Global Distributions of Clarireedia Species and Their In Vitro Sensitivity Profiles to Fungicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medium and Fungicides
2.2. Sample Collection and Pathogen Isolation
2.3. Sequencing of Internal Transcribed Spacer Regions
2.4. Species Identification
2.5. In Vitro Assessment of Fungicide Sensitivity
3. Results
3.1. Species Identification
3.2. Global Distributions of Clarireedia Species
3.3. Host Preference of Clarireedia Species
3.4. In Vitro Sensitivity Profiles of Clarireedia Species
3.5. In Vitro Sensitivity Profiles at Locales with Clarireedia Species Coexistence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Zhou, Y.; Geng, J.; Dai, Y.; Ren, H.; Lamour, K. A new dollar spot disease of turfgrass caused by Clarireedia paspali. Mycol. Prog. 2019, 18, 1423–1435. [Google Scholar] [CrossRef]
- Salgado-Salazar, C.; Beirn, L.A.; Ismaiel, A.; Boehm, M.J.; Carbone, I.; Putman, A.I.; Tredway, L.P.; Clarke, B.B.; Crouch, J.A. Clarireedia: A new fungal genus comprising four pathogenic species responsible for dollar spot disease of turfgrass. Fungal Biol. 2018, 122, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Espevig, T.; Brurberg, M.B.; Kvalbein, A. First report of dollar spot, Caused by Sclerotinia homoeocarpa, of creeping bentgrass in Norway. Plant Dis. 2015, 99, 287. [Google Scholar] [CrossRef] [PubMed]
- Aynardi, B.A.; Jiménez-Gasco, M.M.; Uddin, W. Effects of isolates of Clarireedia jacksonii and Clarireedia monteithiana on severity of dollar spot in turfgrasses by host type. Eur. J. Plant Pathol. 2019, 155, 817–829. [Google Scholar] [CrossRef]
- Stephens, C.M.; Kaminski, J. In vitro fungicide-insensitive profiles of Sclerotinia homoeocarpa populations from Pennsylvania and the surrounding region. Plant Dis. 2019, 103, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Yang, J.Y.; Li, J.; Ma, Z.Y.; Yao, W.J.; Ren, H.Y.; Zhang, F.G.; Yang, G.W.; Sun, X.; Xiao, Y. Sensitivity of Sclerotinia homoeocarpa from turfgrass to thiophanate-methl, iprodione and propiconazole. Chin. J. Pestic. Sci. 2017, 19, 694–700. [Google Scholar]
- Ostrander, J.C.; Todd, R.B.; Kennelly, M.M. Resistance of Kansas Sclerotinia homoeocarpa isolates to thiophanate-methyl and determination of associated β-tubulin mutation. Plant Health Prog. 2014, 15, 23–27. [Google Scholar] [CrossRef]
- Popko, J.T., Jr.; Sang, H.; Lee, J.; Yamada, T.; Hoshino, Y.; Jung, G. Resistance of Sclerotinia homoeocarpa field isolates to succinate dehydrogenase inhibitor fungicides. Plant Dis. 2018, 102, 2625–2631. [Google Scholar] [CrossRef] [Green Version]
- Sang, H.; Hulvey, J.; Popko, J.T., Jr.; Lopes, J.; Swaminathan, A.; Chang, T.; Jung, G. A pleiotropic drug resistance transporter is involved in reduced sensitivity to multiple fungicide classes in Sclerotinia homoeocarpa (F.T. Bennett). Mol. Plant Pathol. 2015, 16, 251–261. [Google Scholar] [CrossRef]
- Sang, H.; Popko, J.T., Jr.; Chang, T.; Jung, G. Molecular mechanisms involved in qualitative and quantitative resistance to the dicarboximide fungicide iprodione in Sclerotinia homoeocarpa field isolates. Phytopathology 2017, 107, 198–207. [Google Scholar] [CrossRef]
- Sang, H.; Hulvey, J.P.; Green, R.; Xu, H.; Im, J.; Chang, T.; Jung, G. A xenobiotic detoxification pathway through transcriptional regulation in filamentous fungi. mBio 2018, 9, e00457-18. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Choi, J.; Kim, J.W. Triazole fungicides sensitivity of Sclerotinia homoeocarpa in Korean golf courses. Plant Pathol. J. 2017, 33, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Putman, A.I.; Jung, G.; Kaminski, J.E. Geographic distribution of fungicide-insensitive Sclerotinia homoeocarpa isolates from golf courses in the northeastern United States. Plant Dis. 2010, 94, 186–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberti, D.; Rollins, J.A.; Harmon, P.F. Evidence for morphological, vegetative, genetic, and mating-type diversity in Sclerotinia homoeocarpa. Phytopathology 2012, 102, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Everhart, S.E.; Bryson, P.K.; Luo, C.; Song, X.; Liu, X.; Schnabel, G. Fungicide-induced transposon movement in Monilinia fructicola. Fungal Genet. Biol. 2015, 85, 38–44. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Deng, S.; Gao, T.; Lamour, K.; Liu, X.; Ren, H. Thiophanate-methyl resistance in Sclerotinia homoeocarpa from golf courses in China. Pestic. Biochem. Phys. 2018, 152, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.W.; Jiang, S.; Zhao, Z.Y.; Guan, J.; Dong, Y.L.; Hu, J.; Lamour, K.; Yin, S.X.; Yang, Z.M. Fungicide sensitivity of Clarireedia spp. isolates from golf courses in China. Crop Prot. 2021, 149, 105785. [Google Scholar] [CrossRef]
- Chen, J.Y.; Liu, C.; Gui, Y.J.; Si, K.W.; Zhang, D.D.; Wang, J.; Short, D.P.G.; Huang, J.Q.; Li, N.Y.; Liang, Y.; et al. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. New Phytol. 2018, 217, 756–770. [Google Scholar] [CrossRef] [Green Version]
- Putman, A.I. Worldwide Population Biology of Sclerotinia homoeocarpa From Common Turfgrass Hosts and Mating Systems of the Pathogen and Closely Related Fungi. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2013. [Google Scholar]
- Rioux, R.A.; Shultz, J.; Garcia, M.; Willis, D.K.; Casler, M.; Bonos, S.; Smith, D.; Kerns, J. Sclerotinia homoeocarpa overwinters in turfgrass and is present in commercial seed. PLoS ONE 2014, 9, e110897. [Google Scholar] [CrossRef] [PubMed]
- Koch, P.L.; Grau, C.R.; Jo, Y.K.; Jung, G. Thiophanate-methyl and propiconazole sensitivity in Sclerotinia homoeocarpa populations from golf courses in Wisconsin and Massachusetts. Plant Dis. 2009, 93, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Banno, S.; Yamashita, K.; Fukumori, F.; Okada, K.; Uekusa, H.; Takagaki, M.; Kimura, M.; Fujimura, M. Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathol. 2009, 58, 120–129. [Google Scholar] [CrossRef]
- Chen, S.N.; Luo, C.X.; Hu, M.J.; Schnabel, G. Sensitivity of Colletotrichum Species, including C. fioriniae and C. nymphaeae, from peach to demethylation inhibitor fungicides. Plant Dis. 2016, 100, 2434–2441. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Yang, J.Y.; Li, J.; Yang, G.W.; Ren, H.Y. Azoxystrobin sensitivity in Magnaporthe poae populations collected from turfgrass in Beijing and analysis of its cytochrome b (Cytb) gene sequence. Chin. J. Pestic. Sci. 2018, 20, 33–40. [Google Scholar]
- Kreis, R.A.; Dillard, H.R.; Smart, C.D. Population diversity and sensitivity to azoxystrobin of Alternaria brassicicola in New York State. Plant Dis. 2016, 100, 2422–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, W.V.; Primiano, I.V.; Morales, R.G.F.; Peres, N.A.; Amorim, L.; May De Mio, L.L. Reduced sensitivity to azoxystrobin of Monilinia fructicola isolates from Brazilian stone fruits is not associated with previously described mutations in the cytochrome b gene. Plant Dis. 2017, 101, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Standish, J.R.; Avenot, H.F.; Brenneman, T.B.; Stevenson, K.L. Location of an intron in the cytochrome b gene indicates reduced risk of QoI fungicide resistance in Fusicladium effusum. Plant Dis. 2016, 100, 2294–2298. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.P.; Midland, S.L.; de la Cerda, K.A. Occurrence and distribution of QoI-resistant isolates of Colletotrichum cereale from annual bluegrass in California. Plant Dis. 2007, 91, 1536–1546. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, Y.; Schnabel, G.; Peng, C.A.; Lagishetty, S.; Smith, K.; Luo, C.; Yuan, H. Inherent resistance to 14 alpha-demethylation inhibitor fungicides in Colletotrichum truncatum is likely linked to CYP51A and/or CYP51B gene variants. Phytopathology 2018, 108, 1263–1275. [Google Scholar] [CrossRef] [Green Version]
- Muzhinji, N.; Woodhall, J.W.; Truter, M.; van der Waals, J.E. Variation in fungicide sensitivity among Rhizoctonia isolates recovered from potatoes in South Africa. Plant Dis. 2018, 102, 1520–1526. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.Y.; Sun, J.T.; Zhang, X.K.; Chen, C.J. Amino acid polymorphism in succinate dehydrogenase subunit C involved in biological fitness of Botrytis cinerea. Mol. Plant Microbe Interact. 2020, 33, 580–589. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, X.; Gao, Y.; Li, B.; Mu, W.; Liu, F. Characterization and fungicide sensitivity of Colletotrichum spp. from different hosts in Shandong, China. Plant Dis. 2019, 103, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Ueyama, I.; Araki, Y.; Kurogochi, S.; Yamaguchi, I. Metabolism of the phenylurea fungicide, pencycuron, in sensitive and tolerant strains of Rhizoctonia solani. J. Pestic. Sci. 1993, 18, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Amiri, A.; Heath, S.M.; Peres, N.A. Resistance to fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from strawberry. Plant Dis. 2014, 98, 532–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, R.W.S.; Hahn, M. A rapid and simple method for determining fungicide resistance in Botrytis. J. Plant Dis. Protec. 2011, 118, 17–25. [Google Scholar] [CrossRef]
Species | No. of Isolates | History | Host Type | Distribution b | ||
---|---|---|---|---|---|---|
C3 | C4 | N/A a | ||||
Clarireedia homoeocarpa | 5 | 1937–2008 | 4 | 0 | 1 | United Kingdom |
Clarireedia bennettii | 5 | 1937–1973 | 0 | 0 | 5 | The Netherlands, United Kingdom, USA |
Clarireedia jacksonii | 124 | 1972–2016 | 93 | 22 | 9 | Canada, China (5), Ireland, Italy, Japan (4), The Netherlands, Spain, United Kingdom, USA (16) |
Clarireedia monteithiana | 59 | 2001–2016 | 2 | 56 | 1 | Canada, China (5), Dominican Republic, Japan (5), USA (7) |
Clarireedia paspali | 75 | 2012–2016 | 0 | 75 | 0 | China (3) |
Clarireedia sp. 1 | 4 | 2015 | 0 | 4 | 0 | China (1) |
Clarireedia sp. 2 | 3 | 2005–2013 | 3 | 0 | 0 | Japan (2), Norway |
Total | 275 | 102 | 157 | 16 | - |
Species | No. of Locations | No. of Isolates | No. of Isolates Resistant to Thiophanate-Methyl | Relative Mycelial Growth (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Propiconazole | Iprodione | Boscalid | |||||||
Range | Mean a | Range | Mean | Range | Mean | ||||
Clarireedia jacksonii | 9 | 22 | 17 | 17.02–78.87 | 48.67 a | 8.77–71.79 | 34.67 a | 23.46–67.57 | 42.85 a |
Clarireedia monteithiana | 3 | 10 | 0 | 14.29–39.71 | 28.32 b | 31.94–44.12 | 36.97 a | 35.71–60.87 | 46.51 a |
Clarireedia paspali | 6 | 56 | 7 | 4.29–45.00 | 27.75 b | 0.00–62.79 | 34.11 a | 0.00–23.73 | 14.01 b |
Code | Species a | TM Sensitivity b | Relative Mycelium Growth (%) b | Collection Year | Site | Location | Province | ||
---|---|---|---|---|---|---|---|---|---|
P | Y | D | |||||||
BH15-5 | CM | S | 14.29 | 36.11 | 40.82 | September 2016 | Fairway | Binhai Golf Club | Shanghai |
BH17-8 | CM | S | 30.43 | 36.76 | 60.87 | September 2016 | Fairway | Binhai Golf Club | Shanghai |
BH18-2 | CM | S | 34.38 | 34.68 | 59.38 | September 2016 | Fairway | Binhai Golf Club | Shanghai |
BH18-4 | CM | S | 39.66 | 31.94 | 42.11 | September 2016 | Fairway | Binhai Golf Club | Shanghai |
BH18-4 | CM | S | 39.71 | 37.14 | 51.47 | September 2016 | Fairway | Binhai Golf Club | Shanghai |
BH6-4 | CM | S | 20.59 | 38.24 | 42.65 | September 2016 | Fairway | Binhai Golf Club | Shanghai |
BH17-6 | CJ | R | 78.87 | 52.17 | 33.80 | September 2016 | Fairway | Binhai Golf Club | Shanghai |
LKS1-1 | CJ | R | 73.56 | 17.81 | 36.49 | September 2016 | Fairway | Links Golf Club | Shanghai |
LKS11-2 | CJ | R | 67.05 | 16.95 | 31.17 | September 2016 | Fairway | Links Golf Club | Shanghai |
LKS1-2 | CJ | R | 77.38 | 58.73 | 28.38 | September 2016 | Fairway | Links Golf Club | Shanghai |
LKS13-6 | CJ | R | 73.97 | 22.58 | 49.33 | September 2016 | Fairway | Links Golf Club | Shanghai |
LKS11-3 | CP | R | 21.21 | 27.45 | 18.57 | September 2016 | Fairway | Links Golf Club | Shanghai |
TC5-6 | CJ | R | 51.72 | 71.79 | 42.53 | September 2016 | Fairway | Xingdonghai Golf Club | Jiangsu |
TC8-3 | CP | S | 10.71 | 36.21 | 20.43 | September 2016 | Fairway | Xingdonghai Golf Club | Jiangsu |
TC8-5 | CP | S | 5.26 | 45.07 | 15.79 | September 2016 | Fairway | Xingdonghai Golf Club | Jiangsu |
TC12-4 | CP | R | 4.29 | 24.39 | 5.06 | September 2016 | Fairway | Xingdonghai Golf Club | Jiangsu |
TC10-4 | CM | S | 30.43 | 44.12 | 40.58 | September 2016 | Fairway | Xingdonghai Golf Club | Jiangsu |
TC5-8 | CM | S | 22.08 | 32.35 | 41.56 | September 2016 | Fairway | Xingdonghai Golf Club | Jiangsu |
TC8-6 | CM | S | 27.14 | 35.48 | 35.71 | September 2016 | Fairway | Xingdonghai Golf Club | Jiangsu |
XTH18F-4 | CP | R | 19.12 | 18.92 | 20.59 | September 2016 | Fairway | Xingtianhong Golf Club | Shanghai |
XTH18T-5 | CP | R | 16.28 | 18.00 | 10.00 | September 2016 | Fairway | Xingtianhong Golf Club | Shanghai |
XTHA10-5 | CP | R | 23.29 | 14.52 | 5.56 | September 2016 | Fairway | Xingtianhong Golf Club | Shanghai |
XTHA15T-7 | CP | R | 19.35 | 23.88 | 16.49 | September 2016 | Fairway | Xingtianhong Golf Club | Shanghai |
XTH27G-2 | CJ | R | 60.34 | 48.65 | 37.50 | September 2016 | Fairway | Xingtianhong Golf Club | Shanghai |
XTH27G-3 | CJ | R | 56.45 | 37.84 | 23.46 | September 2016 | Fairway | Xingtianhong Golf Club | Shanghai |
XTH27G-3 | CJ | R | 59.74 | 47.14 | 29.31 | September 2016 | Fairway | Xingtianhong Golf Club | Shanghai |
XTH27G-5 | CJ | R | 47.27 | 22.22 | 30.91 | September 2016 | Fairway | Xingtianhong Golf Club | Shanghai |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhang, H.; Dong, Y.; Jiang, S.; Lamour, K.; Liu, J.; Chen, Y.; Yang, Z. Global Distributions of Clarireedia Species and Their In Vitro Sensitivity Profiles to Fungicides. Agronomy 2021, 11, 2036. https://doi.org/10.3390/agronomy11102036
Hu J, Zhang H, Dong Y, Jiang S, Lamour K, Liu J, Chen Y, Yang Z. Global Distributions of Clarireedia Species and Their In Vitro Sensitivity Profiles to Fungicides. Agronomy. 2021; 11(10):2036. https://doi.org/10.3390/agronomy11102036
Chicago/Turabian StyleHu, Jian, Huangwei Zhang, Yinglu Dong, Shan Jiang, Kurt Lamour, Jun Liu, Yu Chen, and Zhimin Yang. 2021. "Global Distributions of Clarireedia Species and Their In Vitro Sensitivity Profiles to Fungicides" Agronomy 11, no. 10: 2036. https://doi.org/10.3390/agronomy11102036
APA StyleHu, J., Zhang, H., Dong, Y., Jiang, S., Lamour, K., Liu, J., Chen, Y., & Yang, Z. (2021). Global Distributions of Clarireedia Species and Their In Vitro Sensitivity Profiles to Fungicides. Agronomy, 11(10), 2036. https://doi.org/10.3390/agronomy11102036