Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Weather Conditions
2.2. Experimental Design
2.3. Plant Sampling, Yield Assessment and Seed Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soybean Growth Parameters and Biomass Production
3.2. Soybean Yield Components and Dry Seed Production
3.3. Soybean Nodule Production
3.4. Nitrogen and Carbon Content in Soybean Shoots and Roots
3.5. Nutritional Composition of Soybean Seeds
3.6. Soil Compaction and Soil Moisture Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahbandeh, M. Soybean Production Worldwide 2012/13–2019/20, by Country. Statista 2020. Available online: https://www.statista.com/statistics/263926/soybean-production-in-selected-countries-since-1980/ (accessed on 20 December 2020).
- Elhady, A.; Hallmann, J.; Heuer, H. Symbiosis of soybean with nitrogen fixing bacteria affected by root lesion nematodes in a density-dependent manner. Sci. Rep. 2020, 10, 1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertheau, Y.; Davison, J. Soybean in the European Union, status and perspective. In Recent Trends for Enhancing the Diversity and Quality of Soybean Products; Krezhova, D., Ed.; IntechOpen Access: London, UK, 2011; pp. 3–47. Available online: https://www.intechopen.com/books/recent-trends-for-enhancing-the-diversity-and-quality-of-soybean-products/soybean-in-the-european-union-status-and-perspective (accessed on 1 February 2021).
- Gawęda, D.; Nowak, A.; Haliniarz, M.; Woźniak, A. Yield and Economic Effectiveness of Soybean Grown Under Different Cropping Systems. Int. J. Plant Prod. 2020, 14, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Hungria, M.; Campo, R.J.; Mendes, I.C. A Importância do Processo de Fixação Biológica de Nitrogênio para a Cultura da Soja: Componente Essencial para a Competitividade do Produto Brasileiro; Embrapa Soja: Londrina, Brazil, 2007; 80p. [Google Scholar]
- Ferguson, B.J. The development and regulation of soybean nodules. In A Comprehensive Survey of International Soybean Research—Genetics, Physiology, Agronomy, and Nitrogen Relationships; Board, J.E., Ed.; IntechOpen Access: London, UK, 2013; pp. 31–47. [Google Scholar]
- Iannetta, P.P.M.; Young, M.; Bachinger, J.; Bergkvist, G.; Doltra, J.; Lopez-Bellido, R.J.; Monti, M.; Pappa, V.A.; Reckling, M.; Topp, C.; et al. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation. Front. Plant Sci. 2016, 7, 1700. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.E. Soil and Symbiotic Nitrogen Requirements for Optimum Soybean Production 1. Crop. Sci. 1974, 14, 255–260. [Google Scholar] [CrossRef]
- Ohyama, T.; Tewari, K.; Ishikawa, S.; Tanaka, K.; Kamiyama, S.; Ono, Y.; Hatano, S.; Ohtake, N.; Sueyoshi, K.; Hasegawa, H.; et al. Role of Nitrogen on Growth and Seed Yield of Soybean and a New Fertilization Technique to Promote Nitrogen Fixation and Seed Yield. In Soybean—The Basis of Yield, Biomass and Productivity; IntechOpen Access: London, UK, 2017; pp. 153–185. [Google Scholar]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The Evolution and Future of Earth’s Nitrogen Cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siczek, A.; Lipiec, J. Soybean nodulation and nitrogen fixation in response to soil compaction and surface straw mulching. Soil Tillage Res. 2011, 114, 50–56. [Google Scholar] [CrossRef]
- Gentry, L.; Below, F.; David, M.; Bergerou, J. Source of the soybean N credit in maize production. Plant Soil 2001, 236, 175–184. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; 650p. [Google Scholar]
- Schillinger, W.F. Minimum and Delayed Conservation Tillage for Wheat-Fallow Farming. Soil Sci. Soc. Am. J. 2001, 65, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Cornejo, J.; Hallahan, C.; Nehring, R.; Wechsler, S. Conservation tillage, herbicide use, and genetically engineered crops in the United States: The case of soybeans. AgBioForum 2012, 15, 231–241. Available online: https://agbioforum.org/wp-content/uploads/2021/02/AgBioForum-15-3-231.pdf (accessed on 17 February 2021).
- Givens, W.A.; Shaw, D.R.; Kruger, G.R.; Johnson, W.; Weller, S.C.; Young, B.G.; Wilson, R.G.; Owen, M.D.K.; Jordan, D. Survey of Tillage Trends Following the Adoption of Glyphosate-Resistant Crops. Weed Technol. 2009, 23, 150–155. [Google Scholar] [CrossRef]
- Price, A.J.; Balkcom, K.S.; Culpepper, S.A.; Kelton, J.A.; Nichols, R.L.; Schomberg, H. Glyphosate-resistant Palmer amaranth: A threat to conservation tillage. J. Soil Water Conserv. 2011, 66, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield. Front. Sustain. Food Syst. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.J.G.; Ordóñez-Fernández, R.; Carbonell-Bojollo, R.; Veroz-González, O.; Gil-Ribes, J.A. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- Brouder, S.; Gomez-Macpherson, H. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agric. Ecosyst. Environ. 2014, 187, 11–32. [Google Scholar] [CrossRef]
- Kertész, Á.; Madarász, B. Conservation Agriculture in Europe. Int. Soil Water Conserv. Res. 2014, 2, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Fecák, P.; Šariková, D.; Černý, I. Influence of tillage system and starting N fertilization on seed yield and quality of soybean Glycine max (L.) Merrill. Plant Soil Environ. 2010, 56, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Temperly, R.J.; Borges, R. Tillage and Crop Rotation Impact on Soybean Grain Yield and Composition. Agron. J. 2006, 98, 999–1004. [Google Scholar] [CrossRef]
- Kihara, J.; Bationo, A.; Waswa, B.; Kimetu, J.M.; Vanlauwe, B.; Okeyo, J.; Mukalama, J.; Martius, C. Effect of reduced tillage and mineral fertilizer application on maize and soybean productivity. Exp. Agric. 2012, 48, 159–175. [Google Scholar] [CrossRef]
- Singer, J.W.; Logsdon, S.D.; Meek, D.W. Soybean Growth and Seed Yield Response to Tillage and Compost. Agron. J. 2008, 100, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.C.; Andrade, D.D.S.; Chueire, L.M.D.O.; Takemura, S.M.; Hungria, M. Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol. Biochem. 2000, 32, 627–637. [Google Scholar] [CrossRef]
- Hardarson, G.; Danso, S.K.A. Methods for measuring biological nitrogen fixation in grain legumes. Plant Soil 1993, 152, 19–23. [Google Scholar] [CrossRef]
- Tajima, R.; Lee, O.N.; Abe, J.; Lux, A.; Morita, S. Nitrogen-Fixing Activity of Root Nodules in Relation to Their Size in Peanut (Arachis hypogaea L.). Plant Prod. Sci. 2007, 10, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Ayanaba, A.; Nangju, D. Nodulation and nitrogen fixation in six grain legumes. In Proceedings of the First IITA Grain Legume Improvement Workshop, International Institute of Tropical Agriculture, Ibadan, Nigeria, 29 October–2 November 1973; pp. 198–204. [Google Scholar]
- Kombiok, J.M.; Buah, S.S.J. Tillage depth effects on nodulation, nitrogen fixation and yield of three soybean varieties in the Northern Savanna zone of Ghana. Afr. J. Agric. Res. 2013, 8, 2340–2345. [Google Scholar] [CrossRef] [Green Version]
- Kemal, D.; Ismail, C.; Mustafa, G.; Ali, C.; Dogan, K.; Celik, I.; Gok, M.; Coskan, A. Effect of different soil tillage methods on rhizobial nodulation, biyomas and nitrogen content of second crop soybean. Afr. J. Microbiol. Res. 2011, 5, 3186–3194. [Google Scholar] [CrossRef] [Green Version]
- Kihara, J.; Martius, C.; Bationo, A.; Vlek, P.L.G. Effects of Tillage and Crop Residue Application on Soybean Nitrogen Fixation in a Tropical Ferralsol. Agriculture 2011, 1, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Santner, J.; Mannel, M.; Burrell, L.D.; Hoefer, C.; Kreuzeder, A.; Wenzel, W.W. Phosphorus uptake by Zea mays L. is quantitatively predicted by infinite sink extraction of soil P. Plant Soil 2015, 386, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Standard opening procedure for soil organic carbon. In Walkley-Black Method: Titration and Colometric Method; FAO: Rome, Italy, 2019; 27p, Available online: http://www.fao.org/3/ca7471en/ca7471en.pdf (accessed on 4 October 2021).
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Munger, P.; Bleiholder, H.; Hack, H.; Hess, M.; Stauss, R.; Van den Boom, T.; Weber, E. Phenological Growth Stages of the Soybean Plant (Glycine max (L.) Merr.)—Codification and Description according to the General BBCH Scale—With Figures. J. Agron. Crop Sci. 1997, 179, 209–217. [Google Scholar] [CrossRef]
- Filho, E.A.M.; Da Silva, A.P.; Figueiredo, G.C.; Gimenes, F.H.S.; Vitti, A.C. Compared performance of penetrometers and effect of soil water content on penetration resistance measurements. Revista Brasileira de Ciência do Solo 2014, 38, 744–754. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Dick, W.A.; Van Doren, D.M. Continuous Tillage and Rotation Combinations Effects on Corn, Soybean, and Oat Yields 1. Agron. J. 1985, 77, 459–465. [Google Scholar] [CrossRef]
- Meese, B.; Carter, P.; Oplinger, E.; Pendleton, J. Corn/Soybean Rotation Effect as Influenced by Tillage, Nitrogen, and Hybrid/Cultivar. J. Prod. Agric. 1991, 4, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Jug, D.; Sabo, M.; Jug, I.; Stipesevic, B.; Stosic, M. Effect of different tillage systems on the yield and yield components of soybean [Glycine max (L.) Merr.]. Acta Agron. Hung. 2010, 58, 65–72. [Google Scholar] [CrossRef]
- Lasisi, D. Effects of Tillage Methods on Soybean Growth and Soil Properties. Ph.D. Thesis, Department of Agricultural Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria, 2008. [Google Scholar]
- Lasisi, D.; Aluko, O.B. Effects of tillage methods on soybean growth and yield in a tropical sandy loam soil. Int. Agrophys. 2009, 23, 147–153. [Google Scholar]
- Matsuo, N.; Tsuchiya, S.; Nakano, K.; Fukami, K. Design and evaluation of a one-operation shallow up-cut tillage sowing method for soybean production. Plant Prod. Sci. 2019, 22, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Sidiras, N.; Henklain, J.C.; Derpsch, R. Comparison of three different tillage systems with respect to aggregate stability, the soil and water conservation and the yields of soybean and wheat on an oxisol. In Proceedings of the 9th Conference of the International Soil Tillage Research Organization, ISTRO, Osijek, Yugoslavia, June 1982; pp. 537–544. [Google Scholar]
- Rodrígues, J.L.; Gamero, C.; Fernándes, J.C.; Mirás-Avalos, J. Effects of different soil tillage systems and coverages on soybean crop in the Botucatu Region in Brazil. Span. J. Agric. Res. 2009, 7, 173. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, F.; Sogut, T. The effect of tillage and plant density on yield and yield components of soybean [Glycine max (L.) Merrill] grown under main and double-cropping soybean. Int. Scientif. J. Mech. Agric. 2016, 62, 19–23. [Google Scholar]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Szukała, J.; Ratajczak, K.; Sulewska, H. The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy 2020, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, P.; Lauer, J.G. Corn and Soybean Response to Rotation Sequence, Row Spacing, and Tillage System. Agron. J. 2003, 95, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Cober, E.R.; Morrison, M.J.; Ma, B.; Butler, G. Genetic Improvement Rates of Short-Season Soybean Increase with Plant Population. Crop. Sci. 2005, 45, 1029–1034. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Winkler, J.; Bernhart, M.; Pucher, M.A.; Klug, M.; Werni, C.; Adam, E.; Kaul, H.-P. Effect of row spacing, seeding rate and nitrogen fertilization on yield and yield components of soybean. Die Bodenkultur J. Land Manag. Food Environ. 2019, 70, 221–236. [Google Scholar] [CrossRef]
- Yilmaz, N. The Effects of Seed Rate on Yield and Yield Components of Soybean (Glycina max L. Merill). Pak. J. Biol. Sci. 2003, 6, 373–376. [Google Scholar] [CrossRef]
- Stock, H.G.; Warnstorff, K.; Kazmi, M. Analyse der Ertragsstruktur von Sojabohnen (Glycine max [L.] Merr.) auf einem Standort im mitteldeutschen Trockengebiet. Austr. J. Agric. Res. 1996, 47, 23–32. [Google Scholar]
- Thiagalingam, K.; Gould, N.; Watson, P. Effect of tillage on rainfed maize and soybean yield and the nitrogen fertilizer requirements for maize. Soil Tillage Res. 1991, 19, 47–54. [Google Scholar] [CrossRef]
- Matowo, P.R.; Pierzynski, G.M.; Whitney, D.A.; Lamond, R.E. Long Term Effects of Tillage and Nitrogen Source, Rate, and Placement on Grain Sorghum Production. J. Prod. Agric. 1997, 10, 141–146. [Google Scholar] [CrossRef]
- Hanhur, V.; Marenych, M.; Yeremko, L.; Yurchenko, S.; Hordieieva, O.; Korotkova, I. The effect of soil tillage on symbiotic activity of soybean crops. Bulg. J. Agric. Sci. 2020, 26, 365–374. [Google Scholar]
- King, C.A.; Purcell, L.C. Soybean Nodule Size and Relationship to Nitrogen Fixation Response to Water Deficit. Crop. Sci. 2001, 41, 1099–1107. [Google Scholar] [CrossRef]
- De Campos, B.-H.C.; Gnatta, V. Inoculantes e fertilizantes foliares na soja em área de populações estabelecidas de Bradyrhizobium sob sistema plantio direto. Revista Brasileira de Ciência do Solo 2006, 30, 69–76. [Google Scholar] [CrossRef]
- Hungria, M.; Mendes, I.C. Nitrogen Fixation with Soybean: The Perfect Symbiosis? In Biological Nitrogen Fixation; Wiley: Hoboken, NJ, USA, 2015; pp. 1009–1024. [Google Scholar]
- Franzluebbers, A. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- van Kessel, C.; Hartley, C. Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crop. Res. 2000, 65, 165–181. [Google Scholar] [CrossRef]
- Green, C.J.; Blackmer, A.M. Residue Decomposition Effects on Nitrogen Availability to Corn following Corn or Soybean. Soil Sci. Soc. Am. J. 1995, 59, 1065–1070. [Google Scholar] [CrossRef]
- Norman, R.J.; Gilmour, J.T.; Wells, B.R. Mineralization of Nitrogen from Nitrogen-15 Labeled Crop Residues and Utilization by Rice. Soil Sci. Soc. Am. J. 1990, 54, 1351–1356. [Google Scholar] [CrossRef]
- Waldroup, P.W. Whole Soybeans for Poultry Feeds. World’s Poult. Sci. J. 1982, 38, 28–35. [Google Scholar] [CrossRef]
- Szwejkowska, B. Effect of cultivation intensity on protein content and yields in field pea. Acta Sci. Pol. Agric. 2005, 4, 153–161. [Google Scholar]
- Redondo-Cuenca, A.; Suárez, M.J.V.; Mateos-Aparicio, I. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chem. 2008, 108, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Chetan, C.; Rusu, T.; Simon, A. Research regarding the influence weed control treatments on production and qualitative indicators soybean cultivated in minimum tillage system. Bull. Univ. Agric. Sci. Vet.-Med. Cluj-Napoca Agric. 2016, 73, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Soane, B.D.; Owerkerk, C. Soil Compaction in Crop Production; Elsevier: Amsterdam, The Netherlands, 1994; 662p. [Google Scholar]
- Mosaddeghi, M.R.; Hajabbasi, M.; Hemmat, A.; Afyuni, M. Soil compactibility as affected by soil moisture content and farmyard manure in central Iran. Soil Tillage Res. 2000, 55, 87–97. [Google Scholar] [CrossRef]
- Khan, F.U.H.; Tahir, A.R.; Yule, I.J. Intrinsic implication of different tillage practices on soil penetration resistance and crop growth. Int. J. Agric. Biol. 2001, 3, 23–26. [Google Scholar]
Tillage System | Plant Density (m−2) | Plant Height (cm) | Number of Nodes Plant−1 | Number of Branches Plant−1 |
---|---|---|---|---|
Conventional | 56.0 ± 1.4 c | 106.5 ± 2.4 b | 17.1 ± 0.4 b | 5.8 ± 0.4 b |
Conservation | 47.4 ± 1.4 b | 117.9 ± 1.6 c | 15.3 ± 0.3 a | 2.2 ± 0.2 a |
No-tillage | 35.2 ± 1.4 a | 95.8 ± 1.8 a | 15.8 ± 0.3 a | 6.1 ± 0.5 b |
Tillage System | Number of Pods Plant−1 | Number of Pods m−2 | 100-Seed Mass (g) | First Pod Height (cm) | Dry Seed Yield (t ha−1) |
---|---|---|---|---|---|
Conventional | 103.6 ± 7.4 c | 5798.8 ± 414.7 b | 19.7 ± 0.3 b | 15.1 ± 5.9 a | 4.54 ± 0.1 a |
Conservation | 46.5 ± 4.4 a | 2206.5 ± 101.1 a | 17.3 ± 0.8 a | 17.4 ± 3.1 a | 4.48 ± 0.2 a |
No-tillage | 72.3 ± 2.1 b | 2546.7 ± 156.3 a | 16.4 ± 0.4 a | 13.1 ± 7.5 a | 4.00 ± 0.2 a |
Tillage | Tap Root | Lateral Roots | ||
---|---|---|---|---|
System | Number of Nodules Plant−1 | Number of Nodules >4 mm Plant−1 | Number of Nodules Plant−1 | Number of Nodules >4 mm Plant−1 |
Conventional | 11.3 ± 1.3 b | 5.0 ± 1.1 a | 92.6 ± 18.6 a | 12.0 ± 2.5 b |
Conservation | 4.3 ± 1.6 a | 2.4 ± 0.5 a | 53.4 ± 11.8 a | 1.0 ± 3.6 a |
No-tillage | 8.8 ± 1.4 b | 4.9 ± 0.7 a | 83.5 ± 12.1 a | 5.7 ± 3.6 ab |
Plant Part | Tillage System | Total N Content (%) | Total C Content (%) |
---|---|---|---|
Shoots | Conventional | 2.8 ± 0.1 a | 43.2 ± 0.3 b |
Conservation | 2.6 ± 0.1 a | 42.4 ± 0.2 a | |
No-tillage | 2.5 ± 0.2 a | 42.3 ± 0.1 a | |
Roots | Conventional | 1.4 ± 0.1 a | 41.4 ± 0.5 a |
Conservation | 1.2 ± 0.1 a | 42.6 ± 0.2 a | |
No-tillage | 1.1 ± 0.1 a | 42.5 ± 0.2 a |
Tillage System | Dry Matter (g kg−1 FW) | Crude Fats (g kg−1 DM) | Crude Protein (g kg−1 DM) | Crude Fiber (g kg−1 DM) | Crude Ash a (g kg−1 DM) |
---|---|---|---|---|---|
Conventional | 944 ± 0.9 a | 190 ± 2.3 a | 371 ± 2.1 b | 54 ± 0.6 a | 56 ± 0.5 a |
Conservation | 943 ± 0.7 a | 186 ± 1.7 a | 371 ± 3.6 b | 54 ± 0.6 a | 54 ± 0.3 a |
No-tillage | 943 ± 0.5 a | 189 ± 1.7 a | 354 ± 3.4 a | 55 ± 0.7 a | 55 ± 0.4 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamič, S.; Leskovšek, R. Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems. Agronomy 2021, 11, 2477. https://doi.org/10.3390/agronomy11122477
Adamič S, Leskovšek R. Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems. Agronomy. 2021; 11(12):2477. https://doi.org/10.3390/agronomy11122477
Chicago/Turabian StyleAdamič, Sergeja, and Robert Leskovšek. 2021. "Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems" Agronomy 11, no. 12: 2477. https://doi.org/10.3390/agronomy11122477
APA StyleAdamič, S., & Leskovšek, R. (2021). Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems. Agronomy, 11(12), 2477. https://doi.org/10.3390/agronomy11122477