Access, Uptake, Use and Impacts of Agrometeorological Services in Sahelian Rural Areas: The Case of Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Evaluation Approach
2.3. Dataset
2.4. Statistical Methods
3. Results
3.1. Quality of WCS
3.2. Access
3.3. Uptake
3.4. Action
3.5. Impacts
4. Discussion
4.1. Access
4.2. Uptake
4.3. Action
4.4. Impacts
4.5. Limits of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
(1) | (2) | |
---|---|---|
Yields (kg) | Yields (kg) | |
Pilot | 408.319 *** | 397.121 *** |
(9.987) | (50.582) | |
Seeds (kg) | 0.252 | |
(1.327) | ||
Fertilizer (kg) | 0.124 | |
(0.641) | ||
Working days | −1.106 | |
(0.928) | ||
year_20 | −148.690 *** | |
(22.214) | ||
Constant | 991.987 *** | 1105.902 *** |
(6.929) | (122.605) | |
Observations | 603 | 603 |
R-squared | 0.736 | 0.837 |
References
- Hansen, J.W.; Mason, S.J.; Sun, L.; Tall, A. Review of seasonal climate forecasting for agriculture in sub-Saharan Africa. Exp. Agric. 2011, 47, 205–240. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Outlook on Climate Services in Agriculture—Investment Opportunities to Reach the Last Mile; FAO: Rome, Italy, 2021; 137p. [Google Scholar] [CrossRef]
- Vaughan, C.; Hansen, J.; Roudier, P.; Watkiss, P.; Carr, E. Evaluating agricultural weather and climate services in Africa: Evidence, methods, and a learning agenda. WIREs Clim. Chang. 2019, 10, 586. [Google Scholar] [CrossRef] [Green Version]
- Tarchiani, V.; Rossi, F.; Camacho, J.; Stefanski, R.; Mian, K.; Pokperlaar, D.; Coulibaly, H.; Sitta Adamou, A. Smallholder Farmers Facing Climate Change in West Africa: Decision-Making between Innovation and Tradition. J. Innov. Econ. Manage. 2017, 24, 151–176. [Google Scholar] [CrossRef]
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, C.; Dessai, S. Climate services for society: Origins, institutional arrangements, and design elements for an evaluation framework. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 587–603. [Google Scholar] [CrossRef] [PubMed]
- WMO. Status of Human Resources in National Meteorological and Hydrological Services; ETR-21; WMO: Geneva, Switzerland, 2017; 75p, Available online: https://library.wmo.int/doc_num.php?explnum_id=4184 (accessed on 23 November 2020).
- Roncoli, C.; Jost, C.; Kirshen, P.; Sanon, M.; Ingram, K.T.; Woodin, M.; Somé, L.; Ouattara, F.; Sanfo, B.J.; Sia, C.; et al. From accessing to assessing forecasts: An end-to-end study of participatory climate forecast dissemination in Burkina Faso (West Africa). Clim. Chang. 2009, 92, 433–460. [Google Scholar] [CrossRef]
- Vincent, K.; Daly, M.; Scannell, C.; Leathes, B. What can Climate Services learn from theory and practice of co-production? Clim. Serv. 2018, 12, 48–58. [Google Scholar] [CrossRef]
- Oyekale, A.S. Access to risk mitigating weather forecasts and changes in farming operations in East and West Africa: Evidence from a baseline survey. Sustainability 2015, 7, 14599–14617. [Google Scholar] [CrossRef] [Green Version]
- Amegnaglo, C.J.; Asomanin, K.; Mensah-bonsu, A. Contingent valuation study of the benefits of seasonal climate forecasts for maize farmers in the Republic of Benin, West Africa. Clim. Serv. 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Yegbemey, R.N.; Egah, J. Reaching out to smallholder farmers in developing countries with climate services: A literature review of current information delivery channels. Clim. Serv. 2021, 23, 100253. [Google Scholar] [CrossRef]
- Mase, A.S.; Prokopy, L.S. Unrealized Potential: A review of perceptions and use of weather and climate information in agricultural decision making. Weather Clim. Soc. 2014, 6, 47–61. [Google Scholar] [CrossRef]
- Tarchiani, V.; Camacho, J.; Coulibaly, H.; Rossi, F.; Stefanski, R. Agrometeorological services for smallholder farmers in West Africa. Adv. Sci. Res. 2018, 15, 15–20. [Google Scholar] [CrossRef]
- Bremer, S.; Wardekker, A.; Dessai, S.; Sobolowski, S.; Slaattelid, R.; van der Sluijs, J. Toward a multi-faceted conception of co-production of climate services. Clim. Serv. 2019, 13, 42–50. [Google Scholar] [CrossRef]
- Bacci, M.; Ousman Baoua, Y.; Tarchiani, V. Agrometeorological Forecast for Smallholder Farmers: A Powerful Tool for Weather-Informed Crops Management in the Sahel. Sustainability 2020, 12, 3246. [Google Scholar] [CrossRef] [Green Version]
- Tall, A.; Coulibaly, J.Y.; Diop, M. Do climate services make a difference? A review of evaluation methodologies and practices to assess the value of climate information services for farmers: Implications for Africa. Clim. Serv. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Vogel, J.; Letson, D.; Herrick, C. A framework for climate services evaluation and its application to the Caribbean Agrometeorological Initiative. Clim. Serv. 2017, 6, 65–76. [Google Scholar] [CrossRef]
- Collier, P.; Dercon, S. African Agriculture in 50 Years: Smallholders in a rapidly changing world? World Dev. 2014, 63, 92–101. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Dieye, A.; El Mzouri, E.; Majule, A.; Mugabe, T.; Omolo, N.; Wouapi, H.; Obando, J.; Brooks, N. Drivers of climate risk in African agriculture. Clim. Dev. 2017, 9, 383–398. [Google Scholar] [CrossRef]
- Nkiaka, E.; Taylor, A.; Dougill, A.J.; Antwi-Agyei, P.; Fournier, N.; Bosire, E.N.; Konte, O.; Lawal, K.A.; Mutai, B.; Mwangi, E.; et al. Identifying user needs for weather and climate services to enhance resilience to climate shocks in sub-Saharan Africa. Environ. Res. Lett. 2019, 14, 123003. [Google Scholar] [CrossRef]
- Tall, A.; Kristjanson, P.; Chaudhury, M.; Mckune, S.; Zougmore, R. Who Gets the Information? Gender, Power and Equity Considerations in the Design of Climate Services for Farmers; CCAFS Working Paper No. 89; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2014; 76p, Available online: https://cgspace.cgiar.org/bitstream/handle/10568/49673/CCAFS%20WP%2089.pdf (accessed on 18 February 2021).
- Stigter, C.J.; Tan, Y.; Das, H.P.; Zheng, D.; Rivero Vega, R.E.; Van Viet, N.; Bakheit, N.I.; Abdullahi, Y.M. Complying with farmers’ conditions and needs using new weather and climate information approaches and technologies. In Managing Weather and Climate Risks in Agriculture; Sivakumar, M.V.K., Motha, R., Eds.; Springer: Berlin, Germany, 2007. [Google Scholar] [CrossRef]
- Stigter, C.J. A Decade of Capacity Building Through Roving Seminars on Agro-Meteorology/-Climatology in Africa, Asia and Latin America: From Agrometeorological Services via Climate Change to Agroforestry and Other Climate-Smart Agricultural Practices. In Implementing Climate Change Adaptation in Cities and Communities; Leal Filho, W., Adamson, K., Dunk, R., Azeiteiro, U., Illingworth, S., Alves, F., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Perrels, A.; Nurmi, V.; Nurmi, P. Weather service chain analysis (WSCA): An approach for appraisal of the social-economic benefits of improvements in weather services. In Proceedings of the 16th International Road Weather Conference, Helsinki, Finland, 23–25 May 2012; SIRWEC: Helsinki, Finland, 2012. Available online: http://www.sirwec2012.fi/Extended_Abstracts/002_Perrels.pdf (accessed on 23 March 2021).
- Duflo, E.; Glennerster, R.; Kremer, M. Using randomization in development economics research: A toolkit. In Handbook of Development Economics; Schultz, T.P., Strauss, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 4, pp. 3895–3962. [Google Scholar] [CrossRef]
- Ouédraogo, M.; Zougmoré, R.; Barry, S.; Somé, L.; Grégoire, B. The Value and Benefits of Using Seasonal Climate Forecasts in Agriculture: Evidence from Cowpea and Sesame Sectors in Climate-Smart Villages of Burkina Faso; CCAFS: Wageningen, Netherlands, 2015; Available online: https://cgspace.cgiar.org/handle/10568/68537 (accessed on 1 April 2021).
- Zongo, B.; Diarra, A.; Barbier, B.; Zorom, M.; Yacouba, H.; Dogot, T. Farmers’ perception and willingness to pay for climate information in Burkina Faso. J. Agric. Sci. 2016, 8, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Ouédraogo, M.; Barry, S.; Zougmoré, R.B.; Partey, S.T.; Somé, L.; Baki, G. Farmers’ willingness to pay for climate information services: Evidence from cowpea and sesame producers in Northern Burkina Faso. Sustainability 2018, 10, 611. [Google Scholar] [CrossRef] [Green Version]
- Tarhule, A.; Lamb, P.J. Climate research and seasonal forecasting for West Africans: Perceptions, dissemination, and use? Bull. Am. Meteorol. Soc. 2003, 84, 1741–1759. [Google Scholar] [CrossRef]
- Ochieng, J.; Kirimi, L.; Ochieng, D.O.; Njagi, T.; Mathenge, M.; Gitau, R.; Ayieko, M. Managing climate risk through crop diversification in rural Kenya. Clim. Chang. 2020, 162, 1107–1125. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Diouf, N.S.; Ouédraogo, M.; Ndiaye, O.; Zougmoré, R.B. Closing the gap between climate information producers and users: Assessment of needs and uptake in Senegal. Climate 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Carr, E.; Onzere, S.N. Really Effective (For 15% of the Men): Lessons in Understanding and Addressing User Needs in Climate Services from Mali. Clim. Risk Manag. 2018, 22, 82–95. [Google Scholar] [CrossRef]
- Carr, E.R.; Owusu-Daaku, K.N. The shifting epistemologies of vulnerability in climate services for development: The case of Mali’s agrometeorological advisory programme. Area 2016, 48, 7–17. [Google Scholar] [CrossRef]
- Gumucio, T.; Hansen, J.; Huyer, S.; van Huysen, T. Gender-responsive rural climate services: A review of the literature. Clim. Dev. 2020, 12, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.; Dorward, P.; Osbahr, H. Developing a holistic approach to the analysis of farmer decision-making: Implications for adaptation policy and practice in developing countries. Land Use Policy 2016, 59, 329–343. [Google Scholar] [CrossRef]
- Lemos, M.C.; Kirchhoff, C.J.; Ramprasad, V. Narrowing the climate information usability gap. Nat. Clim. Chang. 2012, 2, 789. [Google Scholar] [CrossRef]
- Roncoli, C.; Ingram, K.; Kirshen, P. Reading the rains: Local knowledge and rainfall forecasting among farmers of Burkina Faso. Soc. Nat. Resour. 2002, 15, 411–430. [Google Scholar] [CrossRef]
- Jiri, O.; Mafongoya, P.L.; Mubaya, C.; Mafongoya, O. Seasonal climate prediction and adaptation using indigenous knowledge systems in agriculture systems in Southern Africa: A review. J. Agric. Sci. 2016, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Lemos, M.C.; Finan, T.J.; Fox, R.W.; Nelson, D.R.; Tucker, J. The use of seasonal climate forecasting in policymaking: Lessons from Northeast Brazil. Clim. Chang. 2002, 55, 479–507. [Google Scholar] [CrossRef]
- Stigter, K.; Winarto, Y.T.; Ofori, E.; Zuma-Netshiukhwi, G.; Nanja, D.; Walker, S. Extension agrometeorology as the answer to stakeholder realities: Response farming and the consequences of climate change. Atmosphere 2013, 4, 237–253. [Google Scholar] [CrossRef] [Green Version]
Step | Observed Variable | Research Question | Tools |
---|---|---|---|
WCS Development | Quality of WCS | Were WCS appropriate to the situation observed ex-post? | Confusion matrix observed vs. forecasted |
WCS outreach system, | Access to WCS at appropriate times | Who had access to what type of information, factors allowing or constraining access, gender and socio-economic differences? | Survey of treated and untreated groups Key informant interviews (radio agents, broadcasting system agents) |
WCS uptake | Understandability, relevance, credibility, | What is users’ perception about usability of WCS? | Survey of treated and untreated groups |
Action by farmers | Agricultural practices and investments | What action has been taken on WCS? | Survey of treated and untreated groups |
Impacts on-farm management | Agricultural productivity, economic benefit, environmental effects | Which impacts do WCS have on farming? | Survey of treated and untreated groups |
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Pilot group | 603 | 0.50 | 0.50 | 0 | 1 |
N. seedings | 603 | 2.01 | 0.82 | 1 | 4 |
Quantity of seeds kg/ha | 603 | 32.05 | 7.90 | 19 | 53 |
N. fertilizations | 603 | 2.40 | 0.90 | 1 | 4 |
Quantity fertilizers kg/ha | 603 | 78.34 | 31.75 | 38 | 150 |
Working days | 603 | 46.89 | 10.44 | 6 | 68 |
Yield kg/ha | 603 | 1195.80 | 238.24 | 95 | 1698 |
Costs (FCFA/ha) | 603 | 116,801.99 | 31,194.30 | 76,250 | 183,500 |
| 603 | 11,217.41 | 2765.87 | 6650 | 18,550 |
| 603 | 35,253.73 | 14,285.40 | 17,100 | 67,500 |
| 603 | 70,330.85 | 15,658.59 | 9000 | 102,000 |
Income (FCFA/ha) | 603 | 239,161.50 | 47,648.53 | 19,000 | 339,600 |
Gross benefit (FCFA/ha) | 603 | 122,359.5 | 73,533.58 | −117,650 | 255,050 |
Variables | 2019 | 2020 |
---|---|---|
Mean | Mean | |
Pilot group | 0.50 | 0.50 |
N. seedings | 2.00 | 2.02 |
Quantity of seeds kg/ha | 33.93 | 30.16 |
N. fertilizations | 2.71 | 2.09 |
Quantity fertilizers kg/ha | 91.24 | 65.40 |
Working days | 47.64 | 46.13 |
Yield kg/ha | 1271.59 | 1119.76 |
Cost (FCFA/ha) | 124,392.70 | 109,186.00 |
| 11,876.82 | 105,55.81 |
| 41,057.28 | 29,430.90 |
| 71,458.61 | 69,199.34 |
Income (FCFA/ha) | 254,319.20 | 223,953.50 |
Gross benefit (FCFA/ha) | 129,926.50 | 114,767.40 |
Obs. | 302 | 301 |
Period | Forecasted | Observed |
---|---|---|
JJA 2019 | Normal | Normal |
JAS 2019 | Normal | Normal |
JJA 2020 | Above Normal | Above Normal |
JAS 2020 | Above Normal | Above Normal |
2019 (151 Observations) | 2020 (150 Observations) | Average 2019–2020 (301 Observations) | |
---|---|---|---|
Total | 95% | 76% | 86% |
Males | 63% | 67% | 65% |
Females | 37% | 33% | 35% |
Decision | 2019 (151 Obs.) | 2020 (150 Obs.) | Average 2019–2020 (301 Obs.) | |
---|---|---|---|---|
Strategic | Seeds variety, land preparation, toposequences based on SF | 82% | 86% | 84% |
Nursery establishment for market gardeners based on SF | 45% | 65% | 55% | |
Tactical | Seeding time based on SF | 80% | 86% | 83% |
Weeding, fertilization, treatment times based on WF | 79% | 85% | 82% |
Variables | Pilot | Control |
---|---|---|
N. seedings | 1.47 | 2.53 |
Quantity of seeds kg/ha | 24.97 | 39.10 |
N. fertilizations | 1.72 | 3.07 |
Quantity fertilizers kg/ha | 50.99 | 105.60 |
Working days/ha | 37.25 | 56.48 |
Yield kg/ha | 1400.31 | 991.98 |
Cost (FCFA/ha) | 87,574.09 | 145,933.10 |
| 8738.372 | 13,688.25 |
| 22,947.01 | 47,519.70 |
| 55,888.70 | 84,725.17 |
Income (FCFA/ha) | 280,061.10 | 198,397.40 |
Gross benefit (FCFA/ha) | 192,487.00 | 52,464.24 |
Observations | 301 | 302 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Yields (kg/ha) | Yields (kg/ha) | Income (FCFA/ha) | Income (FCFA/ha) | Costs (FCFA/ha) | Costs (FCFA/ha) | Benefit (FCFA/ha) | Benefit (FCFA/ha) | |
Pilot | 408.319 *** | 408.068 *** | 81,663.779 *** | 81,613.562 *** | −58,359.026 *** | −58,384.448 *** | 140,022.805 *** | 139,998.010 *** |
(9.987) | (7.860) | (1997.421) | (1572.034) | (892.709) | (640.057) | (1818.168) | (1714.141) | |
Year 2020 | −151.151 *** | −30,230.146 *** | −15,303.653 *** | −14,926.493 *** | ||||
(7.857) | (1571.489) | (639.970) | (1713.478) | |||||
Constant | 991.987 *** | 1067.562 *** | 198,397.351 *** | 213,512.424 *** | 145,933.113 *** | 153,584.939 *** | 52,464.238 *** | 59,927.485 *** |
(6.929) | (8.596) | (1385.809) | (1719.233) | (830.396) | (757.250) | (1265.906) | (1848.626) | |
Observations | 603 | 603 | 603 | 603 | 603 | 603 | 603 | 603 |
R-squared | 0.736 | 0.836 | 0.736 | 0.836 | 0.876 | 0.937 | 0.908 | 0.918 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Seeds (kg/ha) | Seeds (kg/ha) | Fertilizer (kg/ha) | Fertilizer (kg/ha) | Working Days/ha | Working Days/ha | |
Pilot | −14.142 *** | −14.149 *** | −54.606 *** | −54.649 *** | −19.224 *** | −19.227 *** |
(0.287) | (0.241) | (1.316) | (0.786) | (0.330) | (0.325) | |
Year 2020 | −3.798 *** | −25.927 *** | −1.538 *** | |||
(0.241) | (0.785) | (0.325) | ||||
Constant | 39.109 *** | 41.008 *** | 105.599 *** | 118.563 *** | 56.483 *** | 57.253 *** |
(0.202) | (0.180) | (1.154) | (1.024) | (0.304) | (0.390) | |
Observations | 603 | 603 | 603 | 603 | 603 | 603 |
R-squared | 0.802 | 0.860 | 0.741 | 0.908 | 0.849 | 0.855 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarchiani, V.; Coulibaly, H.; Baki, G.; Sia, C.; Burrone, S.; Nikiema, P.M.; Migraine, J.-B.; Camacho, J. Access, Uptake, Use and Impacts of Agrometeorological Services in Sahelian Rural Areas: The Case of Burkina Faso. Agronomy 2021, 11, 2431. https://doi.org/10.3390/agronomy11122431
Tarchiani V, Coulibaly H, Baki G, Sia C, Burrone S, Nikiema PM, Migraine J-B, Camacho J. Access, Uptake, Use and Impacts of Agrometeorological Services in Sahelian Rural Areas: The Case of Burkina Faso. Agronomy. 2021; 11(12):2431. https://doi.org/10.3390/agronomy11122431
Chicago/Turabian StyleTarchiani, Vieri, Hamidou Coulibaly, Grégoire Baki, Cyriaque Sia, Sara Burrone, Pinghouinde Michel Nikiema, Jean-Baptiste Migraine, and Jose Camacho. 2021. "Access, Uptake, Use and Impacts of Agrometeorological Services in Sahelian Rural Areas: The Case of Burkina Faso" Agronomy 11, no. 12: 2431. https://doi.org/10.3390/agronomy11122431
APA StyleTarchiani, V., Coulibaly, H., Baki, G., Sia, C., Burrone, S., Nikiema, P. M., Migraine, J. -B., & Camacho, J. (2021). Access, Uptake, Use and Impacts of Agrometeorological Services in Sahelian Rural Areas: The Case of Burkina Faso. Agronomy, 11(12), 2431. https://doi.org/10.3390/agronomy11122431