Innovative Land Arrangement in Combination with Irrigation Methods Improves the Crop and Water Productivity of Rice (Oryza sativa L.) Grown with Okra (Abelmoschus esculentus L.) under Raised and Sunken Bed Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Land Configuration
2.3. Irrigation Method
2.4. Treatment Details
2.5. Crop Establishment
2.6. Wateruse, Productivity and Savings
2.7. Statistical Analysis
3. Results and Discussion
3.1. Water Use
3.1.1. Water Supply in Rice
3.1.2. Seepage Gain in Okra
3.1.3. Water Savings
3.2. Crop Performances
3.3. Water Productivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C.S. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Pramanick, B.; Brahmachari, K.; Kar, S.; Mahapatra, B.S. Can foliar application of seaweed sap improve the quality of rice grown under rice–potato–greengram crop sequence with better efficiency of the system? Environ. Boil. Fishes 2020, 32, 1–10. [Google Scholar] [CrossRef]
- Suriyan, C.; Yoo, Y.S.; Supaibulneatana, K. Water deficit stress in the productive stage of four indica rice (Oryza sativa L.) genotypes. Pak. J. Bot. 2010, 42, 3387–3398. [Google Scholar]
- Gowda, V.R.; Henry, A.; Yamauchi, A.; Shashidhar, H.; Serraj, R. Root biology and genetic improvement for drought avoidance in rice. Field Crop. Res. 2011, 122, 1–13. [Google Scholar] [CrossRef]
- Passioura, J. The drought environment: Physical, biological and agricultural perspectives. J. Exp. Bot. 2007, 58, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.P.; Mahapatra, B.; Pramanick, B.; Yadav, V.R. Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil. Agric. Water Manag. 2021, 244, 106539. [Google Scholar] [CrossRef]
- Tao, H.; Brueck, H.; Dittert, K.; Kreye, C.; Lin, S.; Sattelmacher, B. Growth and yield formation of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crop. Res. 2006, 95, 1–12. [Google Scholar] [CrossRef]
- Yang, J.-C.; Liu, K.; Zhang, S.-F.; Wang, X.-M.; Wang, Z.-Q.; Liu, L.-J. Hormones in Rice Spikelets in Responses to Water Stress During Meiosis. ActaAgron. Sin. 2008, 34, 111–118. [Google Scholar] [CrossRef]
- FAO. (FAOSTAT Production); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2008. [Google Scholar]
- Ghosh, P.K.; Saha, R.; Das, A.; Tripathi, A.K.; Samuel, M.P.; Lama, T.D.; Mandal, S.; Ngachan, S.V. Participatory Rain Water Management in Hill Ecosystem—A Success Story; Technical bulletinno; 67.FPARP-Phase I; ICAR Research Complex for NEH Region: Meghalaya, India, 2009; p. 37. [Google Scholar]
- Goswami, S.B.; Sarkar, S. Effect of irrigation on crop water productivity of pointed gourd (Trichosanthes dioica) at varying bed width planting system. Ind. J. Agric. Sc. 2007, 77, 340–343. [Google Scholar]
- Sharma, P.K. Raised-sunken bed system for increasing productivity of rice-based cropping system in high rainfall areas of Himachal Pradesh. J. Indian Soc. Soil Sci. 2003, 51, 10–16. [Google Scholar]
- Molden, D.; Rijsberman, F.; Matsuno, Y.; Amarasinghe, U. Increasing Water Productivity: A Requirement for Food and Environmental Security. In Proceedings of the Global Dialogue on Food and Environmental Security, Colombo, Sri Lanka, 2000; Available online: http://www.iwmi.cgiar.org/About_IWMI/Strategic_Documents/Annual_Reports/2001_2002/AnnualReport20012002.pdf (accessed on 13 September 2021).
- Amarasingha, R.; Suriyagoda, L.; Marambe, B.; Rathnayake, W.; Gaydon, D.; Galagedara, L.; Punyawardena, R.; Silva, G.; Nidumolu, U.; Howden, M. Improving water productivity in moisture-limited rice-based cropping systems through incorporation of maize and mungbean: A modelling approach. Agric. Water Manag. 2017, 189, 111–122. [Google Scholar] [CrossRef]
- Pereira, L.S. Relating water productivity and crop evapotranspiration. In Proceedings of the Water Use Efficiency and Water Productivity, Amman, Jordan, 2005; pp. 31–49. Available online: https://www.nap.edu/read/25059/chapter/8 (accessed on 13 September 2021).
- Kijne, J.; Barker, R.; Molden, D. Improving Water Productivity in Agriculture: Editors’ Overview. In Water Productivity in Agriculture: Limits and Opportunities for Improvement, Comprehensive Assessment of Water Management in Agriculture; Kijne, J., Ed.; CABI Publishing in Association with International Water Management Institute: Wallingford, UK, 2003; p. 199. [Google Scholar]
- Reddy, S.R. Principles of Agronomy; Kalyani Publishers: New Delhi, India, 2010; pp. 309–310. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Li, Y.; Barker, R. Increasing water productivity for paddy irrigation in China. Paddy Water Environ. 2004, 2, 187–193. [Google Scholar] [CrossRef]
- Singh, C.B.; Aujla, T.S.; Sandhu, B.S.; Khera, K.L. Effects of transplanting data and irrigation regime on growth, yield and water use in rice (Oryza sativa) in northern India. Indian J. Agric. Sci. 1996, 66, 137–141. [Google Scholar]
- Singh, R.; Kundu, D.K.; Kannan, K.; Thakur, A.K.; Mohanty, R.K.; Kumar, A. Technologies for Improving Farm Level Water Productivity in Canal Commands; Research Bulletin No. 43; Water Technology Centre for Eastern region (Indian council of Agricultural Research): Bhubaneswar, India, 2008; p. 56. [Google Scholar]
- Aslam, M.; Prathapar, S.A. Water Management in the Rice-Wheat Cropping Zone of Sindh, Pakistan: A Case Study. In The Rice-Wheat Cropping System of South Asia: Efficient Production Management; CRC Press: Boca Raton, FL, USA, 2021; pp. 249–272. [Google Scholar]
- Murthy, K.M.; Reddy, D.; Rao, C.V.; Upendra, A.; Zaheruddeen, S.M. Water management and varietal response of rice under System of Rice Intensification (SRI) in Godavari delta of Andhra Pradesh. In Proceedings of the National Symposium on System of Rice Intensification (SRI)-Present Status and Future PROSPECTS, Hyderabad, India, 17–18 November 2006; p. 98. [Google Scholar]
- Jat, H.S.; Singh, G.; Singh, R.; A Choudhary, M.; Jat, M.L.; Gathala, M.K.; Sharma, D.K. Management influence on maize-wheat system performance, water productivity and soil biology. Soil Use Manag. 2015, 31, 534–543. [Google Scholar] [CrossRef]
- Saha, R.; Ghosh, P.K. Effect of land configuration on water economy, crop yield and profitability under rice (Oryza sativa)-based cropping systems in north-east India. Indian J. Agric. Sci. 2010, 80, 16–20. [Google Scholar]
- Das, A.; Layek, J.; Ramkrushna, G.I.; Patel, D.P.; Choudhury, B.U.; Chowdhury, S.; Ngachan, S.V. Raised and sunken bed land configuration for crop diversification and crop and water productivity enhancement in rice paddies of the north eastern region of India. Paddy Water Environ. 2015, 13, 571–580. [Google Scholar] [CrossRef]
- Moya, P.; Hong, L.; Daweand, D.; Chen, C.D. Comparative assessment of on-farm water-saving irrigation techniques in the Zhanghe Irrigation System. In Proceedings of the International Conference on Environmentally Sound Water Resources Utilization, Bangkok, Thailand, 2001; International Water Management Institute: Colombo, Sri Lanka, 2001; pp. 81–96. [Google Scholar]
- Belder, P.; Bouman, B.; Cabangon, R.; Guoan, L.; Quilang, E.; Yuanhua, L.; Spiertz, J.; Tuong, T. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manag. 2004, 65, 193–210. [Google Scholar] [CrossRef]
- Alliaume, F.; Rossing, W.; Tittonell, P.; Jorge, G.; Dogliotti, S. Reduced tillage and cover crops improve water capture and reduce erosion of fine textured soils in raised bed tomato systems. Agric. Ecosyst. Environ. 2014, 183, 127–137. [Google Scholar] [CrossRef]
Months | Temperature (°C) | Relative Humidity (%) | BRS (h d−1) | Epan (mm d−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | |||||
Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | |||||
January | 23.5 ± 0.2 | 13.21 ± 0.4 | 25.1 ± 0.3 | 9.97 ± 0.1 | 95.6 ± 1 | 60.8 ± 1 | 93.7 ± 1 | 49.0 ± 2 | 5.49 ± 0.05 | 5.56 ± 0.04 | 1.06 ± 0.01 | 1.14 ± 0.01 |
February | 28.9 ± 0.3 | 14.0 ± 0.1 | 29.4 ± 0.4 | 13.5 ± 0.2 | 90.4 ± 2 | 42.9 ± 1 | 91.0 ± 2 | 44.7 ± 1 | 8.71 ± 0.02 | 7.60 ± 0.01 | 2.09 ± 0.01 | 1.99 ± 0.01 |
March | 34.5 ± 0.2 | 20.6 ± 0.3 | 36.2 ± 0.2 | 20.0 ± 0.3 | 87.9 ± 1 | 36.7 ± 1 | 88.5 ± 1 | 34.2 ± 1 | 8.74 ± 0.05 | 7.98 ± 0.05 | 3.57 ± 0.02 | 3.53 ± 0.02 |
April | 36.1 ± 0.2 | 24.2 ± 0.05 | 37.6 ± 0.3 | 24.2 ± 0.1 | 87.4 ± 3 | 49.0 ± 1 | 88.0 ± 2 | 43.4 ± 3 | 8.49 ± 0.03 | 8.41 ± 0.04 | 4.82 ± 0.02 | 4.53 ± 0.02 |
May | 36.7 ± 0.5 | 26.6 ± 0.1 | 34.8 ± 0.2 | 25.7 ± 0.2 | 90.4 ± 1 | 55.6 ± 2 | 90.6 ± 1 | 68.2 ± 4 | 8.39 ± 0.01 | 5.22 ± 0.02 | 4.38 ± 0.02 | 3.42 ± 0.01 |
June | 37.9 ± 0.3 | 29.1 ± 0.0.5 | 34.2 ± 0.3 | 26.4 ± 0.1 | 88.6 ± 2 | 56.6 ± 1 | 94.1 ± 3 | 78.6 ± 2 | 4.90 ± 0.04 | 4.74 ± 0.03 | 3.20 ± 0.01 | 2.51 ± 0.01 |
Treatment | Water Use in Rice/Okra | Seepage Gain in Okra (mm) | Water Savings in the System (%) | |||||
---|---|---|---|---|---|---|---|---|
I (mm) | I + P (mm) | |||||||
2013–2014 | 2014–2015 | 2013–2014 | 2014–2015 | 2013–2014 | 2014–2015 | 2013–2014 | 2014–2015 | |
T1: I1 RSB1(1: 3) | 1088 | 1013 | 1218 | 1214 | 195.8 | 179.4 | 22.9 | 21.7 |
T2: I1 RSB2(2: 3) | 870 | 810 | 1000 | 1011 | 156.1 | 147.3 | 36.7 | 34.8 |
T3: I1 RSB3(3: 3) | 725 | 675 | 855 | 876 | 138.4 | 137.9 | 45.9 | 43.5 |
T4: I2 RSB1(1: 3) | 825 | 788 | 956 | 989 | 114.3 | 115.7 | 22.3 | 20.9 |
T5: I2 RSB2(2: 3) | 660 | 630 | 790 | 831 | 81.2 | 89.7 | 35.8 | 33.6 |
T6: I2 RSB3(3: 3) | 550 | 525 | 680 | 726 | 28.3 | 45.5 | 44.7 | 41.9 |
T7: I1 Sole rice | 1450 | 1350 | 1580 | 1551 | - | - | - | - |
T8: I2 Sole rice | 1100 | 1050 | 1230 | 1251 | - | - | - | - |
T9: Sole okra * | 200 | 200 | 330 | 401 | - | - | - | - |
F-test0.05 | ** | ** | ** | ** | ** | ** |
Treatment | Crop Yield (Mg ha−1) | WP (kg m−3) | ||||||
---|---|---|---|---|---|---|---|---|
Okra | Rice | REY | ||||||
2013–2014 | 2014–2015 | 2013–2014 | 2014–2015 | 2013–2014 | 2014–2015 | 2013–2014 | 2014–2015 | |
T1: I1 RSB1(1:3) | 9.42 ± 1.0 c | 10.34 ± 1.1 d | 4.36 ± 0.21 a | 4.89 ± 0.17 a | 5.67 ± 1.09 c | 6.39 ± 1.11 b | 0.47 ± 0.03 | 0.53 ± 0.05 |
T2: I1 RSB2(2:3) | 9.44 ± 0.7 c | 11.15 ± 2.1 c | 3.92 ± 0.23 b | 4.22 ± 0.53 b | 6.02 ± 1.12 bc | 6.72 ± 1.18 b | 0.60 ± 0.01 | 0.67 ± 0.01 |
T3: I1 RSB3(3:3) | 12.16 ± 1.2 b | 14.05 ± 0.9 b | 3.43 ± 0.19 c | 3.56 ± 0.25 cd | 6.82 ± 1.15 a | 7.49 ± 1.09 a | 0.79 ± 0.04 | 0.85 ± 0.04 |
T4: I2 RSB1(1:3) | 14.09 ± 2.3 a | 15.43 ± 1.0 a | 3.78 ± 0.09 b | 3.95 ± 0.22 bc | 5.74 ± 1.17 c | 6.11 ± 1.09 c | 0.60 ± 0.05 | 0.62 ± 0.01 |
T5: I2 RSB2(2:3) | 13.32 ± 2.0 a | 14.52 ± 0.9 b | 3.34 ± 0.15 c | 3.50 ± 0.74 cd | 6.30 ± 1.09 b | 6.75 ± 1.08 b | 0.80 ± 0.01 | 0.81 ± 0.02 |
T6: I2 RSB3(3:3) | 13.62 ± 1.8 a | 14.49 ± 0.7 b | 3.12 ± 0.91 d | 3.27 ± 0.09 d | 6.91 ± 1.08 a | 7.33 ± 1.31 a | 1.02 ± 0.02 | 1.01 ± 0.05 |
T7: I1 Sole rice | - | - | 4.23 ± 0.55 a | 4.24 ± 0.08 b | 4.23 ± 1.09 d | 4.24 ± 1.05 d | 0.27 ± 0.04 | 0.27 ± 0.01 |
T8: I2 Sole rice | - | - | 3.46 ± 0.21 c | 3.63 ± 0.23 cd | 3.46 ± 1.05 e | 3.63 ± 1.15 e | 0.28 ± 0.01 | 0.29 ± 0.01 |
T9: Sole okra * | 10.42 ± 1.0c | 10.40 ± 1.0d | - | - | 5.79 ± 1.22 c | 5.78 ± 1.11 c | 16.70 ± 2.0 | 16.5 ± 1.3 |
F-test | ** | ** | ** | ** | ** | ** | ||
LSD (p ≤ 0.05) | 1.09 | 0.83 | 0.16 | 0.48 | 0.37 | 0.40 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.; Pramanick, B.; Goswami, S.B.; Maitra, S.; Ibrahim, S.M.; Laing, A.M.; Hossain, A. Innovative Land Arrangement in Combination with Irrigation Methods Improves the Crop and Water Productivity of Rice (Oryza sativa L.) Grown with Okra (Abelmoschus esculentus L.) under Raised and Sunken Bed Systems. Agronomy 2021, 11, 2087. https://doi.org/10.3390/agronomy11102087
Das P, Pramanick B, Goswami SB, Maitra S, Ibrahim SM, Laing AM, Hossain A. Innovative Land Arrangement in Combination with Irrigation Methods Improves the Crop and Water Productivity of Rice (Oryza sativa L.) Grown with Okra (Abelmoschus esculentus L.) under Raised and Sunken Bed Systems. Agronomy. 2021; 11(10):2087. https://doi.org/10.3390/agronomy11102087
Chicago/Turabian StyleDas, Pijush, Biswajit Pramanick, Subhendu Bikash Goswami, Sagar Maitra, Sobhy M. Ibrahim, Alison M. Laing, and Akbar Hossain. 2021. "Innovative Land Arrangement in Combination with Irrigation Methods Improves the Crop and Water Productivity of Rice (Oryza sativa L.) Grown with Okra (Abelmoschus esculentus L.) under Raised and Sunken Bed Systems" Agronomy 11, no. 10: 2087. https://doi.org/10.3390/agronomy11102087
APA StyleDas, P., Pramanick, B., Goswami, S. B., Maitra, S., Ibrahim, S. M., Laing, A. M., & Hossain, A. (2021). Innovative Land Arrangement in Combination with Irrigation Methods Improves the Crop and Water Productivity of Rice (Oryza sativa L.) Grown with Okra (Abelmoschus esculentus L.) under Raised and Sunken Bed Systems. Agronomy, 11(10), 2087. https://doi.org/10.3390/agronomy11102087