Starch Morphology and Metabolomic Analyses Reveal That the Effect of High Temperature on Cooked Rice Elongation and Expansion Varied in Indica and Japonica Rice Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Materials
2.2. Sample Collection
2.3. Cooked Rice Elongation and Cooked Rice Expansion Percentage
2.4. Scanning Electron Microscopy
2.5. RNA Extraction
2.6. cDNA Synthesis and Quantitative Real-Time PCR (qRT-PCR)
2.7. GC–MS Analysis
2.8. Matured Rice Grain Length and Perimeter
2.9. Statistical Analysis
3. Results
3.1. Cooked Rice Elongation and Cooked Rice Expansion Percentage
3.2. Starch Granule Morphology
3.3. Principal Component Analysis (PCA) and Heatmap
3.4. Unmilled Rice Grain Length and Parameter
3.5. 2-AP Content and badh2 Gene Expression Levels
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, C.; Shi, J.; Quan, S.; Cui, B.; Kleessen, S.; Nikoloski, Z.; Tohge, T.; Alexander, D.; Guo, L.; Lin, H.; et al. Metabolic variation between japonica and indica rice cultivars as revealed by nontargeted metabolomics. Sci. Rep. 2014, 4, 5067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, M.A.; McCouch, S.R.; Hall, R.D. Not just a grain of rice: The quest for quality. Trends Plant Sci. 2009, 14, 133–139. [Google Scholar] [CrossRef]
- McNally, K.L.; Childs, K.L.; Bohnert, R.; Davidson, R.M.; Zhao, K.; Ulat, V.J. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. USA 2009, 106, 12273–12278. [Google Scholar] [CrossRef] [Green Version]
- Juliano, B.O. Amylose analysis in rice—A review. In Proceedings of the Workshop on Chemical Aspects of Rice Grain Quality; Department of Chemistry, International Rice Research Institute, Los Banos: Laguna, Philippines, 1979; pp. 251–260. [Google Scholar]
- Okpala, N.E.; Potcho, M.P.; An, T.; Ahator, S.D.; Duan, L.; Tang, X. Low temperature increased the biosynthesis of 2-AP, cooked rice elongation percentage and amylose content percentage in rice. J. Cereal Sci. 2020, 93, 102980. [Google Scholar] [CrossRef]
- Biselli, C.; Cavalluzzo, D.; Perrini, R.; Gianinetti, A.; Bagnaresi, P.; Urso, S.; Orasen, G.; Desiderio, F.; Lupotto, E.; Cattivelli, L.; et al. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining. Rice 2014, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zakaria, S.; Basyah, B.; Ma, T.; Li, Z.; Yang, J.; Yin, Z. Marker-asssisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight. Rice 2014, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Shen, W.; Zhao, H.; Wan, J. Advances in researches of the application of low-amylose content rice gene for breeding. Sci. Agric. Sin. 2003, 37, 157–162. [Google Scholar]
- Feng, F.; Li, Y.; Qin, X.; Liao, Y.; Siddique, K.H.M. Changes in Rice Grain Quality of Indica and Japonica Type Varieties Released in China from 2000 to 2014. Front. Plant Sci. 2017, 8, 1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champagne, E.T.; Bett-Garber, K.L.; Fitzgerald, M.A.; Grimm, C.C.; Lea, J.; Ohtsubo, K.; Jongdee, S.; Xie, L.; Bassinello, P.Z.; Resurreccion, A.; et al. Important Sensory Properties Differentiating Premium Rice Varieties. Rice 2010, 3, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Umemoto, T.; Yano, M.; Satoh, H.; Shomura, A.; Nakamura, Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor. Appl. Genet. 2002, 104, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Hwang, I.K.; Kim, K.S.; Choi, H.C. Comparison of the Physicochemical Properties and Ultrastructure of Japonica and Indica Rice Grains. J. Agric. Food Chem. 2006, 54, 4833–4838. [Google Scholar] [CrossRef]
- Koutroubas, S.D.; Ntanos, D.A. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 2003, 83, 251–260. [Google Scholar] [CrossRef]
- Ntanos, D.A.; Koutroubas, S.D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 2002, 74, 93–101. [Google Scholar] [CrossRef]
- Chen, J.; Ding, J.; Ouyang, Y.; Du, H.; Yang, J.; Cheng, K. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica–japonica hybrids in rice. Proc. Natl. Acad. Sci. USA 2008, 105, 11436–11441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mano, Y.; Kawaminami, K.; Kojima, M.; Ohnishi, M.; Ito, S. Comparative Composition of Brown Rice Lipids (Lipid Fractions) of Indica and Japonica Rices. Biosci. Biotechnol. Biochem. 1999, 63, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, K.; Xia, H.; Chen, L.; Chen, K. Comparative proteomic analysis of a indicand japonica rice varieties. Genet.Mol. Biol. 2014, 37, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Jiang, G.H.; Shen, L.H.; Wang, L.Q.; He, Y.Q. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol. Breed. 2005, 15, 117–124. [Google Scholar] [CrossRef]
- Okpala, N.E.; Mo, Z.; Duan, M.; Tang, X. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice. Plant Physiol. Biochem. 2019, 135, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Arikit, S.; Wanchana, S.; Khanthong, S.; Saensuk, C.; Thianthavon, T.; Vanavichit, A. QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa L.). Sci. Rep. 2019, 9, 8323. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.J.; Xing, Y.Z.; Xu, C.G.; He, Y.Q. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population. Plant Breed. 2008, 124, 121–126. [Google Scholar] [CrossRef]
- Qiu, X.; Yang, J.; Zhang, F.; Niu, Y.; Zhao, X.; Shen, C.; Chen, K.; Teng, S.; Xu, J. Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study. Crop J. 2021, in press. [Google Scholar] [CrossRef]
- Ahn, S.N.; Bollich, C.N.; McClung, A.M.; Tanksley, S.D. RFLP analysis of genomic regions associated with cooked-kernel elongation in rice. Theor. Appl. Genet. 1993, 87, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Yajima, I.; Yanai, T.; Nakamura, M.; Sakakibara, H.; Habu, T. Volatile flavor components of cooked rice kaorimai (scented rice, O. sativa japonica). J. Agric. Biol. Chem. 1978, 43, 2425–2429. [Google Scholar]
- Widjaja, R.; Craske, J.D.; Wootton, M. Comparative studies on volatile components of non-fragrant and fragrant rices. J. Sci. Food Agric. 1996, 70, 151–161. [Google Scholar] [CrossRef]
- Buttery, R.G.; Ling, L.C.; Juliano, B.O. 2-Acetyl-1-pyrroline: An important aroma component of cooked rice. Chem. Ind. 1982, 2, 958–959. [Google Scholar]
- Hinge, V.R.; Patil, H.B.; Nadaf, A.B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice 2016, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, F.S.G.; Rafii, M.Y.; Ismail, M.R.; Mohamed, M.T.M.; Rahimc, H.A.; Latif, M.A.; Aslani, F. The genetic and molecular origin of natural variation for the fragrance trait in an elite Malaysian aromatic rice through quantitative trait loci mapping using SSR and gene-based markers. Gene 2015, 555, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Bourgis, F.; Guyot, R.; Gherbi, H.; Tailliez, E.; Amabile, I.; Salse, J. Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. Theor. Appl. Genet. 2008, 117, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.C.; Teng, C.S.; Chang, J.L.; Chuang, H.S.; Ho, C.T.; Wu, M.L. Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with Δ1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus. J. Agric. Food Chem. 2008, 56, 7399–7404. [Google Scholar] [CrossRef] [PubMed]
- Lorieux, M.; Petrov, N.; Huang, N.; Guiderdoni, E.; Ghesquiere, A. Aroma in rice: Genetic analysis of a quantitative trait. Theor. Appl. Genet. 1996, 93, 1145–1151. [Google Scholar] [CrossRef]
- Bradbury, L.M.T.; Fitzgerald, T.L.; Henry, R.J.; Jin, Q.; Waters, D.L.E. The gene for fragrance in rice. Plant Biotechnol. J. 2005, 3, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.N.; Bollich, C.N.; Tanksley, S.D. RFLP tagging of a gene for aroma in rice. Theor. Appl. Genet. 1992, 84, 825–828. [Google Scholar] [CrossRef]
- Fitzgerald, T.L.; Waters, D.L.E.; Henry, R.J. The effect of salt on betaine aldehyde dehydrogenase transcript levels and 2-acetyl-1-pyrroline concentration in fragrant and non-fragrant rice (Oryza sativa). Plant Sci. 2008, 175, 539–546. [Google Scholar] [CrossRef]
- Bradbury, L.; Gillies, S.; Brushett, D.; Waters, D.; Henry, R. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol. Biol. 2008, 68, 439–449. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Park, Y.J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol. Breed. 2015, 35, 217. [Google Scholar] [CrossRef]
- Khush, G.S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 1997, 35, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.A. Rice: The first crop genome. Rice 2016, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuberger, A.L.; Lewis, M.R.; Chen, M.; Brick, M.A.; Leach, J.E.; Ryan, E.P. Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice. PLoS ONE 2010, 5, e12915. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, 20714. [Google Scholar] [CrossRef]
- Russo Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Kropff, M.J. The effect of temperature on leaf appearance in rice. Ann. Bot. 1996, 77, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Dillahunty, A.L.; Siebenmorgen, T.J.; Mauromoustakos, A. Effect of Temperature, Exposure Duration, and Moisture Content on Color and Viscosity of Rice. Cereal Chem. 2001, 78, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Wu, F.; Wu, W.; Wang, H.; Zheng, X.; Zhang, Y. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. Plant J. 2014, 78, 468–480. [Google Scholar] [CrossRef]
- Jia, Q.; Lv, B.; Guo, M.; Luo, C.; Zheng, L.; Hsiang, T. Effect of rice growth stage, temperature, relative humidity and wetness duration on infection of rice panicles by Villosiclavavirens. Eur. J. Plant Pathol. 2015, 141, 15–25. [Google Scholar] [CrossRef]
- Perdomo, J.A.; Conesa, M.A.; Medrano, H.; Ribas-Carbó, M.; Galmés, J. Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: Relationship with morphological and physiological acclimation. Physiol. Plant. 2015, 155, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Sakata, N.; Suzuki, Y.; Shikanai, T.; Makino, A. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J. 2011, 68, 966–997. [Google Scholar] [CrossRef] [PubMed]
- Bao, G.; Ashraf, U.; Wang, C.; He, L.; Wei, X.; Zheng, A.; Mo, Z.; Tang, X. Molecular basis for increased 2-acetyl-1-pyrroline contents under alternatewetting and drying (AWD) conditions in fragrant rice. Plant Physiol. Biochem. 2018, 133, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Sun, C.; Huang, Y.; Chen, Y.; Tong, C.; Bao, J. QTL mapping for rice grain quality: A strategy to detect more QTLs within sub-populations. Mol. Breed. 2015, 35, 105. [Google Scholar] [CrossRef]
- Chen, M.H.; Bergman, C.; Pinson, S.; Fjellstrom, R. Waxy gene haplotypes: Associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. J. Cereal Sci. 2008, 47, 536–545. [Google Scholar] [CrossRef]
- Larkin, P.D.; Park, W.D. Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol. Biol. 1999, 40, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Wu, Z.L.; Xing, Y.Y.; Zheng, F.G.; Guo, X.L.; Zhang, W.G. Nucleotide sequence of rice waxy gene. Nucleic Acids Res. 1990, 18, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Y.; Zheng, F.Q.; Shen, G.Z.; Gao, J.P.; Snustad, D.P.; Li, M.G. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 1995, 7, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Sano, Y. Differential regulation of Waxy gene expression in rice endosperm. Theor. Appl. Genet. 1984, 68, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zhang, H.; Liu, W.; Dou, Z.; Zhou, Q.; Chen, W.; Wang, S.; Ding, Y. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures. Food Chem. 2019, 277, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Jiang, L.; Zou, Y.; Zhang, W. On-farm assessment of effect of low temperature at seedling stage on early-season rice quality. Field Crops Res. 2013, 141, 63–68. [Google Scholar] [CrossRef]
- Chen, S.H.; Yang, Y.; Shi, W.W.; Ji, Q.; He, F.; Zhang, Z.D. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1- pyrroline, a major component in rice fragrance. Plant Cell 2008, 20, 1850–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okpala, N.E.; Potcho, M.P.; Imran, M.; An, T.; Bao, G.; He, L.; Li, L.; Tang, X. Starch Morphology and Metabolomic Analyses Reveal That the Effect of High Temperature on Cooked Rice Elongation and Expansion Varied in Indica and Japonica Rice Cultivars. Agronomy 2021, 11, 2416. https://doi.org/10.3390/agronomy11122416
Okpala NE, Potcho MP, Imran M, An T, Bao G, He L, Li L, Tang X. Starch Morphology and Metabolomic Analyses Reveal That the Effect of High Temperature on Cooked Rice Elongation and Expansion Varied in Indica and Japonica Rice Cultivars. Agronomy. 2021; 11(12):2416. https://doi.org/10.3390/agronomy11122416
Chicago/Turabian StyleOkpala, Nnaemeka Emmanuel, Mouloumdema Pouwedeou Potcho, Muhammad Imran, Tianyue An, Gegen Bao, Longxin He, Lin Li, and Xiangru Tang. 2021. "Starch Morphology and Metabolomic Analyses Reveal That the Effect of High Temperature on Cooked Rice Elongation and Expansion Varied in Indica and Japonica Rice Cultivars" Agronomy 11, no. 12: 2416. https://doi.org/10.3390/agronomy11122416
APA StyleOkpala, N. E., Potcho, M. P., Imran, M., An, T., Bao, G., He, L., Li, L., & Tang, X. (2021). Starch Morphology and Metabolomic Analyses Reveal That the Effect of High Temperature on Cooked Rice Elongation and Expansion Varied in Indica and Japonica Rice Cultivars. Agronomy, 11(12), 2416. https://doi.org/10.3390/agronomy11122416