Salinity Constraints for Small-Scale Agriculture and Impact on Adaptation in North Aceh, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics, Current Agricultural Production, and Farm Management Practices
3.2. Current Agricultural Production and Farm Management Practices
3.3. Income Variability
3.4. Perception of Salinity and Climate Variation
3.4.1. Salinity Change
3.4.2. Climate Variation
3.5. Perceived Effects of Salinity Risks
3.6. Farmers’ Perceptions and Preferences on Adaptation Strategies to Salinity Risk
4. Discussion
4.1. Agricultural Production, Farm Management Practices, and Income Diversification
4.2. Perception of Salinity and Climate Variation
4.3. Perceived Effects, Preference Adaptation Strategies, and Preparedness for Salinity Risk
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanower Hossain, M. Present Scenario of Global Salt Affected Soils, Its Management and Importance of Salinity Research. Int. Res. J. Biol. Sci. Perspect. 2019, 1, 2663–5976. [Google Scholar]
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The Global Technical and Economic Potential of Bioenergy from Salt-Affected Soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef] [Green Version]
- Pitman, M.G.; Läuchli, A. Global Impact of Salinity and Agricultural Ecosystems. In Salinity: Environment-Plants-Molecules; Läuchli, A., Lüttge, U., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 3–4. ISBN 978-0-306-48155-0. [Google Scholar]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springe: Cham, Switzerlands, 2018; pp. 43–53. [Google Scholar]
- Karolinoerita, V.; Yusuf, W.A. Land Salinization and Its Problems in Indonesia. J. Sumber Daya Lahan 2020, 14, 91–99. [Google Scholar] [CrossRef]
- Statistic Indonesia. Indonesian Economic Growth in Q3-2020; Statistic Indonesia: Jakarta, Indonesia, 2020. [Google Scholar]
- Subdirektorat Statistik Tanaman Pangan. Luas Panen Dan Produksi Padi Di Indonesia 2019; Kadir, Drajat, D., Suwarti, Eds.; Badan Pusat Statistik: Jakarta, Indonesia, 2020; ISBN 9781787284395. [Google Scholar]
- Plaut, Z.; Edelstein, M.; Ben-Hur, M. Overcoming Salinity Barriers to Crop Production Using Traditional Methods. Crit. Rev. Plant Sci. 2013, 32, 250–291. [Google Scholar] [CrossRef]
- Anshori, M.F.; Purwoko, B.S.; Dewi, I.S.; Ardie, S.W.; Suwarno, W.B.; Safitri, H. Determination of Selection Criteria for Screening of Rice Genotypes for Salinity Tolerance. Sabrao J. Breed. Genet. 2018, 50, 279–294. [Google Scholar]
- Hariadi, Y.C.; Nurhayati, A.Y.; Soeparjono, S.; Arif, I. Screening Six Varieties of Rice (Oryzasativa) for Salinity Tolerance. Procedia Environ. Sci. 2015, 28, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Purwaningrahayu, R.D.; Sebayang, H.T.; Syekhfani, S.; Aini, N. Resistance Level of Some Soybean (Glycine Max L. Merr) Genotypes toward Salinity Stress. Berk. Penelit. Hayati 2015, 20, 7–14. [Google Scholar] [CrossRef]
- Cao, D.; Yan, Y.L.; Xu, D.H. Assessment of Salt Tolerance and Analysis of the Salt Tolerance Gene Ncl in Indonesian Soybean Germplasm. Plant Genet. Resour. Characterisation Util. 2019, 17, 265–271. [Google Scholar] [CrossRef]
- Benggu, Y.I.; Nguru, E.S.O. Short Communication: The Tolerance Level of Local Sorghum Genotypes from Sabu-Raijua and Belu Districts, Indonesia to Saline Soil. Trop. Drylands 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Tinning, G. The Role of Agriculture in Recovery Following Natural Disasters: A Focus in Post-Tsunami Recovery in Aceh, Indonesia. Asian J. Agric. Dev. 2011, 8, 19–38. [Google Scholar] [CrossRef]
- Thorburn, C. Livelihood Recovery in the Wake of the Tsunami in Aceh. Bull. Indones. Econ. Stud. 2009, 45, 85–105. [Google Scholar] [CrossRef] [Green Version]
- McLeod, M.K.; Slavich, P.G.; Irhas, Y.; Moore, N.; Rachman, A.; Ali, N.; Iskandar, T.; Hunt, C.; Caniago, C. Soil Salinity in Aceh after the December 2004 Indian Ocean Tsunami. Agric. Water Manag. 2010, 97, 605–613. [Google Scholar] [CrossRef]
- Syamsidik; Fahmi, M.; Fatimah, E.; Fitrayansyah, A. Coastal Land Use Changes around the Ulee Lheue Bay of Aceh during the 10-Year 2004 Indian Ocean Tsunami Recovery Process. Int. J. Disaster Risk Reduct. 2018, 29, 24–36. [Google Scholar] [CrossRef]
- Rusdi, M.; Irham, M.; Sugianto, S.; Roosli, R.; Ahamad, M.S.S.; Haditiar, Y. Settlement Suitability Mapping Based on the Salinity Index in the Banda Aceh City. Depik 2021, 10, 35–40. [Google Scholar] [CrossRef]
- Meilianda, E.; Pradhan, B.; Syamsidik; Comfort, L.K.; Alfian, D.; Juanda, R.; Syahreza, S.; Munadi, K. Assessment of Post-Tsunami Disaster Land Use/Land Cover Change and Potential Impact of Future Sea-Level Rise to Low-Lying Coastal Areas: A Case Study of Banda Aceh Coast of Indonesia. Int. J. Disaster Risk Reduct. 2019, 41, 101292. [Google Scholar] [CrossRef]
- Vidyattama, Y.; Merdikawati, N.; Tadjoeddin, M.Z. Aceh Tsunami: Long-Term Economic Recovery after the Disaster. Int. J. Disaster Risk Reduct. 2021, 66, 102606. [Google Scholar] [CrossRef]
- Borrero, J.C. Field Data and Satellite Imagery of Tsunami Effects in Banda Aceh. Science 2005, 308, 1596. [Google Scholar] [CrossRef]
- Amri, I.; Giyarsih, S.R. Monitoring Urban Physical Growth in Tsunami-Affected Areas: A Case Study of Banda Aceh City, Indonesia. GeoJournal 2021, 1–16. [Google Scholar] [CrossRef]
- Boen, T. Observed Reconstruction of Houses in Aceh Seven Months after the Great Sumatra Earthquake and Indian Ocean Tsunami of December 2004. Earthq. Spectra 2006, 22, 803–810. [Google Scholar] [CrossRef]
- Sandee, H.; Rietveld, P. Upgrading Traditional Technologies in Small-Scale Industry Clusters: Collaboration and Innovation Adoption in Indonesia. J. Dev. Stud. 2001, 37, 150–172. [Google Scholar] [CrossRef]
- Therond, O.; Duru, M.; Roger-Estrade, J.; Richard, G. A New Analytical Framework of Farming System and Agriculture Model Diversities. A Review. Agron. Sustain. Dev. 2017, 37, 21. [Google Scholar] [CrossRef]
- Statistic Aceh Utara. Kecamatan Samudera Dalam Angka 2019; Statistic Aceh Utara: Aceh Utara, Indonesia, 2019. [Google Scholar]
- Hamada, J.I.; Yamanaka, M.D.; Matsumoto, J.; Fukao, S.; Winarso, P.A.; Sribimawati, T. Spatial and Temporal Variations of the Rainy Season over Indonesia and Their Link to ENSO. J. Meteorol. Soc. Jpn. 2002, 80, 285–310. [Google Scholar] [CrossRef] [Green Version]
- Aldrian, E.; Dwi Susanto, R. Identification of Three Dominant Rainfall Regions within Indonesia and Their Relationship to Sea Surface Temperature. Int. J. Climatol. 2003, 23, 1435–1452. [Google Scholar] [CrossRef]
- Agricultural R&D Agency. Semi-Detailed Map Atlas of North Aceh; Indonesian Agency for Agricultural Research and Development: Litbang Pertanian Jakarta, Indonesia, 2018. [Google Scholar]
- BPS-Statistics of North Aceh Regency. District of Samudera in Figure 2019; BPS-Statistics of North Aceh Regency: Aceh Utara, Indonesia, 2019. [Google Scholar]
- BPS-Statistics of North Aceh Regency. Aceh Utara in Figures 2021; BPS-Statistics of North Aceh Regency: Aceh Utara, Indonesia, 2021. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- Islam, M.A.; Warwick, N.; Koech, R.; Amin, M.N.; Lobry de Bruyn, L. The Importance of Farmers’ Perceptions of Salinity and Adaptation Strategies for Ensuring Food Security: Evidence from the Coastal Rice Growing Areas of Bangladesh. Sci. Total Environ. 2020, 727, 138674. [Google Scholar] [CrossRef] [PubMed]
- Marie, M.; Yirga, F.; Haile, M.; Ehteshammajd, S.; Azadi, H.; Scheffran, J. Time-Series Trend Analysis and Farmer Perceptions of Rainfall and Temperature in Northwestern Ethiopia. Environ. Dev. Sustain. 2021, 23, 12904–12924. [Google Scholar] [CrossRef]
- Dobermann, A.; Witt, C.; Dawe, D.; Abdulrachman, S.; Gines, H.C.; Nagarajan, R.; Satawathananont, S.; Son, T.T.; Tan, P.S.; Wang, G.H.; et al. Site-Specific Nutrient Management for Intensive Rice Cropping Systems in Asia. Field Crops Res. 2002, 74, 37–66. [Google Scholar] [CrossRef]
- Banayo, N.P.M.C.; Haefele, S.M.; Desamero, N.V.; Kato, Y. On-Farm Assessment of Site-Specific Nutrient Management for Rainfed Lowland Rice in the Philippines. Field Crops Res. 2018, 220, 88–96. [Google Scholar] [CrossRef]
- Erythrina, E.; Anshori, A.; Bora, C.Y.; Dewi, D.O.; Lestari, M.S.; Mustaha, M.A.; Ramija, K.E.; Rauf, A.W.; Mikasari, W.; Surdianto, Y.; et al. Assessing Opportunities to Increase Yield and Profit in Rainfed Lowland Rice Systems in Indonesia. Agronomy 2021, 11, 777. [Google Scholar] [CrossRef]
- BBPADI—Inbrida Padi Sawah (INPARI). Available online: https://bbpadi.litbang.pertanian.go.id/index.php/varietas-padi/inbrida-padi-sawah-inpari?start=20 (accessed on 4 August 2021).
- BPS-Statistics of North Aceh Regency. District of Samudera in Figures 2017; BPS-Statistics of North Aceh Regency: Aceh Utara, Indonesia, 2017. [Google Scholar]
- BPS-Statistics of North Aceh Regency District of Samudera in Figures 2020. Available online: https://acehutarakab.bps.go.id/statictable/2018/01/17/180/5-29-luas-tanaman-dan-produksi-kelapa-dalam-tanaman-perkebunan-rakyat-menurut-kecamatan-2016.html (accessed on 17 March 2021).
- Supari; Tangang, F.; Salimun, E.; Aldrian, E.; Sopaheluwakan, A.; Juneng, L. ENSO Modulation of Seasonal Rainfall and Extremes in Indonesia. Clim. Dyn. 2018, 51, 2559–2580. [Google Scholar] [CrossRef]
- Ilhamsyah, Y.; Farhan, A.; Irham, M.; Setiawan, I.; Haditiar, Y. Irwandi Greater Aceh, Indonesia Enters Climate Change: Climate on Extreme ENSO 2015–2016. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 273. [Google Scholar]
- Kassie, B.T.; Hengsdijk, H.; Rötter, R.; Kahiluoto, H.; Asseng, S.; Van Ittersum, M. Adapting to Climate Variability and Change: Experiences from Cereal-Based Farming in the Central Rift and Kobo Valleys, Ethiopia. Environ. Manag. 2013, 52, 1115–1131. [Google Scholar] [CrossRef]
- Kotb Abd-Elmabod, S.; Bakr, N.; Muñoz-Rojas, M.; Pereira, P.; Zhang, Z.; Cerdà, A.; Jordán, A.; Mansour, H.; De La Rosa, D.; Jones, L. Assessment of Soil Suitability for Improvement of Soil Factors and Agricultural Management. Sustainability 2019, 11, 1588. [Google Scholar] [CrossRef] [Green Version]
- Haque, S.A. Salinity Problems and Crop Production in Coastal Regions of Bangladesh. Pak. J. Bot. 2006, 38, 1359–1365. [Google Scholar]
- Thiam, S.; Villamor, G.B.; Kyei-Baffour, N.; Matty, F. Soil Salinity Assessment and Coping Strategies in the Coastal Agricultural Landscape in Djilor District, Senegal. Land Use Policy 2019, 88, 104191. [Google Scholar] [CrossRef]
- Dagar, J.C.; Sharma, D.K.; Sharma, P.C.; Singh, A.K. Innovative Saline Agriculture; Springer: Cham, Switzerland, 2016; ISBN 978-81-322-2770-0. [Google Scholar]
- Kordrostami, M.; Rabiei, B. Salinity Stress Toleranca in Plants: Physiological, Molecular, and Biotechnological Approaches. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches; Hasanuzzaman, M., Hakeem, K.R., Nahar, K., Alharby, H., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–490. ISBN 978-3-030-06118-0. [Google Scholar]
- Pires, I.S.; Negrão, S.; Oliveira, M.M.; Purugganan, M.D. Comprehensive Phenotypic Analysis of Rice (Oryza Sativa) Response to Salinity Stress. Physiol. Plant. 2015, 155, 43–54. [Google Scholar] [CrossRef] [Green Version]
- My, T.; Hoang, L.; Tran, T.N.; Kieu, T.; Nguyen, T.; Williams, B.; Wurm, P.; Bellairs, S.; Mundree, S. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. Agronomy 2016, 6, 54. [Google Scholar] [CrossRef]
- Tauhid Ur Rahman, M.; Rasheduzzaman, M.; Habib, M.A.; Ahmed, A.; Tareq, S.M.; Muniruzzaman, S.M. Assessment of Fresh Water Security in Coastal Bangladesh: An Insight from Salinity, Community Perception and Adaptation. Ocean Coast. Manag. 2017, 137, 68–81. [Google Scholar] [CrossRef]
- Agus, F.; Rachman, A.; Ritung, S.; Mcleod, M.; Slavich, P. The Dynamics of Tsunami Affected Soil Properties in Aceh, Indonesia. J. Integr. Field Sci. 2012, 20, 11–20. [Google Scholar]
- Yohannes, D.F.; Ritsema, C.J.; Solomon, H.; Froebrich, J.; van Dam, J.C. Irrigation Water Management: Farmers’ Practices, Perceptions and Adaptations at Gumselassa Irrigation Scheme, North Ethiopia. Agric. Water Manag. 2017, 191, 16–28. [Google Scholar] [CrossRef]
- Bennett, S.J.; Barrett-Lennard, E.G.; Colmer, T.D. Salinity and Waterlogging as Constraints to Saltland Pasture Production: A Review. Agric. Ecosyst. Environ. 2009, 129, 349–360. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia y Garcia, A.; Gaudin, A.C.M.; et al. Long-Term Evidence Shows That Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Utami, A.S.; Azhari, R.; Syarfi, I.W. Smallholders’ Diversification in Pauh Sub District Padang City West Sumatera Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 583, 012019. [Google Scholar] [CrossRef]
Characteristics | Adaptive | Non-Adaptive | Chi-Square | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Mean | SD | Min | Max | ||
Household size (members) | 4 | 1 | 1 | 7 | 4 | 1 | 1 | 8 | 0.07 |
Age (years) | 45 | 12 | 20 | 65 | 50 | 14 | 24 | 85 | 0.04 * |
Period of cultivation (years) | 12 | 8 | 3 | 26 | 15 | 10 | 3 | 30 | 0.02 * |
Land holding (ha) | 0.37 | 0.59 | 0.08 | 2.3 | 0.26 | 0.27 | 0.07 | 2.6 | 0.17 |
Land cultivated (ha) | 0.26 | 0.39 | 0 | 1.60 | 0.18 | 0.09 | 0.04 | 0.60 | 0.13 |
2-years average yield (kg/ha) | 668.81 | 615.46 | 144.55 | 1995.53 | 440.44 | 355.92 | 73.12 | 1700.68 | 0.2 |
Inorganic fertilizer (kg/ha) | 237.84 | 313.20 | 0 | 1125 | 102.20 | 38.36 | 62.5 | 375.11 | 0.005 ** |
Organic fertilizer (kg/ha) | 658.60 | 1598.51 | 0 | 6250 | 37.90 | 260.26 | 0 | 2334.33 | 0.01 ** |
Pest & diseases control (L/ha) | 0.14 | 0.08 | 0 | 0.34 | 0.09 | 0.06 | 0 | 0.5 | 0.0001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewi, E.S.; Abdulai, I.; Bracho-Mujica, G.; Rötter, R.P. Salinity Constraints for Small-Scale Agriculture and Impact on Adaptation in North Aceh, Indonesia. Agronomy 2022, 12, 341. https://doi.org/10.3390/agronomy12020341
Dewi ES, Abdulai I, Bracho-Mujica G, Rötter RP. Salinity Constraints for Small-Scale Agriculture and Impact on Adaptation in North Aceh, Indonesia. Agronomy. 2022; 12(2):341. https://doi.org/10.3390/agronomy12020341
Chicago/Turabian StyleDewi, Elvira Sari, Issaka Abdulai, Gennady Bracho-Mujica, and Reimund P. Rötter. 2022. "Salinity Constraints for Small-Scale Agriculture and Impact on Adaptation in North Aceh, Indonesia" Agronomy 12, no. 2: 341. https://doi.org/10.3390/agronomy12020341
APA StyleDewi, E. S., Abdulai, I., Bracho-Mujica, G., & Rötter, R. P. (2022). Salinity Constraints for Small-Scale Agriculture and Impact on Adaptation in North Aceh, Indonesia. Agronomy, 12(2), 341. https://doi.org/10.3390/agronomy12020341