Mycorrhizal Inoculation Effect on Sweet Potato (Ipomoea batatas (L.) Lam) Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Determination of Colonization
2.3. Statistical Analysis
3. Results
3.1. Proof of Symbiotic Relation Establishment
3.2. Mycorrhizal Parameters
3.3. Physical Parameters of Sweet Potato Transplants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.; Wu, S.; Dai, X.; Su, Y.; Dai, S.; Zhang, A.; Zhou, Z.; Tang, J.; Cao, Q. QTL Analysis of root diameter in a wild diploid relative of sweet potato (Ipomoea batatas (L.) Lam.) Using a SNP-based genetic linkage map generated by genotyping-by-sequencing. Genet. Resour. Crop. Evol. 2021, 68, 1375–1388. [Google Scholar] [CrossRef]
- Azevedo, A.M.; Valter, C.; Andrade, J. Influence of harvest time and cultivation sites on the productivity and quality of sweet potato. Hortic. Bras. 2014, 32, 21–27. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Available online: http://www.fao.org (accessed on 6 January 2021).
- Teow, C.C.; Truong, V.D. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007, 103, 829–838. [Google Scholar] [CrossRef]
- Szarvas, A.; Herczeg, E.; Papp, L.; Monostori, T. The Effect of Planting Density on the Yield of Sweet Potato Ipomoea Batatas (L.) Lam. in South-East Hungary. Res. J. Agric. Sci. 2018, 50, 159–163. [Google Scholar]
- Ambika, A.P.; Nair, S.N. Wound healing activity of plants from the Convolvulaceae family. Adv. Wound Care 2019, 8, 28–37. [Google Scholar] [CrossRef]
- Nedunchezhiyan, M.; Ray, R.C. Sweet Potato Growth, Development, Production and Utilization: Overview. Sweet Potato: Post-Harvest Aspects in Food; Nova Science Publishers Inc.: New York, NY, USA, 2010; pp. 1–26. [Google Scholar]
- Jackson, D.M.; Harrison, H.F., Jr. Insect resistance in traditional and heirloom sweet potato varieties. J. Econ. Entomol. 2013, 106, 1456–1462. [Google Scholar] [CrossRef]
- Santander, C.; Aroca, R.; Ruiz-Lozano, J.M.; Olave, J.; Cartes, P.; Borie, F.; Cornejo, P. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 2017, 27, 639–657. [Google Scholar] [CrossRef]
- Gough, E.C.; Owen, K.J.; Zwart, R.S.; Thompson, J.P. A review of the effects of arbuscular mycorrhizal fungi and the root-lesion nematode Pratylenchus spp. Front. Plant Sci. 2020, 11, 923. [Google Scholar] [CrossRef]
- Mohammed, M.K.; Hawar, S.N. Effect of Mycorrhiza Fungi Spread in Soil and Palm Roots on Phosphorus Potassium Content of Three Locations in Baghdad City. Plant Arch. 2020, 20, 2508–2512. [Google Scholar]
- Fekete, K.; Al Hadidi, N.; Pap, Z. Effect on AM colonization and some Quality Parameters of Batavian Lettuce. In Water management: Focus on Climate Change; Hungarian University of Agriculture and Life Sciences: Szarvas, Hungary; Digitális Kalamáris Kiadó és Gyorsnyomda: Szarvas, Hungary, 2020; pp. 69–74. [Google Scholar]
- Al Hadidi, N.; Pap, Z. The Effectiveness of the Arbuscular Mycorrhiza to Increase the Drought Stress Tolerance in Tomato Crop (Solanum lycopersicum. L.): A-Review. In Water management: Focus on Climate Change; Hungarian University of Agricultural and Life Sciences: Szarvas, Hungary; Digitális Kalamáris Kiadó és Gyorsnyomda: Szarvas, Hungary, 2020; pp. 125–129. [Google Scholar]
- Wang, W.; Shi, J.; Xie, Q.; Jiang, Y.; Yu, N.; Wang, E. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Mol. Plant 2017, 10, 1147–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimprikar, P.; Gutjahr, C. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol. 2018, 59, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Mayer, Z.; Duc, N.H.; Sasvári, Z.; Posta, K. How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses. Acta Biol. Hung. 2017, 68, 376–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Chen, B. Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza 2020, 30, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.N.; Wu, Q.S.; Kuča, K. Unraveling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2020, 23, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Czarnocka, W.; Karpinski, S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free. Radic. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, A.; Van Breusegem, F. Reactive oxygen species in plant development. Development 2018, 145, dev164376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwueme, I.C.; Charles, W.B. Tropical Root and Tuber Crops—Production, Perspectives and Future Prospects; FAO Plant Production & Protection Paper; FAO: Rome, Italy, 1994. [Google Scholar]
- Horváth, L. The most important issues in the domestic cultivation of sweet potatoes. Plant Divers. Cent. 2015, 2. [Google Scholar]
- Váraljai, T.; Bráj, R. Sweet potato beach, sweet potato production in Ivory Coast and in Hungary. Agroforum 2017, 1, 32–35. [Google Scholar]
- Brandenberger, L.; Shrefler, J.; Rebek, E.; Damicone, J. Sweet Potato Production; HLA-6022; Oklahoma Cooperative Extension Service: Stillwater, OK, USA; Oklahoma State University: Stillwater, OK, USA, 2014. [Google Scholar]
- Symbiom Ltd. Available online: https://www.symbiom.cz/en/p-3-symbivit (accessed on 15 September 2021).
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Arbuscular Mycorrhizal Fungi in Plant Production Systems: Detection, Taxonomy, Conservation and Ecophysiology. Available online: https://www2.dijon.inrae.fr/mychintec/Protocole/protoframe.html (accessed on 10 August 2020).
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Chen, Z.; Schols, H.A.; Voragen, A.G.J. Physicochemical properties of starches obtained from three varieties of Chinese sweet potatoes. J. Food Sci. 2003, 68, 431–437. [Google Scholar] [CrossRef]
- Nedunchezhiyan, M.; Byju, G.; Jata, S.K. Sweet potato agronomy. Fruit Veg. Cereal Sci. Biotechnol. 2012, 6, 1–10. [Google Scholar]
- Farzana, Y.; Radizah, O. Influence of rhizobacterial inoculation on growth of the sweet potato cultivar. A.J. Bioc. Biot. 2005, 1, 176–179. [Google Scholar]
- Szarvas, A.; Váraljai, T.; Monostori, T. Sweet potato production on alluvial soil with high clay content. Ann. Acad. Rom. Sci. Ser. Agric. Silvic. Vet. Med. Sci. 2017, 6, 68–75. [Google Scholar]
- Masabni, J.; King, S. Easy Gardening; Texas A&M Agrilife Extension: Collage Station, TX, USA, 2014; pp. 1–3. [Google Scholar]
- Gai, J.P.; Feng, G.; Christie, P.; Li, X.L. Screening of Arbuscular Mycorrhizal Fungi for Symbiotic Efficiency with Sweet Potato. J. Plant Nutr. 2006, 29, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, O. Mycorrhizal symbiosis. Adv. Stud. Biol. 2011, 3, 273–281. [Google Scholar]
- Ortas, I. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crop. Res. 2012, 125, 35–48. [Google Scholar] [CrossRef]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Marschner, P. Rhizosphere biology. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; pp. 369–388. [Google Scholar]
- Pons, S.; Fournier, S.; Chervin, C.; Bécard, G.; Rochange, S.; Frei Dit Frey, N.; Puech Pagès, V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS ONE 2020, 15, e0240886. [Google Scholar] [CrossRef]
- Piliarová, M.; Ondreičková, K.; Hudcovicová, M.; Mihálik, D.; Kraic, J. Arbuscular mycorrhizal fungi—their life and function in ecosystem. Agriculture 2019, 65, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Liu, J.; Liu, J.; Huang, X. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: A review. Sci. China Life Sci. 2012, 55, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Krishnakumar, S.; Balakrishnan, N.; Muthukrishnan, R.; Kumar, S.R. Myth and mystery of soil mycorrhiza: A review. Afr. J. Agric. Res. 2013, 8, 4706–4717. [Google Scholar]
- Ruiz-Sánchez, M.; Aroca, R.; Muñoz, Y.; Polón, R.; Ruiz-Lozano, J.M. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J. Plant Physiol. 2010, 167, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M.; et al. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Front. Microbiol. 2017, 8, 2516. [Google Scholar] [CrossRef] [PubMed]
- Ortas, I.; Akpinar, Ç. Response of maize genotypes to several mycorrhizal inoculums in terms of plant growth, nutrient uptake and spore production. J. Plant Nutr. 2011, 34, 970–987. [Google Scholar] [CrossRef]
- Kakabouki, I.; Mavroeidis, A.; Tataridas, A.; Kousta, A.; Efthimiadou, A.; Karydogianni, S.; Katsenios, N.; Roussis, I.; Papastylianou, P. Effect of Rhizophagus irregularis on Growth and Quality of Cannabis sativa Seedlings. Plants 2021, 10, 1333. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.; Schmid, B.; Römheld, V.; George, E. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial root zone drying. Mycorrhiza 2009, 20, 13–23. [Google Scholar] [CrossRef]
- Sakha, M.; Jefwa, J. Effects of Arbuscular Mycorrhizal Fungal Inoculation on Growth and Yield of Two Sweet Potato Varieties. J. Agric. Ecol. Res. Int. 2019, 18, 1–8. [Google Scholar] [CrossRef]
- Reddy, R.; Soibam, H.; Ayam, V.S.; Panja, P.; Mitra, S. Morphological characterization of sweet potato cultivars during growth, development and harvesting. Indian J. Agric. Res. 2018, 52, 46–50. [Google Scholar] [CrossRef]
- Martin, C.C. Rotary drum compost and compost tea as substrates, amendments, and biocontrol agents for damping-off (Pythium ultimum) management in tomato (Solanum lycopersicum). Ph.D. Thesis, University of the West Indies, St. Augustine, Trinidad and Tobago, September 2013. [Google Scholar]
- Köhl, L.; Lukasiewicz, C.E.; Van Der Heijden, M.G.A. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant Cell Environ. 2016, 39, 136–146. [Google Scholar] [CrossRef]
- Perner, H.; Schwarz, D.; George, E. Effect of mycorrhizal inoculation and compost supply on growth and nutrient uptake of young leek plants growth on peat-based substrates. Hortic. Sci. 2006, 41, 628–632. [Google Scholar] [CrossRef] [Green Version]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- Wipf, D.; Krajinski, F.; van Tuinen, D.; Recorbet, G.; Courty, P.E. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Substrate | Number | Treatment Code | Treatment Description |
---|---|---|---|
Non-Sterilized Peat Moss | 1 | (L+SYM) | Non sterilized peat moss with mycorrhizal inoculum |
Sterilized Peat Moss | 2 | (L+SYM).S | Sterilized peat moss with mycorrhizal inoculum |
Soil from experimental farm (Control) | 3 | F | Soil from experimental farm |
Variety | Treatment | F% | M% | m% | a% | A% |
---|---|---|---|---|---|---|
L+SYM | 20.22 | 11.49 | 58.07 | 86.82 | 9.97 | |
purple | (L+SYM).S | 84.86 | 42.73 | 50.29 | 5.38 | 2.40 |
F | 4.52 | 1.25 | 36.50 | no arbuscule | no arbuscule | |
L+SYM | 21.63 | 0.32 | 1.47 | no arbuscule | no arbuscule | |
orange | (L+SYM).S | 67.19 | 21.44 | 32.13 | 35.28 | 7.59 |
F | 15.89 | 2.82 | 18.67 | no arbuscule | no arbuscule |
Variety | Orange | Purple | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Treatment | Mean | Std. Dev | Comparison of Treatments | Comparison of Varieties | Mean | Std. Dev | Comparison of Treatments | Comparison of Varieties |
FW of shoots (g) | (L+SYM).S | 4.76 | 0.88 | a | A | 3.80 | 2.99 | a 1 | A2 |
F | 2.83 | 1.73 | a | A | 9.42 | 3.04 | b 1 | B2 | |
L+SYM | 11.43 | 3.85 | b | A | 15.81 | 4.32 | c 1 | A2 | |
FW total roots (g) | (L+SYM).S | 4.89 | 1.14 | b | A | 3.88 | 2.38 | a 1 | A2 |
F | 1.09 | 0.89 | a | A | 3.44 | 1.87 | a 1 | B2 | |
L+SYM | 4.79 | 1.87 | b | A | 5.89 | 2.97 | a 1 | A2 | |
Length of roots (cm) | (L+SYM).S | 35.52 | 6.26 | a | A | 36.13 | 13.58 | a 1 | A2 |
F | 23.17 | 8.69 | a | A | 32.74 | 6.54 | a 1 | B2 | |
L+SYM | 25.90 | 7.44 | a | A | 30.83 | 8.30 | a 1 | A2 | |
Length of stem (cm) | (L+SYM).S | 35.56 | 12.89 | a | B | 14.69 | 5.80 | a 1 | A2 |
F | 20.00 | 11.21 | a | A | 29.37 | 7.83 | b 1 | A2 | |
L+SYM | 75.32 | 36.27 | b | A | 47.69 | 14.72 | c 1 | A2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ALHadidi, N.; Pap, Z.; Ladányi, M.; Szentpéteri, V.; Kappel, N. Mycorrhizal Inoculation Effect on Sweet Potato (Ipomoea batatas (L.) Lam) Seedlings. Agronomy 2021, 11, 2019. https://doi.org/10.3390/agronomy11102019
ALHadidi N, Pap Z, Ladányi M, Szentpéteri V, Kappel N. Mycorrhizal Inoculation Effect on Sweet Potato (Ipomoea batatas (L.) Lam) Seedlings. Agronomy. 2021; 11(10):2019. https://doi.org/10.3390/agronomy11102019
Chicago/Turabian StyleALHadidi, Nour, Zoltán Pap, Márta Ladányi, Viktor Szentpéteri, and Noémi Kappel. 2021. "Mycorrhizal Inoculation Effect on Sweet Potato (Ipomoea batatas (L.) Lam) Seedlings" Agronomy 11, no. 10: 2019. https://doi.org/10.3390/agronomy11102019
APA StyleALHadidi, N., Pap, Z., Ladányi, M., Szentpéteri, V., & Kappel, N. (2021). Mycorrhizal Inoculation Effect on Sweet Potato (Ipomoea batatas (L.) Lam) Seedlings. Agronomy, 11(10), 2019. https://doi.org/10.3390/agronomy11102019