Rice Residue-Based Biochar Mitigates N2O Emission from Acid Red Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. N2O Sampling and Analysis
2.3. Determination of Soil Characteristic
2.4. Analysis of the Genes and Soil Enzymes
2.5. Statistical Analysis
3. Results
3.1. Effect of Rice Residue-Based Biochar on Soil pH
3.2. Effect of Rice Residue-Based Biochar on Soil Microbial Biomass Carbon
3.3. Effect of Rice Residue-Based Biochar on Soil Mineral Nitrogen (NH4+-N and NO3−-N)
3.4. Effect of Rice Residue-Based Biochar on Soil N2O Emissions
3.5. Effect of Rice Residue-Based Biochar on Gene’s Abundance
3.6. Effect of Rice Residue-Based Biochar on Soil Enzymatic Activities
3.7. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Yu, Y.; Hu, R.; Xu, X.; Xian, J.; Yang, Y.; Liu, L.; Cheng, Z. Effect of rice straw and swine manure biochar on N2O emission from paddy soil. Sci. Rep. 2020, 10, 10843. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, N.; Harter, J.; Kaldamukova, R.; Guzman-Bustamante, I.; Ruser, R.; Graeff, S.; Kappler, A.; Behrens, S. Does soil aging affect the N2O mitigation potential of biochar? A combined microcosm and field study. GCB Bioenergy 2017, 9, 953–964. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L. How application timings of urease and nitrification inhibitors affect N losses from urine patches in pastoral system. Agric. Ecosyst. Environ. 2012, 156, 37–48. [Google Scholar] [CrossRef]
- Luo, L.; Wang, G.; Shi, G.; Zhang, M.; Zhang, J.; He, J.; Xiao, Y.; Tian, D.; Zhang, Y.; Deng, S.; et al. The characterization of biochars derived from rice straw and swine manure, and their potential and risk in N and P removal from water. J. Environ. Manag. 2019, 245, 1–7. [Google Scholar] [CrossRef]
- Aamer, M.; Shaaban, M.; Hassan, M.U.; Guoqin, H.; Ying, L.; Ying, T.H.; Rasul, F.; Qiaoying, M.; Zhuanling, L.; Rasheed, A.; et al. Biochar mitigates N2O emissions from acidic soils by increasing the nosZ sand nirK gene abundance and soil pH. J. Environ. Manag. 2020, 255, 109891. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Nicholas, S. Economic development, climate and values: Making policy. Proc. R. Soc. B Biol. Sci. 2015, 1812, 820. [Google Scholar]
- Domene, X.; Enders, A.; Hanley, K.; Lehmann, J. Ecotoxicological characterization of biochars: Role of feedstock and pyrolysis temperature. Sci. Total Environ. 2015, 512–513, 552–561. [Google Scholar] [CrossRef] [Green Version]
- Case, S.D.C.; Uno, H.; Nakajima, Y.; Stoumann Jensen, L.; Akiyama, H. Bamboo biochar does not affect paddy soil N2O emissions or source following slurry or mineral fertilizer amendment—A 15N tracer study. J. Plant Nutr. Soil Sci. 2018, 181, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Harter, J.; Guzman-Bustamante, I.; Kuehfuss, S.; Ruser, R.; Well, R.; Spott, O.; Kappler, A.; Behrens, S. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Sci. Rep. 2016, 6, 39574. [Google Scholar] [CrossRef] [Green Version]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Wang, N.; Chang, Z.Z.; Xue, X.M.; Yu, J.G.; Shi, X.X.; Ma, L.Q.; Li, H.B. Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci. Total Environ. 2017, 581, 689–696. [Google Scholar] [CrossRef]
- Cao, H.; Ning, L.; Xun, M.; Feng, F.; Li, P.; Yue, S.; Song, J.; Zhang, W.; Yang, H. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. App. Soil Ecol. 2019, 135, 25–32. [Google Scholar] [CrossRef]
- Maucieri, C.; Zhang, Y.; McDaniel, M.D.; Borin, M.; Adams, M.A. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma 2017, 307, 267–276. [Google Scholar] [CrossRef]
- Aamer, M.; Hassan, M.U.; Shaaban, M.; Rasul, F.; Haiying, T.; Ma Qiaoying, M.; Batool, M.; Rasheed, A.; Chuan, Z.; Qitao, S.; et al. Rice straw biochar mitigates N2O emissions under alternate wetting and drying conditions in paddy soil. J. Saudi Chem. Soc. 2021, 25, 101172. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Zhang, A.; Rahaman, M.A.; Yang, Z. Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China. Sci. Total Environ. 2020, 721, 137636. [Google Scholar] [CrossRef] [PubMed]
- Rittl, T.F.; Oliveira, D.M.S.; Canisares, L.P.; Sagrilo, E.; Butterbach-Bahl, K.; Dannenmann, M.; Cerri, C.E.P. High application rates of biochar to mitigate N2O emissions from a n-fertilized tropical soil under warming conditions. Front. Environ. Sci. 2021, 8, 611873. [Google Scholar] [CrossRef]
- He, C.; Manevski, K.; Andersen, M.N.; Hu, C.; Dong, W.; Li, J. Abiotic mechanisms for biochar effects on soil N2O emission. Intern. Agrophys. 2019, 33, 537–546. [Google Scholar] [CrossRef]
- García, M.; Roig, A.; Sánchez-Monedero, M.A.; Cayuela, M.L. Biochar increases soil N2O emissions produced by nitrifcation-mediated pathways. Front. Environ. Sci. 2014, 2, 25. [Google Scholar]
- Liu, S.; Lin, F.; Wu, S.; Cheng, J.; Sun, Y.; Jin, Y.; Li, S.; Li, Z.; Zou, J. A meta-analysis of fertilizer-induced soil NO and combined with N2O emissions. Glob. Chang. Biol. 2016, 23, 2520–2532. [Google Scholar] [CrossRef]
- Sun, X.; Han, X.; Ping, F.; Zhang, L.; Zhang, K.; Chen, M.; Wu, W. Effect of rice-straw biochar on nitrous oxide emissions from paddy soils under elevated CO2 and temperature. Sci. Total Environ. 2018, 628, 1009–1016. [Google Scholar] [CrossRef]
- Lai, L.; Ismail, M.R.; Yusof, M.M.; Ismail, R. Rice straw biochar and different urea rates on rice yield and CH4 and CO2 gases emissions. Chil. J. Agric. Res. 2021, 81, 448–455. [Google Scholar] [CrossRef]
- Deng, B.; Li, Z.; Zhang, L.; Ma, Y.; Li, Z.; Zhang, W.; Guo, X.; Niu, D.; Siemann, E. Increases in soil CO2 and N2O emissions with warming depend on plant species in restored alpine meadows of Wugong Mountain, China. J. Soils Sediments 2016, 16, 777–784. [Google Scholar] [CrossRef]
- Shaaban, M.; Peng, Q.A.; Hu, R.; Wu, Y.; Lin, S.; Zhao, J. Dolomite application to acidic soils: A promising option for mitigating N2O emissions. Environ. Sci. Pollut. Res. 2015, 22, 19961–19970. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Shimizu, M.; Marutani, S.; Desyatkin, A.R.; Iizuka, N.; Hata, H.; Hatano, R. Effect of chemical fertilizer and manure application on N2O emission from reed canary grassland in Hokkaido, Japan. Soil Sci. Plant Nutr. 2010, 56, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, M.; Abid, M.; Qi-An, P. Short term influence of gypsum, farm manure and commercial humic acid on physical properties of salt affected soil in rice paddy system. J. Chem. Soc. Pak. 2013, 35, 1034–1040. [Google Scholar]
- Wu, L.; Tang, S.; He, D.; Wu, X.; Shaaban, M.; Wang, M.; Zhao, J.; Khan, I.; Zheng, X.; Hu, R.; et al. Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization. Sci. Total Environ. 2017, 583, 190–201. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial C. Soil Biol. Biochem. 1987, 19, 159–164. [Google Scholar] [CrossRef]
- Xiao, Y.; Che, Y.; Zhang, F.; Li, Y.; Liu, M. Effects of biochar, N fertilizer, and crop residues on greenhouse gas emissions from acidic soils. CLEAN Soil Air Water 2018, 4, 1700346. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Analytical Methods of Agronomic Chemical; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 10–58. [Google Scholar]
- Aamer, M.; Shaaban, M.; Hassan, M.U.; Ying, L.; Haiying, T.; Qiaoying, M.; Munir, H.; Rasheed, A.; Xinmei, L.; Ping, L.; et al. N2O Emissions Mitigation in Acidic Soil following Biochar Application under Different Moisture Regimes. J. Soil Sci. Plant Nutr. 2020, 20, 2454–2464. [Google Scholar] [CrossRef]
- Wang, C.; Yan, Z.; Wang, Z.; Batool, M.; El-Badri, A.M.; Bai, F.; Li, Z.; Wang, B.; Zhou, G.; Kuai, J. Subsoil tillage promotes root and shoot growth of rapeseed in paddy fields and dryland in Yangtze River Basin soils. Eur. J. Agron. 2021, 130, 126351. [Google Scholar] [CrossRef]
- Shaaban, M.; Wu, Y.; Khalid, M.S.; Peng, Q.; Xu, X.; Wu, L.; Hu, R. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes. Environ. Pollut. 2018, 235, 625–631. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; Zhou, S.; Bai, N.; Zheng, X.; Li, S.; Zhang, J.; Lv, W. Effect of straw and straw biochar on the community structure and diversity of ammonia-oxidizing bacteria and archaea in rice-wheat rotation ecosystems. Sci. Rep. 2019, 9, 9367. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, J.; Bai, S.H.; Teng, Y.; Xu, Z. Evaluating the effects of phytoremediation with biochar additions on soil nitrogen mineralization enzymes and fungi. Environ. Sci. Pollut. Res. 2018, 25, 23106–23116. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Sheng, Y.; Cai, F.; Wang, W.; Zhu, L. Separated pathways for biochar to affect soil N2O emission under different moisture contents. Sci. Total Environ. 2018, 645, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Nelissen, V.; Saha, B.K.; Ruysschaert, G.; Boeckx, P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014, 70, 244–255. [Google Scholar] [CrossRef]
- Baggs, E.M. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 2011, 3, 321–327. [Google Scholar] [CrossRef]
- Harter, J.; El-Hadidi, M.; Huson, D.H.; Kappler, A.; Behrens, S. Soil biochar amendment affects the diversity of nosz transcripts: Implications for N2O formation. Sci. Rep. 2017, 7, 3338. [Google Scholar] [CrossRef] [Green Version]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.L.; Liu, X.R.; Zhang, Q.W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline alkali soil. Sci. Total Environ. 2019, 686, 199–211. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Da Silva, E.B.; De Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Wang, J.; Almoy, T.; Bakken, L.R. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Glob. Chang. Biol. 2014, 20, 1685–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aamer, M.; Bilal Chattha, M.; Mahmood, A.; Naqve, M.; Hassan, M.U.; Shaaban, M.; Rasul, F.; Batool, M.; Rasheed, A.; Tang, H.; et al. Rice Residue-Based Biochar Mitigates N2O Emission from Acid Red Soil. Agronomy 2021, 11, 2462. https://doi.org/10.3390/agronomy11122462
Aamer M, Bilal Chattha M, Mahmood A, Naqve M, Hassan MU, Shaaban M, Rasul F, Batool M, Rasheed A, Tang H, et al. Rice Residue-Based Biochar Mitigates N2O Emission from Acid Red Soil. Agronomy. 2021; 11(12):2462. https://doi.org/10.3390/agronomy11122462
Chicago/Turabian StyleAamer, Muhammad, Muhammad Bilal Chattha, Athar Mahmood, Maria Naqve, Muhammad Umair Hassan, Muhammad Shaaban, Fahd Rasul, Maria Batool, Adnan Rasheed, Haiying Tang, and et al. 2021. "Rice Residue-Based Biochar Mitigates N2O Emission from Acid Red Soil" Agronomy 11, no. 12: 2462. https://doi.org/10.3390/agronomy11122462
APA StyleAamer, M., Bilal Chattha, M., Mahmood, A., Naqve, M., Hassan, M. U., Shaaban, M., Rasul, F., Batool, M., Rasheed, A., Tang, H., Chuan, Z., Shao, J., & Huang, G. (2021). Rice Residue-Based Biochar Mitigates N2O Emission from Acid Red Soil. Agronomy, 11(12), 2462. https://doi.org/10.3390/agronomy11122462