greens Grown Using Nutrient Film Technique. Agronomy 2020, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Amitrano, C.; Chirico, G.B.; De Pascale, S.; Rouphael, Y.; De Micco, V. Crop Management in Controlled Environment Agriculture (CEA) Systems Using Predictive Mathematical Models. Sensors 2020, 20, 3110. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, C.H.; Carrera, J.L.; Durán, H.A.; Berumen, J.; Ortiz, A.A.; Guirette, O.A.; Arroyo, A.; Brizuela, J.A.; Gómez, F.; Blanco, A. Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD and Control. Sensors 2019, 19, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, J.; Wang, Y.; Chan, F.T.S.; Hu, X.; Zhao, M.; Zhu, F.; Shi, B.; Shi, Y.; Lin, F. A Life Cycle Framework of Green IoT-Based Agriculture and Its Finance, Operation, and Management Issues. IEEE Commun. Mag. 2019, 57, 90–96. [Google Scholar] [CrossRef]
- Van Gerrewey, T.; Vandecruys, M.; Ameloot, N.; Perneel, M.; Van Labeke, M.-C.; Boon, N.; Geelen, D. Microbe–Plant Growing Media Interactions Modulate the Effectiveness of Bacterial Amendments on Lettuce Performance inside a Plant Factory with Artificial Lighting. Agronomy 2020, 10, 1456. [Google Scholar] [CrossRef]
- Tunio, M.H.; Gao, J.; Shaikh, S.A.; Lakhiar, I.A.; Qureshi, W.A.; Solangi, K.A.; Chandio, F.A. Potato Production in Aeroponics: An Emerging Food Growing System in Sustainable Agriculture Forfood Security. Chil. J. Agric. Res. 2020, 80, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.; Sebastian, K.; Scherr, S.J. Pilot Analysis of Global Ecosystems: Agroecosystems; World Resources Institute: Washington, DC, USA, 2000; ISBN 1-56973-457-7. [Google Scholar]
- Lobillo-Eguíbar, J.; Fernández-Cabanás, V.M.; Bermejo, L.A.; Pérez-Urrestarazu, L. Economic Sustainability of Small-Scale Aquaponic Systems for Food Self-Production. Agronomy 2020, 10, 1468. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern Plant Cultivation Technologies in Agriculture under Controlled Environment: A Review on Aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Carter, W. A Method of Growing Plants in Water Vapor to Facilitate Examination of Roots; 1942; Volume 32, pp. 623–625. [Google Scholar]
- Chiipanthenga, M.; Maliro, M.; Demo, P.; Njoloma, J. Potential of Aeroponics System in the Production of Quality Potato (Solanum Tuberosum l.) Seed in Developing Countries. Afr. J. Biotechnol. 2012, 11, 3993–3999. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Xu, X.; Syed, T.N.; Chandio, F.A.; Jing, Z.; Buttar, N.A. Effects of Various Aeroponic Atomizers (Droplet Sizes) on the Growth, Total Polyphenol Content and Antioxidant Activity of Leafy Lettuce (Lactuca Sativa L.). Trans. ASABE 2019, 62, 1475–1487. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Jianmin, G.; Syed, T.N.; Chandio, F.A.; Buttar, N.A.; Qureshi, W.A. Monitoring and Control Systems in Agriculture Using Intelligent Sensor Techniques: A Review of the Aeroponic System. J. Sens. 2018, 2018, 8672769. [Google Scholar] [CrossRef] [Green Version]
- Nichols, M.; Christie, C. Continuous Production of Greenhouse Crops Using Aeroponics. In Proceedings of the International Symposium on Design and Environmental Control of Tropical and Subtropical Greenhouses 578, Taichung, Taiwan, 15–18 April 2001; pp. 289–291. [Google Scholar]
- Reyes, M.I.; Villegas, Á.; Colinas, M.T.; Calderón, G. Peso Específico, Contenido de Proteína y de Clorofila En Hojas de Naranjo y Tangerino. Agrociencia 2000, 34, 49–55. [Google Scholar]
- Li, Y.; Shi, R.; Jiang, H.; Wu, L.; Zhang, Y.; Song, S.; Su, W.; Liu, H. End-Of-Day LED Lightings Influence the Leaf Color, Growth and Phytochemicals in Two Cultivars of Lettuce. Agronomy 2020, 10, 1475. [Google Scholar] [CrossRef]
- Buckseth, T.; Sharma, A.; Pandey, K.; Singh, B.; Muthuraj, R. Methods of Pre-Basic Seed Potato Production with Special Reference to Aeroponics—A Review. Sci. Hortic. 2016, 204, 79–87. [Google Scholar] [CrossRef]
- Calori, A.H.; Factor, T.L.; Feltran, J.C.; Watanabe, E.Y.; de Moraes, C.C.; Purquerio, L.F.V. Electrical Conductivity of the Nutrient Solution and Plant Density in Aeroponic Production of Seed Potato under Tropical Conditions (Winter/Spring). Bragantia 2017, 76, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Otazu, V. Manual on Quality Seed Potato Production Using Aeroponics; International Potato Center: Lima, Peru, 2010; ISBN 92-9060-392-5. [Google Scholar]
- Avvaru, B.; Patil, M.N.; Gogate, P.R.; Pandit, A.B. Ultrasonic Atomization: Effect of Liquid Phase Properties. Ultrasonics 2006, 44, 146–158. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, J.; Lu, D. Design and Atomization Experiments of an Ultrasonic Atomizer with a Levitation Mechanism. Appl. Eng. Agric. 2016, 32, 353–360. [Google Scholar]
- Rajan, R.; Pandit, A. Correlations to Predict Droplet Size in Ultrasonic Atomisation. Ultrasonics 2001, 39, 235–255. [Google Scholar] [CrossRef]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; Saez-Tovar, J.; Martinez-Sabater, E.; Gruda, N.S.; Egea-Gilabert, C. Promising Composts as Growing Media for the Production of Baby Leaf Lettuce in a Floating System. Agronomy 2020, 10, 1540. [Google Scholar] [CrossRef]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Michelon, N.; Pennisi, G.; Myint, N.O.; Dall’Olio, G.; Batista, L.P.; Salviano, A.A.C.; Gruda, N.S.; Orsini, F.; Gianquinto, G. Strategies for Improved Yield and Water Use Efficiency of Lettuce (Lactuca Sativa L.) through Simplified Soilless Cultivation under Semi-Arid Climate. Agronomy 2020, 10, 1379. [Google Scholar] [CrossRef]
- Moncada, A.; Vetrano, F.; Miceli, A. Alleviation of Salt Stress by Plant Growth-Promoting Bacteria in Hydroponic Leaf Lettuce. Agronomy 2020, 10, 1523. [Google Scholar] [CrossRef]
- Vetrano, F.; Miceli, C.; Angileri, V.; Frangipane, B.; Moncada, A.; Miceli, A. Effect of Bacterial Inoculum and Fertigation Management on Nursery and Field Production of Lettuce Plants. Agronomy 2020, 10, 1477. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Tunio, M.H.; Ahmad, F.; Solangi, K.A. Overview of the Aeroponic Agriculture–An Emerging Technology for Global Food Security. Int. J. Agric. Biol. Eng. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Hunt, R. Plant Growth Curves. The Functional Approach to Plant Growth Analysis; Edward Arnold Ltd.: London, UK, 1982; ISBN 0-7131-2844-5. [Google Scholar]
- León, A.P.; Martín, J.P.; Chiesa, A. Vermicompost Application and Growth Patterns of Lettuce (Lactuca Sativa L.). Agric. Trop. Subtrop. 2012, 45, 134–139. [Google Scholar]
- Woltz, S.; Jackson, C. Production of Yellow Strapleaf of Chrysanthemum & Similar Disorders by Amino Acid Treatment. Plant Physiol. 1961, 36, 197. [Google Scholar]
- Yoshida, S.; Kitano, M.; Eguchi, H. GROWTH OF LETTUCE PLANTS (LACTUCA SATIVA L.) UNDER. Biotronics 1997, 26, 39–45. [Google Scholar]
- Chapman, H.; Pratt, F. Ammonium Vandate-Molybdate Method for Determination of Phosphorus. Methods Anal. Soils Plants Water 1961, 1, 184–203. [Google Scholar]
- Gao, J.; Ma, J. Design and Test of Low-Frequency Hartmann Atomization Nozzle with Stepped Resonance Tube. Trans. Chin. Soc. Agric. Eng. 2017, 33, 66–73. [Google Scholar]
- Samarakoon, U.; Weerasinghe, P.; Weerakkody, W. Effect of Electrical Conductivity (EC) of the Nutrient Solution on Nutrient Uptake, Growth and Yield of Leaf Lettuce (Lactuca Sativa L.) in Stationary Culture. Trop. Agric. Res. 2006, 18, 13–21. [Google Scholar]
- Signore, A.; Serio, F.; Santamaria, P. A Targeted Management of the Nutrient Solution in a Soilless Tomato Crop According to Plant Needs. Front. Plant Sci. 2016, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Tyson, R.; Simonne, E.; Davis, M.; Lamb, E.; White, J.; Treadwell, D. Effect of Nutrient Solution, Nitrate-Nitrogen Concentration, and PH on Nitrification Rate in Perlite Medium. J. Plant Nutr. 2007, 30, 901–913. [Google Scholar] [CrossRef]
- Vecchia, L.; Gioia, F.D.; Ferrante, A.; Hong, J.C.; White, C.; Rosskopf, E.N. Integrating Cover Crops as a Source of Carbon for Anaerobic Soil Disinfestation. Agronomy 2020, 10, 1614. [Google Scholar] [CrossRef]
- Stoner, R.; Schorr, S. Aeroponics versus bed and hydroponic propagation [The process of propagating and growing plants in air]. Florists’ Review (USA). Flor. Rev. 1983, 173, 1–2. [Google Scholar]
- İkiz, B.; Dasgan, H.; Dere, S. Optimization of Root Spraying Time for Fresh Onion (Allium Cepa L.) Cultivation in Aeroponics. In Proceedings of the XXX International Horticultural Congress IHC2018: II International Symposium on Soilless Culture and VIII International 1273, Istanbul, Turkey, 12–14 August 2018; pp. 101–106. [Google Scholar]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Lakhiar, I.A. Effects of Drip Irrigation Emitter Density with Various Irrigation Levels on Physiological Parameters, Root, Yield, and Quality of Cherry Tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Tang, B.; Gu, M. Growth Responses and Root Characteristics of Lettuce Grown in Aeroponics, Hydroponics, and Substrate Culture. Horticulturae 2018, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Kamies, R.; Rafudeen, M.S.; Farrant, J. The Use of Aeroponics to Investigate Antioxidant Activity in the Roots of Xerophyta Viscosa. Plant Growth Regul. 2010, 62, 203–211. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; Gilliham, M. Salinity Tolerance of Crops–What Is the Cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Shyamala, B.; Jamuna, P. Nutritional Content and Antioxidant Properties of Pulp Waste from Daucus Carota and Beta Vulgaris. Malays. J. Nutr. 2010, 16, 397–408. [Google Scholar]
- Liao, J.; Hewitt, A.J.; Wang, P.; Luo, X.; Zang, Y.; Zhou, Z.; Lan, Y.; O’Donnell, C. Development of Droplet Characteristics Prediction Models for Air Induction Nozzles Based on Wind Tunnel Tests. Int. J. Agric. Biol. Eng. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Gullino, M.L.; Gilardi, G.; Garibaldi, A. Ready-to-Eat Salad Crops: A Plant Pathogen’s Heaven. Plant Dis. 2019, 103, 2153–2170. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kang, W.H.; Son, J.E. Interpretation and Evaluation of Electrical Lighting in Plant Factories with Ray-Tracing Simulation and 3D Plant Modeling. Agronomy 2020, 10, 1545. [Google Scholar] [CrossRef]
- De Almeida, H.J.; Carmona, V.M.V.; Cavalcante, V.S.; Prado, R.D.M.; Flores, R.A.; Borges, B.M.M.N.; Mauad, M. Nutritional and Visual Diagnosis in Broccoli (Brassica Oleracea Var. Italica L.) Plants: Disorders in Physiological Activity, Nutritional Efficiency and Metabolism of Carbohydrates. Agronomy 2020, 10, 1572. [Google Scholar] [CrossRef]
- Xie, Y.; Rathinasabapathi, B.; Schaffer, B.; Mylavarapu, R.; Liu, G. Phosphorus Uptake and Growth of Wild-Type Barley and Its Root-Hairless Mutant Cultured in Buffered-and Non-Buffered-P Solutions. Agronomy 2020, 10, 1556. [Google Scholar] [CrossRef]
- Coronel, G.; Chang, M.; Rodríguez-Delfín, A. Nitrate Reductase Activity and Chlorophyll Content in Lettuce Plants Grown Hydroponically and Organically. In Proceedings of the International Symposium on Soilless Culture and Hydroponics 843, Lima, Peru, 25–28 August 2008; pp. 137–144. [Google Scholar]
- Mehandru, P.; Shekhawat, N.; Rai, M.K.; Kataria, V.; Gehlot, H. Evaluation of Aeroponics for Clonal Propagation of Caralluma Edulis, Leptadenia Reticulata and Tylophora Indica–Three Threatened Medicinal Asclepiads. Physiol. Mol. Biol. Plants 2014, 20, 365–373. [Google Scholar] [CrossRef] [Green Version]
Parameters | NL | SD | LL | LW |
---|---|---|---|---|
SD | 0.95 | |||
LL | 0.94 | 0.93 | ||
LW | 0.85 | 0.93 | 0.85 | |
LA | 0.89 | 0.95 | 0.93 | 0.97 |
RD | RL | RA | RV | Max. Roots | Med. Roots | Net. Perimeter | |
---|---|---|---|---|---|---|---|
RL | 0.77 | ||||||
RA | 0.88 | 0.96 | |||||
RV | 0.77 | 1.00 | 0.96 | ||||
Max. roots | 0.77 | 0.80 | 0.85 | 0.80 | |||
Med. roots | 0.82 | 0.78 | 0.83 | 0.77 | 0.94 | ||
Net. perimeter | 0.81 | 0.99 | 0.97 | 0.99 | 0.83 | 0.81 | |
RFW | 0.66 | 0.88 | 0.86 | 0.87 | 0.67 | 0.69 | 0.88 |
Parameters | N | K | P | Mg |
---|---|---|---|---|
K | 0.83 | |||
P | 0.86 | 0.64 | ||
Mg | 0.78 | 0.84 | 0.59 | |
Ca | 0.60 | 0.81 | 0.56 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunio, M.H.; Gao, J.; Lakhiar, I.A.; Solangi, K.A.; Qureshi, W.A.; Shaikh, S.A.; Chen, J. Influence of Atomization Nozzles and Spraying Intervals on Growth, Biomass Yield, and Nutrient Uptake of Butter-Head Lettuce under Aeroponics System. Agronomy 2021, 11, 97. https://doi.org/10.3390/agronomy11010097
Tunio MH, Gao J, Lakhiar IA, Solangi KA, Qureshi WA, Shaikh SA, Chen J. Influence of Atomization Nozzles and Spraying Intervals on Growth, Biomass Yield, and Nutrient Uptake of Butter-Head Lettuce under Aeroponics System. Agronomy. 2021; 11(1):97. https://doi.org/10.3390/agronomy11010097
Chicago/Turabian StyleTunio, Mazhar H., Jianmin Gao, Imran A. Lakhiar, Kashif A. Solangi, Waqar A. Qureshi, Sher A. Shaikh, and Jiedong Chen. 2021. "Influence of Atomization Nozzles and Spraying Intervals on Growth, Biomass Yield, and Nutrient Uptake of Butter-Head Lettuce under Aeroponics System" Agronomy 11, no. 1: 97. https://doi.org/10.3390/agronomy11010097
APA StyleTunio, M. H., Gao, J., Lakhiar, I. A., Solangi, K. A., Qureshi, W. A., Shaikh, S. A., & Chen, J. (2021). Influence of Atomization Nozzles and Spraying Intervals on Growth, Biomass Yield, and Nutrient Uptake of Butter-Head Lettuce under Aeroponics System. Agronomy, 11(1), 97. https://doi.org/10.3390/agronomy11010097