Regional Differences in Control Operations during the 2019–2021 Desert Locust Upsurge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Analysis
3. Results
3.1. Temporal Distribution of Locust Reports and Control Operations
3.2. Land Cover Characteristics
3.3. Damage to Crop and Pasture Areas
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Lecoq, M.; Latchininsky, A.; Hunter, D. Locust and Grasshopper Management. Annu. Rev. Entomol. 2019, 64, 15–34. [Google Scholar] [CrossRef]
- Meynard, C.N.; Lecoq, M.; Chapuis, M.P.; Piou, C. On the relative role of climate change and management in the current desert locust outbreak in East Africa. Glob. Chang. Biol. 2020, 26, 3753–3755. [Google Scholar] [CrossRef]
- Gay, P.E.; Trumper, E.; Lecoq, M.; Piou, C. Importance of human capital, field knowledge and experience to improve pest locust management. Pest Manag. Sci. 2021, 77, 5463–5474. [Google Scholar] [CrossRef]
- Gay, P.E.; Lecoq, M.; Piou, C. The limitations of locust preventive management faced with spatial uncertainty: Exploration with a multiagent model. Pest Manag. Sci. 2020, 76, 1094–1102. [Google Scholar] [CrossRef]
- Gay, P.E.; Lecoq, M.; Piou, C. Improving preventive locust management: Insights from a multi-agent model. Pest Manag. Sci. 2018, 74, 46–58. [Google Scholar] [CrossRef]
- Symmons, P. Strategies to combat the desert locust. Crop Prot. 1992, 11, 206–212. [Google Scholar] [CrossRef]
- Lecoq, M. Desert locust threat to agricultural development and food security and FAO/International role in its control. Arab J. Plant Prot. 2003, 21, 188–193. [Google Scholar]
- Lecoq, M. Desert locust management: From ecology to anthropology. J. Orthoptera Res. 2005, 14, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Cressman, K. Chapter 4.2—Desert Locust. In Biological and Environmental Hazards, Risks, and Disasters; Shroder, J.F., Sivanpillai, R., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 87–105. [Google Scholar]
- FAO. Standard Operating Procedures (SOP) for Desert Locust Ground Survey; FAO: Rome, Italy, 2021; Available online: http://www.fao.org/ag/locusts/common/ecg/359/en/SOPSurveyENv2021.pdf (accessed on 1 August 2021).
- FAO. Standard Operating Procedures (SOP) for Desert Locust Ground Control; FAO: Rome, Italy, 2021; Available online: http://www.fao.org/ag/locusts/common/ecg/359/en/SOPControlE.pdf (accessed on 1 August 2021).
- FAO. Standard Operating Procedures (SOP) for Desert Locust Aerial Survey and Control; FAO: Rome, Italy, 2021; Available online: http://www.fao.org/ag/locusts/common/ecg/359/en/SOPAerialE.pdf (accessed on 1 August 2021).
- Pedgley, D. Desert Locust Forecasting Manual (Volume 1 of 2); Centre for Overseas Pest Research: London, UK, 1981. [Google Scholar]
- Lecoq, M. Recent progress in Desert and Migratory Locust management in Africa. Are preventative actions possible? J. Orthoptera Res. 2001, 10, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Magor, J.I.; Lecoq, M.; Hunter, D.M. Preventive control and Desert Locust plagues. Crop Prot. 2008, 27, 1527–1533. [Google Scholar] [CrossRef]
- Dobson, H.M. Desert Locust Guidelines Control; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Dobson, H.M. Desert Locust Guidelines 4. Control; FAO: Rome, Italy, 2001; Available online: https://www.fao.org/ag/locusts/common/ecg/347_en_DLG4e.pdf (accessed on 1 August 2021).
- Eriksson, H.; Wiktelius, S. Impact of chlorpyrifos used for desert locust control on non-target organisms in the vicinity of mangrove, an ecologically sensitive area. Int. J. Pest Manag. 2010, 57, 23–34. [Google Scholar] [CrossRef]
- Matthews, G.A. New Technology for Desert Locust Control. Agronomy 2021, 11, 1052. [Google Scholar] [CrossRef]
- Githae, E.W.; Kuria, E.K. Biological control of desert locust (Schistocerca gregaria Forskål). CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2021, 16, 13. [Google Scholar] [CrossRef]
- Salih, A.A.M.; Baraibar, M.; Mwangi, K.K.M.; Artan, G. Climate change and locust outbreak in East Africa. Nat. Clim. Chang. 2020, 10, 584–585. [Google Scholar] [CrossRef]
- Wang, L.; Zhuo, W.; Pei, Z.; Tong, X.; Han, W.; Fang, S. Using Long-Term Earth Observation Data to Reveal the Factors Contributing to the Early 2020 Desert Locust Upsurge and the Resulting Vegetation Loss. Remote Sens. 2021, 13, 680. [Google Scholar] [CrossRef]
- Showler, A.; Ebbe, M.O.; Lecoq, M.; Maeno, K.O. Early intervention against desert locusts: Current proactive approach and the prospect of sustainable outbreak prevention. Agron. J. 2021, 11, 312. [Google Scholar] [CrossRef]
- FAO Locust Hub. Available online: https://locust-hub-hqfao.hub.arcgis.com/ (accessed on 1 August 2021).
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global (accessed on 1 August 2021).
- Perez-Hoyos, A.; Udias, F.; Rembold, F.; Kerdiles, H.; Gallego, J. Integrating multiple land cover maps through a multi-criteria analysis to improve agricultural monitoring in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 1020642. [Google Scholar] [CrossRef]
- Yu, Q.; You, L.; Wood-Sichra, U.; Ru, Y.; Joglekar, A.K.B.; Fritz, S.; Xiong, W.; Lu, M.; Wu, W.; Yang, P. A cultivated planet in 2010: 2. the global gridded agricultural production maps. Earth Syst. Sci. Data Discuss. 2020, 12, 3545–3572. [Google Scholar] [CrossRef]
- International Food Policy Research Institute. Spatially-Disaggregated Crop Production Statistics Data in Africa South of the Sahara for 2017; Harvard Dataverse, V2; International Food Policy Research Institute: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Sultana, R.; Kumar, S.; Samejo, A.A.; Soomro, S.; Lecoq, M. The 2019–2020 upsurge of the desert locust and its impact in Pakistan. J. Orthoptera Res. 2021, 30, 145–154. [Google Scholar] [CrossRef]
- Ahmed, H.; Gardiner, B.G. Activation of Malathion by the Locust Bodywall. Nature 1968, 17, 776–777. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Patlolla, A.K.; Yedjou, C.G.; Moore, P.D. Environmental Exposure and Health Effects Associated with Malathion Toxicity. In Toxicity and Hazard of Agrochemicals; InTech: Vienna, Austria, 2015. [Google Scholar]
- Samways, M.J. Can Locust Control be Compatible with Conserving Biodiversity? In Grasshoppers and Grassland Health; NATO Science Series (Series 2. Environment Security); Lockwood, J.A., Latchininsky, A.V., Sergeev, M.G., Eds.; Springer: Dordrecht, The Netherlands, 2000; Volume 73. [Google Scholar]
- Peveling, R.; Rafanomezantsoa, J.J.; Razafinirina, R.; Tovonkery, R.; Zafimaniry, G. Environmental impact of the locust control agents fenitrothion, fenitrothion esfenvalerate and triflumuron on terrestrial arthropods in Madagascar. Crop Prot. 1999, 18, 659–676. [Google Scholar] [CrossRef]
- Blanford, S.; Thomas, M.B. Adult Survival, Maturation, and Reproduction of the Desert Locust Schistocerca gregaria Infected with the Fungus Metarhizium anisopliae var acridum. J. Invertebr. Pathol. 2001, 78, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Standard Operating Procedures (SOP) Desert Locust Biology and Behaviour; FAO: Rome, Italy, 2021; Available online: http://www.fao.org/ag/locusts/common/ecg/359/en/SOPBiologyENv2021.pdf (accessed on 1 August 2021).
- Tratalos, J.; Cheke, R.; Healey, R.; Stenseth, N. Desert locust populations, rainfall and climate change: Insights from phenomenological models using gridded monthly data. Clim. Res. 2010, 43, 229–239. [Google Scholar] [CrossRef]
- Pekel, J.F.; Ceccato, P.; Vancutsem, C.; Cressman, K.; Vanbogaert, E.; Defourny, P. Development and Application of Multi-Temporal Colorimetric Transformation to Monitor Vegetation in the Desert Locust Habitat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 318–326. [Google Scholar] [CrossRef]
- Renier, C.; Waldner, F.; Jacques, D.M.; Ebbe, M.A.B.; Cressman, K.; Defourny, P. A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS. Remote Sens. 2015, 7, 7545–7570. [Google Scholar] [CrossRef] [Green Version]
- Maeno, K.O.; Ould Ely, S.; Ould Mohamed, S.; Jaavar, M.E.H.; Ould Babah Ebbe, M.A. Adult Desert Locust Swarms, Schistocerca gregaria, Preferentially Roost in the Tallest Plants at Any Given Site in the Sahara Desert. Agronomy 2020, 10, 1923. [Google Scholar] [CrossRef]
- Ellenburg, W.E.; Mishra, V.; Roberts, J.B.; Limaye, A.S.; Case, J.L.; Blankenship, C.B.; Cressman, K. Detecting Desert Locust Breeding Grounds: A Satellite-Assisted Modeling Approach. Remote Sens. 2021, 13, 1276. [Google Scholar] [CrossRef]
- Gomez, D.; Salvador, P.; Sanz, J.; Rodrigo, J.F.; Gil1, J.; Casanova, J.S. Prediction of desert locust breeding areas using machine learning methods and SMOS (MIR SMNRT2) Near Real Time product. J. Arid. Environ. 2021, 194, 104599. [Google Scholar] [CrossRef]
- WMO/FAO. Weather and Desert Locusts, World Meteorological Organization and Food and Agriculture Organization of the United Nations; World Meteorological Organization (WMO): Geneva, Switzerland, 2016. [Google Scholar]
- Huis, A.V.; Cressman, K.; Magor, J.I. Preventing desert locust plagues: Optimizing management interventions. Entomol. Exp. Appl. 2007, 122, 191–214. [Google Scholar] [CrossRef]
- Baro, M.; Deubel, T.F. Persistent hunger: Perspectives on vulnerability, famine, and food security in sub-Saharan Africa. Annu. Rev. Anthropol. 2006, 35, 521–538. [Google Scholar] [CrossRef]
- Chatterjee, S. How Hard Did That Sting? Estimating the Economic Costs of Locust Attacks on Agricultural Production. Appl. Econ. Perspect. Policy 2020, 1–26. [Google Scholar] [CrossRef]
- FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/#data (accessed on 1 August 2021).
- Faye, B. How many large camelids in the world? A synthetic analysis of the world camel demographic changes. Pastoralism 2020, 10, 25. [Google Scholar] [CrossRef]
- Milton, S.; Barnard, P. Tenure, livelihoods and sustainable development- rangelands as systems for multiple land use and livelihood support. Afr. J. Range Forage Sci. 2003, 20, 202–209. [Google Scholar]
- Bradshaw, C.; Leroy, B.; Bellard, C. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016, 7, 12986. [Google Scholar] [CrossRef]
- Cunniffe, N.J.; Gilligan, C.A. Use of mathematical models to predict epidemics and to optimise disease detection and management. Emerg. Plant Dis. Glob. Food Secur. 2020, 12, 239–266. [Google Scholar]
- Cunniffe, N.J.; Koskella, B.; Metcalf, C.J.; Parnell, S.; Gottwald, T.R.; Gilligan, C.A. Thirteen challenges in modelling plant diseases. Epidemics. Epidemics 2015, 10, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forster, G.A.; Gilligan, C.A. Optimizing the control of disease infestations at the landscape scale. Proc. Natl. Acad. Sci. USA 2007, 104, 4984–4989. [Google Scholar] [CrossRef] [Green Version]
- Therville, C.; Anderies, J.M.; Lecoq, M.; Cease, A. Locusts and People: Integrating the Social Sciences in Sustainable Locust Management. Agronomy 2021, 11, 951. [Google Scholar] [CrossRef]
- Rowthorn, R.E.; Laxminarayan, R.; Gilligan, C.A. Optimal control of epidemics in metapopulations. J. R. Soc. Interface 2009, 6, 1135–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, E.; Laxminarayan, R.; Smith, D.L.; Gilligan, C.A. Economic incentives and mathematical models of disease. Environ. Dev. Econ. 2007, 12, 707–732. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retkute, R.; Hinton, R.G.K.; Cressman, K.; Gilligan, C.A. Regional Differences in Control Operations during the 2019–2021 Desert Locust Upsurge. Agronomy 2021, 11, 2529. https://doi.org/10.3390/agronomy11122529
Retkute R, Hinton RGK, Cressman K, Gilligan CA. Regional Differences in Control Operations during the 2019–2021 Desert Locust Upsurge. Agronomy. 2021; 11(12):2529. https://doi.org/10.3390/agronomy11122529
Chicago/Turabian StyleRetkute, Renata, Rebekah G. K. Hinton, Keith Cressman, and Christopher A. Gilligan. 2021. "Regional Differences in Control Operations during the 2019–2021 Desert Locust Upsurge" Agronomy 11, no. 12: 2529. https://doi.org/10.3390/agronomy11122529
APA StyleRetkute, R., Hinton, R. G. K., Cressman, K., & Gilligan, C. A. (2021). Regional Differences in Control Operations during the 2019–2021 Desert Locust Upsurge. Agronomy, 11(12), 2529. https://doi.org/10.3390/agronomy11122529