Linear Models for the Prediction of Animal Zone Ammonia in a Weaned Piglet Building
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Test
2.1.1. Animals and Housing
2.1.2. Variables and Measurement
2.2. Data Analysis
3. Results and Discussion
3.1. Concentration of NH3 for TS 26 and 25 °C
3.2. Correlations between the Study Variables for TS 26 and 25 °C
3.3. Linear Regression Models of NH3 from Mean Hourly Data
3.4. Linear Regression Models of NH3 from Mean Daily Data
3.5. Research Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Greef, K.H.; Vermeer, H.M.; Houwers, H.W.J.; Bos, A.P. Proof of principle of the comfort class concept in pigs: Experimenting in the midst of a stakeholder process on pig welfare. Livest. Sci. 2011, 139, 172–185. [Google Scholar] [CrossRef]
- Park, J.H.; Peters, T.M.; Altmaier, R.; Sawvel, R.A.; Anthony, T.R. Simulation of air quality and cost to ventilate swine farrowing facilities in winter. Comput. Electron. Agric. 2013, 98, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcimartín, M.A.; Ovejero, I.; Sanchez, E.; Sanchez-Giron, V. Application of the sensible heat balance to determine the temperature tolerance of commercial poultry housing. World’s Poult. Sci. J. 2007, 63, 575–584. [Google Scholar] [CrossRef]
- Rong, L.; Aarnink, A.J.A. Development of ammonia mass transfer coefficient models for the atmosphere above two types of the slatted floors in a pig house using computational fluid dynamics. Biosyst. Eng. 2019, 183, 13–25. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Chen, S.; Wei, B.; Gao, Y.; Huang, L.; Liu, C.; Huang, T.; Yu, M.; Zhao, S.H.; et al. Ammonia exposure causes lung injuries and disturbs pulmonary circadian clock gene network in a pig study. Ecotoxicol. Environ. Saf. 2020, 205, 111050. [Google Scholar] [CrossRef]
- Xie, Q.; Ni, J.Q.; Su, Z. A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system. J. Hazard. Mater. 2017, 325, 301–309. [Google Scholar] [CrossRef]
- Kim, K.Y.; Ko, H.J.; Kim, H.T.; Kim, C.N.; Byeon, S.H. Association between pig activity and environmental factors in pig confinement buildings. Aust. J. Exp. Agric. 2008, 48, 680–686. [Google Scholar] [CrossRef]
- Michiels, A.; Piepers, S.; Ulens, T.; Van Ransbeeck, N.; Sacristán, R.D.P.; Sierens, A.; Haesebrouck, F.; Demeyer, P.; Maes, D. Impact of particulate matter and ammonia on average daily weight gain, mortality and lung lesions in pigs. Prev. Vet. Med. 2015, 121, 99–107. [Google Scholar] [CrossRef]
- Gustafsson, G.; Banhazi, T.; Jeppsson, K.H. Control of emission from livestock buildings and the impact on health, welfare and performance of animals: A review. In Livestock Housing: Modern Management to Ensure Optimal Health and Welfare of Farm Animals; Aland, A., Banhazi, T., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 261–280. [Google Scholar]
- Banhazi, T.M.; Seedorf, J.; Rutley, D.L.; Pitchford, W.S. Identification of risk factors for sub-optimal housing conditions in Australian piggeries: Part 1. Study justification and design. J. Agric. Saf. Health 2008, 14, 5–20. [Google Scholar] [CrossRef]
- Cargill, C.; Murphy, T.; Banhazi, T. Hygiene and air quality in intensive housing facilities in Australia. Anim. Prod. Aust. 2002, 24, 387–393. [Google Scholar]
- Lee, C.; Giles, L.R.; Bryden, W.L.; Downing, J.L.; Owens, P.C.; Kirby, A.C.; Wynn, P.C. Performance and endocrine responses of group housed weaner pigs exposed to the air quality of a commercial environment. Livest. Prod. Sci. 2005, 93, 255–262. [Google Scholar] [CrossRef]
- Wathes, C.M.; Demmers, T.G.M.; Teer, N.; White, R.P.; Taylor, L.L.; Bland, V.; Jones, P.; Armstrong, D.; Gresham, A.C.J.; Hartung, J.; et al. Production responses of weaned pigs after chronic exposure to airborne dust and ammonia. Anim. Sci. 2004, 78, 87–97. [Google Scholar] [CrossRef]
- Costa, A. Ammonia concentrations and emissions from finishing pigs reared in different growing rooms. J. Environ. Qual. 2017, 46, 255–260. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Seedorf, J.; Rutley, D.L.; Pitchford, W.S. Identification of risk factors for sub-optimal housing conditions in Australian piggeries: Part 2. Airborne pollutants. J. Agric. Saf. Health 2008, 14, 21–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donham, K.; Thorne, P.; Breuer, G.; Powers, W.; Marquez, S.; Reynolds, S. Exposure Limits Related to Air Quality and Risk Assessment. Iowa Concentrated Animal Feeding Operations Air Quality Study; Iowa State University and The University of Iowa Study Group: Iowa City, IA, USA, 2002; p. 164. [Google Scholar]
- Rodríguez, M.R.; Losada, E.; Besteiro, R.; Arango, T.; Velo, R.; Ortega, J.A.; Fernandez, M.D. Evolution of NH3 Concentrations in Weaner Pig Buildings Based on Setpoint Temperature. Agronomy 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Zong, C.; Li, H.; Zhang, G. Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems. Agric. Ecosyst. Environ. 2015, 208, 94–105. [Google Scholar] [CrossRef]
- Calvet, S.; Gates, R.S.; Zhang, G.; Estelles, F.; Ogink, N.W.; Pedersen, S.; Berckmans, D. Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources. Biosyst. Eng. 2013, 116, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Rosa, E.; Mosquera, J.; Arriaga, H.; Montalvo, G.; Merino, P. Ammonia emission modelling and reduced sampling strategies in cage-based laying hen facilities. Biosyst. Eng. 2021, 204, 304–311. [Google Scholar] [CrossRef]
- Tabase, R.K.; Millet, S.; Brusselman, E.; Ampe, B.; De Cuyper, C.; Sonck, B.; Demeyer, P. Effect of ventilation control settings on ammonia and odour emissions from a pig rearing building. Biosyst. Eng. 2020, 192, 215–231. [Google Scholar] [CrossRef]
- Takai, H.; Nimmermark, S.; Banhazi, T.; Norton, T.; Jacobson, L.D.; Calvet, S.; Hassouna, M.; Bjerg, B.; Zhang, G.; Pedersen, S.; et al. Airborne pollutant emissions from naturally ventilated buildings: Proposed research directions. Biosyst. Eng. 2013, 116, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Calvet, S.; Cambra-López, M.; Estelles, F.; Torres, A.G. Characterization of gas emissions from a Mediterranean broiler farm. Poult. Sci. 2011, 90, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.Q.; Liu, S.; Diehl, C.A.; Lim, T.T.; Bogan, B.W.; Chen, L.; Heber, A.J. Emission factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter at two high-rise layer hen houses. Atmos. Environ. 2017, 154, 260–273. [Google Scholar] [CrossRef]
- Ogink, N.W.; Mosquera, J.; Calvet, S.; Zhang, G. Methods for measuring gas emissions from naturally ventilated livestock buildings: Developments over the last decade and perspectives for improvement. Biosyst. Eng. 2013, 116, 297–308. [Google Scholar] [CrossRef]
- Calvet, S.; Hunt, J.; Misselbrook, T.H. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia. Biosyst. Eng. 2017, 159, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.R.; Wang, J.H.; Dong, D.M.; Zheng, W.G.; Zhao, X.D. A review of contact sensors used for monitoring malodorous gas in animal facilities. Adv. Mat. Res. 2013, 629, 655–661. [Google Scholar] [CrossRef]
- Hinz, T.; Linke, S. A comprehensive experimental study of aerial pollutants in and emissions from livestock buildings. Part 1. Methods. J. Agric. Eng. Res. 1998, 70, 111–118. [Google Scholar] [CrossRef]
- Philippe, F.X.; Laitat, M.; Canart, B.; Vandenheede, M.; Nicks, B. Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter. Livest. Sci. 2007, 111, 144–152. [Google Scholar] [CrossRef]
- Jeppsson, K.H. Diurnal variation in ammonia, carbon dioxide and water vapour emission from an uninsulated, deep litter building for growing/finishing pigs. Biosyst. Eng. 2002, 81, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Duchaine, C.; Grimard, Y.; Cormier, Y. Influence of building maintenance, environmental factors, and seasons on airborne contaminants of swine confinement buildings. Am. Ind. Hyg. Assoc. J. 2000, 61, 56–63. [Google Scholar] [CrossRef]
- Groot Koerkamp, P.W.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; Hartung, J.; Seedorf, J.; Schröder, M.; et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 79–95. [Google Scholar] [CrossRef]
- Choi, H.L.; Kim, K.Y.; Kim, H. Correlation of air pollutants and thermal environment factors in a confined pig house in winter. Asian-Australas. J. Anim. Sci. 2005, 8, 574–579. [Google Scholar]
- Pardo, A.; Ruiz, M.Á. Análisis de Datos con SPSS 13 Base; McGraw-Hill/Interamericana de España, SL.: Madrid, Spain, 2005. [Google Scholar]
- Pereira, J.; Misselbrook, T.H.; Chadwick, D.R.; Coutinho, J.; Trindade, H. Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing: A laboratory study. Biosyst. Eng. 2012, 112, 138–150. [Google Scholar] [CrossRef]
- Sousa, P.; Pedersen, S. Ammonia Emission from Fattening Pig Houses in Relation to Animal Activity and Carbon Dioxide Production. Agric. Eng. Int. CIGR J. 2004, 6, 13. [Google Scholar]
- Blanes-Vidal, V.; Hansen, M.N.; Pedersen, S.; Rom, H.B. Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow. Agric. Ecosyst. Environ. 2008, 124, 237–244. [Google Scholar] [CrossRef]
TS | CO2 | RH | VIN | VEX | TCA | T |
---|---|---|---|---|---|---|
26 °C | 0.91 ** | 0.78 ** | 0.01 | −0.72 ** | −0.80 ** | 0.03 |
25 °C | 0.55 ** | 0.16 * | −0.35 ** | −0.65 ** | −0.29 ** | −0.08 |
Model | Variable | B | β | CTE | R | R2 | SE | T’ | VIF | DW |
---|---|---|---|---|---|---|---|---|---|---|
26H-1 | CO2 | 0.00 ** | 0.91 | −6.34 | 0.91 | 0.83 ** | 0.97 | 1.00 | 1.00 | 1.70 |
26H-2 | RH | 0.30 ** | 0.78 | −13.44 | 0.78 | 0.60 ** | 1.49 | 1.00 | 1.00 | 1.72 |
26H-3 | TCA | −0.26 ** | −0.74 | 8.63 | 0.80 | 0.64 ** | 1.41 | 1.00 | 1.00 | 1.80 |
26H-4 | VEX | −10.59 ** | −0.72 | 7.96 | 0.72 | 0.52 ** | 1.63 | 1.00 | 1.00 | 2.01 |
26H-5 | CO2 | 0.00 ** | 0.71 | 1.65 | 0.93 | 0.86 ** | 0.89 | 0.43 | 2.34 | 1.80 |
TCA | −0.39 ** | −0.27 | 0.43 | 2.34 | ||||||
26H-6 | CO2 | 0.00 ** | 0.80 | −4.15 | 0.92 | 0.84 ** | 0.94 | 0.50 | 1.98 | 1.70 |
VEX | −2.34 ** | −0.16 | 0.50 | 1.98 | ||||||
26H-7 | TCA | −0.74 ** | −0.50 | 5.78 | 0.85 | 0.71 ** | 1.26 | 0.45 | 2.28 | 1.85 |
RH | 0.16 ** | 0.40 | 0.45 | 2.28 | ||||||
26H-8 | CO2 | 0.00 ** | 0.63 | 2.91 | 0.87 | 0.87 ** | 0.86 | 0.33 | 3.07 | 1.80 |
TCA | −0.36 ** | −0.25 | 0.42 | 2.38 | ||||||
VEX | −1.92 ** | −0.13 | 0.50 | 2.02 | ||||||
25H-1 | VEX | −14.57 ** | −0.65 | 12.55 | 0.65 | 0.42 ** | 1.81 | 1.00 | 1.00 | 1.81 |
25H-2 | VEX | −11.20 ** | −0.50 | 4.70 | 0.71 | 0.50 ** | 1.69 | 0.78 | 1.29 | 1.90 |
CO2 | 0.00 ** | 0.32 | 0.78 | 1.29 | ||||||
25H-3 | VEX | −10.18 ** | −0.49 | 5.29 | 0.72 | 0.51 ** | 1.65 | 0.73 | 1.37 | 1.88 |
CO2 | 0.00 ** | 0.31 | 0.78 | 1.29 | ||||||
VIN | −58.33 ** | −0.16 | 0.91 | 1.11 | ||||||
25H-4 | VEX | −9.80 ** | −0.43 | 0.72 | 1.40 | 1.90 | ||||
CO2 | 0.00 ** | 0.40 | 9.86 | 0.73 | 0.53 ** | 1.63 | 0.58 | 1.74 | ||
VIN | −62.25 ** | −0.17 | 0.90 | 1.11 | ||||||
RH | −0.11 ** | −0.14 | 0.71 | 1.40 |
Model | SS | df | MS | F | p | |||
---|---|---|---|---|---|---|---|---|
Regressin | Residual | Regressin | Residual | Regressin | Residual | |||
26H-1 | 495.54 | 101.27 | 1 | 107 | 495.54 | 0.94 | 523.56 | 0.00 |
26H-2 | 359.90 | 236.91 | 1 | 107 | 359.90 | 2.21 | 162.54 | 0.00 |
26H-3 | 384.70 | 212.10 | 1 | 107 | 384.70 | 1.98 | 194.07 | 0.00 |
26H-4 | 311.11 | 285.70 | 1 | 107 | 311.11 | 2.67 | 116.52 | 0.00 |
26H-5 | 513.50 | 83.31 | 2 | 106 | 256.75 | 0.79 | 326.66 | 0.00 |
26H-6 | 503.18 | 93.63 | 2 | 106 | 251.59 | 0.88 | 284.84 | 0.00 |
26H-7 | 428.31 | 168.50 | 2 | 106 | 214.15 | 1.59 | 134.72 | 0.00 |
26H-8 | 518.56 | 78.25 | 3 | 105 | 172.85 | 0.75 | 231.94 | 0.00 |
25H-1 | 563.76 | 786.54 | 1 | 239 | 563.76 | 3.29 | 171.31 | 0.00 |
25H-2 | 670.93 | 679.365 | 2 | 238 | 335.47 | 2.85 | 117.52 | 0.00 |
25H-3 | 701.91 | 648.38 | 3 | 237 | 233.97 | 2.74 | 85.52 | 0.00 |
25H-4 | 720.57 | 629.73 | 4 | 236 | 180.15 | 2.67 | 67.51 | 0.00 |
Model | Variable | B | β | CTE | R | R2 | SE | T’ | VIF | DW |
---|---|---|---|---|---|---|---|---|---|---|
26D-1 | CO2 | 4 × 10−3 ** | 0.82 | −7.14 | 0.82 | 0.66 ** | 0.78 | 1.00 | 1.00 | 1.50 |
26D-2 | RH | 0.37 ** | 0.70 | −17.34 | 0.69 | 0.46 ** | 0.99 | 1.00 | 1.00 | 1.55 |
26D-3 | TCA | −1.12 ** | −0.89 | 20.30 | 0.89 | 0.79 ** | 0.62 | 1.00 | 1.00 | 1.56 |
26D-4 | VEX | −19.78 ** | −0.79 | 11.85 | 0.79 | 0.60 ** | 0.87 | 1.00 | 1.00 | 1.86 |
26D-5 | CO2 | 10−3 * | 0.31 | 11.70 | 0.91 | 0.82 ** | 0.58 | 0.37 | 2.71 | 1.74 |
TCA | −0.81 ** | −0.65 | 0.37 | 2.71 | ||||||
26D-6 | CO2 | 2 × 10−3 * | 0.54 | 1.04 | 0.89 | 0.76 ** | 0.66 | 0.57 | 1.75 | 2.32 |
VEX | −10.83 ** | −0.43 | 0.57 | 1.75 | ||||||
26D-7 | RH | 0.12 * | 0.23 | 10.57 | 0.91 | 0.82 ** | 0.58 | 0.63 | 1.60 | 1.78 |
TCA | −0.94 ** | −0.75 | 0.63 | 1.60 | ||||||
26D-8 | RH | 0.22 ** | 0.41 | −2.58 | 0.87 | 0.72 ** | 0.72 | 0.77 | 1.31 | 2.52 |
VEX | −14.81 ** | −0.60 | 0.77 | 1.31 | ||||||
26D-9 | TCA | −0.91 ** | −0.73 | 10.33 | 0.91 | 0.81 ** | 0.59 | 0.38 | 2.66 | 1.82 |
VEX | −0.60 ** | −0.02 | 0.45 | 2.23 | ||||||
RH | 0.13 * | 0.24 | 0.62 | 1.61 | ||||||
25D-1 | VEX | −18.97 ** | −0.85 | 14.80 | 0.85 | 0.71 ** | 1.04 | 1.00 | 1.00 | 1.73 |
25D-2 | TCA | −2.55 ** | −0.84 | 33.13 | 0.84 | 0.70 ** | 0.87 | 1.00 | 1.00 | 1.49 |
25D-3 | VEX | −17.49 ** | −0.79 | 4.88 | 0.87 | 0.73 ** | 0.82 | 0.87 | 1.15 | 2.02 |
CO2 | 3 × 10−3 * | 0.18 | 0.87 | 1.15 | ||||||
25D-4 | CO2 | 6 × 10−3 ** | 0.37 | 13.34 | 0.92 | 0.83 ** | 0.65 | 0.99 | 1.02 | 1.72 |
TCA | −2.41 ** | −0.80 | 0.99 | 1.02 |
Model | SS | df | MS | F | p | |||
---|---|---|---|---|---|---|---|---|
Regressin | Residual | Regressin | Residual | Regressin | Residual | |||
26D-1 | 28.65 | 13.54 | 1 | 22 | 28.65 | 0.62 | 46.55 | 0.00 |
26D-2 | 20.23 | 21.95 | 1 | 22 | 20.23 | 0.99 | 20.28 | 0.00 |
26D-3 | 33.72 | 8.47 | 1 | 22 | 33.72 | 0.39 | 87.56 | 0.00 |
26D-4 | 26.01 | 16.18 | 1 | 22 | 26.01 | 0.74 | 35.37 | 0.00 |
26D-5 | 35.20 | 6.98 | 2 | 21 | 17.60 | 0.33 | 52.93 | 0.00 |
26D-6 | 33.09 | 9.10 | 2 | 21 | 16.55 | 0.43 | 38.20 | 0.00 |
26D-7 | 35.16 | 7.02 | 2 | 21 | 17.58 | 0.33 | 52.58 | 0.00 |
26D-8 | 31.41 | 10.78 | 2 | 21 | 15.70 | 0.51 | 30.59 | 0.00 |
26D-9 | 35.17 | 7.02 | 3 | 20 | 11.72 | 0.35 | 33.41 | 0.00 |
25D-1 | 40.95 | 15.76 | 1 | 22 | 40.95 | 0.72 | 57.16 | 0.00 |
25D-2 | 40.40 | 16.32 | 1 | 22 | 40.40 | 0.74 | 54.47 | 0.00 |
25D-3 | 43.02 | 13.70 | 2 | 21 | 21.51 | 0.65 | 32.98 | 0.00 |
25D-4 | 47.04 | 9.67 | 2 | 21 | 23.52 | 0.46 | 51.06 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arango, T.; Besteiro, R.; Ortega, J.A.; Castro, Á.; Rodríguez, M.R.; Fernández, M.D. Linear Models for the Prediction of Animal Zone Ammonia in a Weaned Piglet Building. Agronomy 2021, 11, 1927. https://doi.org/10.3390/agronomy11101927
Arango T, Besteiro R, Ortega JA, Castro Á, Rodríguez MR, Fernández MD. Linear Models for the Prediction of Animal Zone Ammonia in a Weaned Piglet Building. Agronomy. 2021; 11(10):1927. https://doi.org/10.3390/agronomy11101927
Chicago/Turabian StyleArango, Tamara, Roberto Besteiro, Juan A. Ortega, Ángel Castro, Manuel Ramiro Rodríguez, and María D. Fernández. 2021. "Linear Models for the Prediction of Animal Zone Ammonia in a Weaned Piglet Building" Agronomy 11, no. 10: 1927. https://doi.org/10.3390/agronomy11101927
APA StyleArango, T., Besteiro, R., Ortega, J. A., Castro, Á., Rodríguez, M. R., & Fernández, M. D. (2021). Linear Models for the Prediction of Animal Zone Ammonia in a Weaned Piglet Building. Agronomy, 11(10), 1927. https://doi.org/10.3390/agronomy11101927