Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Water Sampling and Analyses
2.2. Crop Suitability Using ALESarid-GIS
2.3. Climatic and Remote Sensing Data
2.4. Weather-Based CWR Using Ref-ET
2.5. Satellite-Based CWR Using SEBAL
3. Results and Discussion
3.1. Soil and Irrigation Water Properties
3.2. Crop Suitability Assessment Using ALESarid-GIS
3.3. Weather-Based CWR
3.4. Weather-Based CWR of Suitable Crops
3.5. Actual CWR Using SEBAL
3.6. Study Llimitations and Innovation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
DOY | dT = (a × Ts) + b | |||
---|---|---|---|---|
a | b | a | b | |
51 | 5.02 | −6.45 | 0.36 | −107.5 |
83 | 4.99 | −6.44 | 0.30 | −88.91 |
131 | 5.13 | −6.47 | 0.17 | −50.55 |
147 | 5.11 | −6.44 | 0.15 | −45.36 |
163 | 5.05 | −6.43 | 0.16 | −48.33 |
179 | 4.88 | −6.38 | 0.13 | −40.58 |
195 | 5.06 | −6.42 | 0.26 | −79.56 |
211 | 5.07 | −6.45 | 0.17 | −51.52 |
227 | 4.88 | −6.38 | 0.18 | −55.86 |
243 | 5.02 | −6.42 | 0.25 | −76.85 |
259 | 4.99 | −6.42 | 0.20 | −62.17 |
275 | 4.94 | −6.41 | 0.25 | −73.90 |
291 | 4.78 | −6.35 | 0.22 | −66.47 |
307 | 4.98 | −6.42 | 0.25 | −76.29 |
339 | 5.25 | −6.52 | 0.31 | −92.15 |
355 | 4.96 | −6.43 | 0.49 | −142.51 |
Min. | 4.78 | −6.52 | 0.13 | −142.51 |
Max. | 5.25 | −6.35 | 0.49 | −40.58 |
Mean | 5.01 | −6.43 | 0.24 | −72.41 |
SD | 0.11 | 0.04 | 0.09 | 25.68 |
CV (%) | 2.14 | −0.57 | 37.21 | −35.46 |
References
- FAO. Arid Zone Forestry: A Guide for Field Technicians; Food and Agriculture Organization: Rome, Italy, 1989. [Google Scholar]
- D’Odorico, P.; Bhattachan, A. Hydrologic variability in dryland regions: Impacts on ecosystem dynamics and food security. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 3145–3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheater, H.; Sorooshian, S.; Sharma, K.D. Hydrological Modelling in Arid and Semi-Arid Areas; Cambridge University Press: London, UK, 2007. [Google Scholar]
- Camarasa-Belmonte, A.M.; Soriano, J. Empirical study of extreme rainfall intensity in a semi-arid environment at different time scales. J. Arid Environ. 2014, 100–101, 63–71. [Google Scholar] [CrossRef]
- Williams, M. Climate Change in Deserts: Past, Present and Future; Cambridge University Press: London, UK, 2014. [Google Scholar]
- Rossiter, D.G. ALES: A framework for land evaluation using a microcomputer. Soil Use Manag. 1990, 6, 7–20. [Google Scholar] [CrossRef]
- De la Rosa, D.; Mayol, F.; Diaz-Pereira, E.; Fernandez, M.; de la Rosa, D., Jr. A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection: With special reference to the Mediterranean region. Environ. Model. AMP Softw. 2004, 19, 929–942. [Google Scholar] [CrossRef]
- Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Ali, R.R.; Shalaby, A. Sustainable agriculture in the arid desert west of the Nile Delta: A crop suitability and water requirements perspective. Int. J. Soil Sci. 2012, 7, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Abdel Kawy, W.A.; Abou El-Magd, I.H. Assessing crop water requirements on the bases of land suitability of the soils South El Farafra Oasis, Western Desert, Egypt. Arab. J. Geosci. 2013, 6, 2313–2328. [Google Scholar] [CrossRef]
- Elnashar, A.F. Assessing Crop Suitability and Water Requirements of the Common Land Use in Egypt, Sudan and Ethiopia. Institute of African Research and Studies. Master’s Thesis, Cairo University, Giza, Egypt, 2016. [Google Scholar]
- Joshua, J.K.; Anyanwu, N.C.; Ahmed, A.J. Land suitability analysis for agricultural planning using GIS and multi criteria decision analysis approach in Greater Karu Urban Area, Nasarawa State, Nigeria. Afr. J. Agric. Sci. Technol. 2013, 1, 14–23. [Google Scholar]
- Bozdag, A.; Yavuz, F.; Gunay, A.S. AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environ. Earth Sci. 2016, 75, 813–827. [Google Scholar] [CrossRef]
- Ghabour, T.K.; Ali, R.R.; Wahba, M.M.; El-Naka, E.A.; Selim, S.A. Spatial decision support system for land use management of newly reclaimed areas in arid regions. Egypt. J. Remote Sens. Space Sci. 2019, 22, 219–225. [Google Scholar] [CrossRef]
- De la Rosa, D.; Moreno, J.A.; Garcia, L.V.; Almorza, J. MicroLEIS: A microcomputer-based Mediterranean land evaluation information system. Soil Use Manag. 1992, 8, 89–96. [Google Scholar] [CrossRef]
- Yizengaw, S.; Verheye, W. Computer aided decision support system in land evaluation—A case study. Agropedology 1994, 4, 1–18. [Google Scholar]
- Yizengaw, T.; Verheye, W. Application of computer captured knowledge in land evaluation, using ALES in central Ethiopia. Geoderma 1995, 66, 297–311. [Google Scholar] [CrossRef]
- Ismail, H.A.; Bahnassy, M.H.; Abd El-Kawy, O.R. Integrating GIS and modelling for agricultural land suitability evaluation at East Wadi El-Natrun, Egypt. Egypt. J. Soil Sci. 2005, 45, 297–322. [Google Scholar]
- Elsheikh, R.; Mohamed Shariff, A.R.B.; Amiri, F.; Ahmad, N.B.; Balasundram, S.K.; Soom, M.A.M. Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops. Comput. Electron. Agric. 2013, 93, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Rossiter, D.G. A theoretical framework for land evaluation. Geoderma 1996, 72, 165–190. [Google Scholar] [CrossRef]
- Rossiter, D.G. Biophysical models in land evaluation. In Encyclopedia of Life Support Systems (EOLSS), Section 1.5 “Land Use and Land Cover”; Verheye, W.H., Ed.; EOLSS Publishers Co. Ltd.: Oxford, UK, 2003; pp. 1–16. [Google Scholar]
- El-Kawy, A.O.R.; Ismail, H.A.; Rod, J.K.; Suliman, A.S. A Developed GIS-based land evaluation model for agricultural land suitability assessments in arid and semi-arid regions. Res. J. Agric. Biol. Sci. 2010, 6, 589–599. [Google Scholar]
- Wahab, M.A.; El Semary, M.A.; Ali, R.R.; Darwish, K.M. Land resources assessment for agricultural use in some areas west of Nile valley, Egypt. J. Appl. Sci. Res. 2013, 9, 4288–4298. [Google Scholar]
- Darwish, K.M.; Abdel Kawy, W.A. Land suitability decision support for assessing land use changes in areas west of Nile Delta, Egypt. Arab. J. Geosci. 2014, 7, 865–875. [Google Scholar] [CrossRef]
- Abd El-Kawy, O.R.; Flous, G.M.; Abdel-Kader, F.H.; Suliman, A.S. Land suitability analysis for crop cultivation in a newly developed area in Wadi Al-Natrun, Egypt. Alex. Sci. Exch. J. 2019, 40, 683–693. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, H.; Binmiskeen, A.; Saad Moghanm, F. Land evaluation for crop production in the Banger El-Sokkar Region of Egypt using a geographic information system and ALES-arid Model. Egypt. J. Soil Sci. 2020, 60, 129–143. [Google Scholar] [CrossRef]
- Bryla, D.R.; Trout, T.J.; Ayars, J.E. weighing lysimeters for developing crop coefficients and efficient irrigation practices for vegetable crops. HortScience 2010, 45, 1597–1604. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Dukes, M.D.; Jacobs, J.M. Bahiagrass crop coefficients from eddy correlation measurements in central Florida. Irrig. Sci. 2009, 28, 5–15. [Google Scholar] [CrossRef]
- Pivec, J.; Brant, V.; Hamouzová, K. Evapotranspiration and Transpiration Measurements in Crops and Weed Species by the Bowen Ratio and Sapflow Methods under the Rainless Region Conditions; Gerosa, G., Ed.; InTech: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Morton, C.G.; Huntington, J.L.; Pohll, G.M.; Allen, R.G.; McGwire, K.C.; Bassett, S.D. Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC. J. Am. Water Resour. Assoc. 2013, 49, 549–562. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G.; Trezza, R.; Wright, L. Satellite-based energy balance to assess within-population variance of crop coefficient curves. J. Irrig. Drain. Eng. 2005, 131, 94–109. [Google Scholar] [CrossRef]
- El-Magd, I.A.; Tanton, T. Remote sensing and GIS for estimation of irrigation crop water demand. Int. J. Remote Sens. 2005, 26, 2359–2370. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Senay, G.B. Satellite psychrometric formulation of the operational Simplified Surface Energy Balance (SSEBop) model for quantifying and mapping evapotranspiration. Appl. Eng. Agric. 2018, 34, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. Atmos. 2007, 112, D10117. [Google Scholar] [CrossRef]
- Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Liou, Y.; Kar, S.K. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—A review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef] [Green Version]
- Subedi, A.; Chávez, J.L. Crop evapotranspiration (ET) estimation models: A review and discussion of the applicability and limitations of ET methods. J. Agric. Sci. 2015, 7, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.; van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Zamani Losgedaragh, S.; Rahimzadegan, M. Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). J. Hydrol. 2018, 561, 523–531. [Google Scholar] [CrossRef]
- Papadavid, G.; Perdikou, S.; Hadjimitsis, M.; Hadjimitsis, D. Remote sensing applications for planning irrigation management. The use of SEBAL methodology for estimating crop evapotranspiration in Cyprus. Environ. Clim. Technol. 2012, 9, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Dougherty, M.; Marzen, L.J.; Kalin, L. Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States. Remote Sens. Lett. 2012, 3, 511–519. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Ahmad, F.A. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. 2019. [Google Scholar] [CrossRef]
- Laipelt, L.; Ruhoff, A.L.; Fleischmann, A.S.; Kayser, R.H.B.; Kich, E.d.M.; da Rocha, H.R.; Neale, C.M.U. Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest–savanna transition in Brazil. Remote Sens. 2020, 12, 1108. [Google Scholar] [CrossRef] [Green Version]
- USDA. Soil Survey Field and Laboratory Methods Manual; National Soil Survey Center, Natural Resources Conservation Service; U.S. Department of Agriculture: Lincoln, NE, USA, 2009.
- Appel, M.; Lahn, F.; Buytaert, W.; Pebesma, E. Open and scalable analytics of large Earth observation datasets: From scenes to multidimensional arrays using SciDB and GDAL. ISPRS J. Photogramm. Remote Sens. 2018, 138, 47–56. [Google Scholar] [CrossRef]
- ASCE-EWRI. The ASCE Standardized Reference Evapotranspiration Equation; ASCE-EWRI Standardization of Reference Evapotranspiration Task Committee Report; The American Society of Civil Engineers (ASCE): Washington, DC, USA, 2005; p. 216. [Google Scholar]
- Allen, R. REF-ET: Reference Evapotranspiration Calculation Software for FAO and ASCE Standardized Equations Version 4.1. for Windows; University of Idaho: Moscow, ID, USA, 2015. [Google Scholar]
- Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Waters, R.; Allen, R.; Tasumi, M.; Trezza, R.; Bastiaanssen, W. SEBAL: Surface Energy Balance Algorithms for Land—Advanced Training and Users Manual Version 1.0; The Idaho Department of Water Resources: Boise, ID, USA, 2002; p. 98.
- Bastiaanssen, W.; Ahmad, M.-u.-D.; Chemin, Y. Satellite surveillance of evaporative depletion across the Indus basin. Water Resour. Res. 2002, 38, 1273. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Noordman, E.; Pelgrum, H.; Davids, G.; Thoreson, B.; Allen, R. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Beg, A.A.F.; Al-Sulttani, A.H.; Ochtyra, A.; Jarocińska, A.; Marcinkowska, A. Estimation of evapotranspiration using SEBAL algorithm and Landsat-8 data-A case study: Tatra mountains region. J. Geol. Resour. Eng. 2016, 6, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Farah, H.; Bastiaanssen, W. Impact of spatial variations of land surface parameters on regional evaporation: A case study with remote sensing data. Hydrol. Process. 2001, 15, 1585–1607. [Google Scholar] [CrossRef]
- Brutsaert, W.; Sugita, M. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. J. Geophys. Res. 1992, 97, 18377–18382. [Google Scholar] [CrossRef]
- Ahmad, M.D.; Biggs, T.; Turral, H.; Scott, C.A. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India. Water Sci. Technol. 2006, 53, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Bastiaanssen, W. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Khalifa, A.M. Mineralogical and Chemical Properties of Toshka Soils. Institute of African Research and Studies. Master’s Thesis, Cairo University, Giza, Egypt, 2001. [Google Scholar]
- Abbas, H.H.; El-Husseiny, O.H.; Mohamed, M.K.; Abuzaid, A.S. Land capability and suitability of some soils in Toshka area, Southwestern Egypt. Ann. Agric. Sci. MoshtohorEgypt 2010, 48, 1–12. [Google Scholar]
- Hamzawy, M.M.H. Soil Studies in Lake Nasser Region Using Remote Sensing and GIS Capabilities. Ph.D. Thesis, Al-Azhar University, Cairo, Egypt, 2014. [Google Scholar]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land suitability assessment and agricultural production sustainability using machine learning models. Agronomy 2020, 10, 573. [Google Scholar] [CrossRef]
- FAO. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- El-Mahdy, M.E.; Abbas, M.S.; Sobhy, H.M. Investigating the water quality of the water resources bank of egypt: Lake nasser. In Conventional Water Resources and Agriculture in Egypt; Negm, A.M., Ed.; Springer International Publishing: Cham, Swetzerland, 2019; pp. 639–655. [Google Scholar] [CrossRef]
- Fayed, R.M.; Hussin, M.A.; Rizk, A.H.; Tawfik, T.A.; M Shreif, M.M. Effect of wells water quality on some soil properties and productivity in Toshka area. J. Soil Sci. Agric. Eng. 2010, 1, 873–881. [Google Scholar] [CrossRef] [Green Version]
- IDMC. Aswan Governorate Statistical Guide; Information and Decision Making Center: Aswan, Aswan Governorate, Egypt, 2014. (In Arabic)
- Hassan, F.O.; Salam, A.A.A.; Rashed, H.S.; Faid, A.M. Land evaluation and suitability of Hala’ib and Shalateen region, Egypt, by integrated use of GIS and remote sensing techniques. Ann. Agric. Sci. Moshtohor. 2017, 55, 151–162. [Google Scholar]
- Brouwer, C.; Prins, K.; Heibloem, M. Irrigation Water Management: Irrigation Scheduling; Food and Agriculture Organization: Rome, Italy, 1989. [Google Scholar]
- El-Marsafawy, S.M.; Eid, H.M. Estimation of water consumptive use for Egypt. In Proceedings of the Third Conference of On-Farm Irrigation and Agroclimatology, Cairo, Egypt, 25–27 January 1999. [Google Scholar]
- Eid, H.M.; Ainer, N.G.; El-Marsafawy, S.M.; Khater, A.N. Crop water needs under different irrigation system in new land. In Proceedings of the Third Conference of On-Farm Irrigation and Agroclimatology, Cairo, Egypt, 25–27 January 1999. [Google Scholar]
- Eid, H.M.; El-Marsafawy, S.M.; Abbas, F.A.; Ali, M.A.; Khater, I.N.; Eissa, M.M. Estimation of water needs for vegetable crops in the new land. Meteorol. Res. Bull. 2002, 16, 156–179. [Google Scholar]
- Eid, H.M.; El-Marsafawy, S.M.; Ibrahim, M.M.; Eissa, M.M. Estimation of water needs for Orchard trees in the old land. Meteorol. Res. Bull. 2002, 17, 131–139. [Google Scholar]
- Mahmoud, M.A.; El-Bably, A.Z. Crop water requirements and irrigation efficiencies in Egypt. In Conventional Water Resources and Agriculture in Egypt; Negm, A.M., Ed.; Springer International Publishing: Cham, Swetzerland, 2019; pp. 471–487. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote sensing for crop water management: From ET modelling to services for the end users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Hady, A.M.; Abdelaty, E.F. GIS—Comprehensive analytical approach for soil use by linking crop soil suitability to soil management and reclamation. Alex. Sci. Exch. J. 2019, 40, 60–81. [Google Scholar] [CrossRef] [Green Version]
- Paula, A.C.P.d.; Silva, C.L.d.; Rodrigues, L.N.; Scherer-Warren, M. Performance of the SSEBop model in the estimation of the actual evapotranspiration of soybean and bean crops. Pesqui. Agropecuária Bras. 2019, 54. [Google Scholar] [CrossRef]
- Biro, K.; Zeineldin, F.; Al-Hajhoj, M.R.; Dinar, H.A. Estimating irrigation water use for date palm using remote sensing over an Oasis in arid region. Iraqi J. Agric. Sci. 2020, 51, 1173–1187. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 54, 1086–1092. [Google Scholar] [CrossRef]
Class | Description | Rating (%) |
---|---|---|
S1 | Highly suitable | 80–100 |
S2 | Moderately suitable | 60–80 |
S3 | Marginally suitable | 40–60 |
S4 | Conditionally suitable | 20–40 |
NS1 | Potentially suitable | 10–20 |
NS2 | Actually unsuitable | <10 |
ID | SD | Clay | AW | Ks | TC | GC | ESP | pH | CEC | EC | OM | N | P | K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 85 | 0.72 | 2.48 | 0.63 | 2.21 | 0.08 | 13.96 | 7.82 | 3.32 | 2.09 | 0.04 | 0.11 | 0.28 | 2.12 |
2 | 90 | 8.10 | 2.80 | 0.22 | 1.70 | 0.07 | 12.20 | 8.11 | 6.30 | 1.20 | 0.03 | 0.13 | 0.23 | 1.90 |
3 | 90 | 8.12 | 2.64 | 0.22 | 1.86 | 0.06 | 11.63 | 8.12 | 6.41 | 1.25 | 0.04 | 0.11 | 0.33 | 1.88 |
4 | 95 | 7.93 | 2.80 | 0.23 | 1.83 | 0.05 | 14.43 | 8.05 | 6.17 | 1.27 | 0.04 | 0.10 | 0.40 | 2.80 |
5 | 95 | 5.55 | 2.61 | 0.37 | 1.05 | 0.06 | 5.34 | 7.74 | 5.64 | 0.90 | 0.05 | 0.14 | 0.52 | 2.89 |
6 | 90 | 1.00 | 2.63 | 0.62 | 2.50 | 0.07 | 14.07 | 7.76 | 3.80 | 2.32 | 0.03 | 0.07 | 0.23 | 1.47 |
7 | 70 | 7.93 | 3.03 | 0.23 | 1.63 | 0.05 | 11.81 | 7.63 | 6.39 | 2.45 | 0.01 | 0.04 | 0.13 | 0.77 |
8 | 90 | 5.95 | 2.50 | 0.34 | 1.10 | 0.08 | 5.25 | 7.67 | 5.15 | 0.79 | 0.04 | 0.05 | 0.30 | 2.05 |
9 | 95 | 5.64 | 2.11 | 0.36 | 0.99 | 0.07 | 4.88 | 7.72 | 5.06 | 0.94 | 0.04 | 0.04 | 0.31 | 1.60 |
10 | 90 | 5.05 | 1.90 | 0.39 | 1.05 | 0.07 | 4.80 | 7.60 | 4.95 | 0.89 | 0.05 | 0.06 | 0.25 | 1.90 |
11 | 90 | 1.50 | 2.70 | 0.59 | 3.80 | 0.07 | 20.10 | 7.95 | 3.05 | 2.87 | 0.05 | 0.15 | 0.65 | 3.05 |
12 | 85 | 6.94 | 2.94 | 0.29 | 1.75 | 0.06 | 14.06 | 8.08 | 5.44 | 0.64 | 0.04 | 0.12 | 0.48 | 2.35 |
13 | 90 | 5.60 | 2.00 | 0.36 | 1.10 | 0.06 | 4.80 | 7.61 | 4.55 | 3.45 | 0.05 | 0.15 | 0.55 | 2.60 |
14 | 95 | 1.64 | 2.54 | 0.58 | 3.81 | 0.07 | 4.99 | 7.86 | 2.99 | 2.81 | 0.06 | 0.15 | 0.66 | 2.21 |
15 | 80 | 0.78 | 1.51 | 0.63 | 2.29 | 0.07 | 12.28 | 7.88 | 2.60 | 1.27 | 0.03 | 0.04 | 0.19 | 2.18 |
16 | 50 | 1.72 | 2.54 | 0.58 | 3.44 | 0.06 | 11.14 | 8.66 | 2.82 | 1.97 | 0.04 | 0.14 | 0.36 | 3.04 |
17 | 85 | 6.44 | 3.32 | 0.32 | 1.71 | 0.06 | 12.82 | 8.08 | 5.51 | 0.62 | 0.04 | 0.10 | 0.37 | 1.56 |
18 | 90 | 6.80 | 3.24 | 0.30 | 1.71 | 0.07 | 13.83 | 7.68 | 5.59 | 3.06 | 0.06 | 0.18 | 0.62 | 4.00 |
19 | 95 | 6.94 | 3.37 | 0.29 | 1.58 | 0.07 | 13.76 | 7.59 | 5.85 | 3.47 | 0.04 | 0.05 | 0.14 | 1.37 |
20 | 60 | 11.00 | 2.95 | 0.06 | 4.60 | 0.07 | 12.05 | 7.89 | 7.00 | 4.72 | 0.06 | 0.10 | 0.55 | 2.45 |
Min | 50.00 | 0.72 | 1.51 | 0.06 | 0.99 | 0.05 | 4.80 | 7.59 | 2.60 | 0.62 | 0.01 | 0.04 | 0.13 | 0.77 |
Max | 95.00 | 11.00 | 3.37 | 0.63 | 4.60 | 0.08 | 20.10 | 8.66 | 7.00 | 4.72 | 0.06 | 0.18 | 0.66 | 4.00 |
Mean | 85.50 | 5.27 | 2.63 | 0.38 | 2.09 | 0.07 | 10.91 | 7.88 | 4.93 | 1.95 | 0.04 | 0.10 | 0.38 | 2.21 |
SD | 11.82 | 2.94 | 0.47 | 0.16 | 1.02 | 0.01 | 4.25 | 0.25 | 1.34 | 1.13 | 0.01 | 0.04 | 0.16 | 0.71 |
CV (%) | 13.83 | 55.73 | 17.68 | 42.95 | 48.79 | 12.12 | 38.98 | 3.21 | 27.09 | 57.95 | 27.77 | 42.29 | 43.49 | 32.16 |
Samples | EC (dS/m) | pH | SAR | Na+ (meq/L) | Cl−1 (meq/L) | B−1 (ppm) |
---|---|---|---|---|---|---|
1 | 0.20 | 8.38 | 3.92 | 3.30 | 1.20 | 0.02 |
2 | 0.20 | 8.53 | 4.28 | 3.37 | 1.00 | 0.13 |
3 | 0.24 | 7.79 | 3.31 | 3.13 | 1.20 | 0.08 |
4 | 0.24 | 7.32 | 3.54 | 3.19 | 1.20 | 0.04 |
5 | 0.21 | 7.37 | 3.67 | 3.13 | 1.00 | 0.11 |
6 | 0.19 | 7.67 | 3.16 | 2.85 | 1.20 | 0.11 |
7 | 0.22 | 7.67 | 3.16 | 2.92 | 2.20 | 0.07 |
8 | 0.71 | 6.85 | 2.99 | 4.31 | 1.80 | 0.03 |
Min | 0.19 | 6.85 | 2.99 | 2.85 | 1.00 | 0.02 |
Max | 0.71 | 8.53 | 4.28 | 4.31 | 2.20 | 0.13 |
Mean | 0.27 | 7.70 | 3.50 | 3.27 | 1.35 | 0.08 |
SD | 0.16 | 0.52 | 0.41 | 0.43 | 0.40 | 0.04 |
CV (%) | 59.48 | 6.71 | 11.70 | 13.00 | 29.40 | 53.04 |
Crop | Soil Profiles | Classes % | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | NS2 | |||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||||||
Wheat/Barley | 20 | 70 | 10 | 0 | 0 | ||||||||||||||||||||
Faba bean | 0 | 55 | 45 | 0 | 0 | ||||||||||||||||||||
Sugarbeet | 5 | 75 | 20 | 0 | 0 | ||||||||||||||||||||
Sunflower | 0 | 35 | 65 | 0 | 0 | ||||||||||||||||||||
Rice | 0 | 0 | 0 | 0 | 100 | ||||||||||||||||||||
Maize/Soybean | 0 | 50 | 50 | 0 | 0 | ||||||||||||||||||||
Peanut/Cabbage/Peas/Tomato | 0 | 0 | 100 | 0 | 0 | ||||||||||||||||||||
Cotton | 0 | 60 | 40 | 0 | 0 | ||||||||||||||||||||
Sugarcane | 0 | 70 | 25 | 5 | 0 | ||||||||||||||||||||
Onion | 15 | 75 | 10 | 0 | 0 | ||||||||||||||||||||
Potato | 0 | 5 | 95 | 0 | 0 | ||||||||||||||||||||
Peppers/Watermelon | 0 | 70 | 30 | 0 | 0 | ||||||||||||||||||||
Alfalfa/Sorghum | 50 | 45 | 5 | 0 | 0 | ||||||||||||||||||||
Citrus/Grape/Fig | 0 | 0 | 55 | 10 | 35 | ||||||||||||||||||||
Banana | 0 | 20 | 45 | 0 | 35 | ||||||||||||||||||||
Olives | 0 | 0 | 65 | 0 | 35 | ||||||||||||||||||||
Apple | 0 | 25 | 40 | 0 | 35 | ||||||||||||||||||||
Pear | 0 | 50 | 15 | 0 | 35 | ||||||||||||||||||||
Date Palm | 0 | 0 | 65 | 0 | 35 |
Surface | Sprinkler | Drip | |||||
---|---|---|---|---|---|---|---|
Crop | Days | Planting Date | Harvesting Date | ETa (mm) | CWR (mm) | ||
Summer field crops | |||||||
Sunflower | 90 | 01/05/2014 | 30/07/2014 | 492 | 820 | 656 | 579 |
Sorghum | 120 | 15/05/2014 | 12/09/2014 | 675 | 1126 | 900 | |
Maize | 120 | 15/04/2014 | 13/08/2014 | 680 | 1133 | 906 | 799 |
Peanut | 120 | 15/04/2014 | 13/08/2014 | 697 | 1162 | 930 | 820 |
Sugarcane | 365 | 01/02/2014 | 01/02/2015 | 2044 | 3406 | 2725 | 2405 |
Soybean | 123 | 01/05/2014 | 01/09/2014 | 641 | 1069 | 855 | 755 |
Winter field crops | |||||||
Wheat | 165 | 01/11/2014 | 15/04/2015 | 482 | 804 | 643 | |
Barley | 150 | 15/10/2014 | 14/03/2015 | 482 | 803 | 643 | |
Berssem | 240 | 15/09/2014 | 13/05/2015 | 975 | 1625 | 1300 | |
Faba bean | 122 | 01/11/2014 | 03/03/2015 | 395 | 658 | 527 | 465 |
Onion | 151 | 01/10/2014 | 01/03/2015 | 485 | 808 | 646 | 570 |
Annual field crops | |||||||
Alfalfa | 365 | 01/01/2014 | 01/01/2015 | 2025 | 3374 | 2699 | 2382 |
Summer vegetable crops | |||||||
Watermelon | 122 | 01/03/2014 | 01/07/2014 | 596 | 993 | 794 | 701 |
Peppers | 153 | 01/04/2014 | 01/09/2014 | 793 | 1321 | 1057 | 933 |
Cabbage | 153 | 15/04/2014 | 15/09/2014 | 783 | 1305 | 1044 | 921 |
Tomato | 150 | 15/01/2014 | 14/06/2014 | 678 | 1130 | 904 | 797 |
Potato | 120 | 01/02/2014 | 01/06/2014 | 544 | 907 | 726 | 640 |
Winter vegetable crops | |||||||
Cabbage | 151 | 15/10/2014 | 15/03/2015 | 483 | 806 | 644 | 569 |
Tomato | 151 | 15/09/2014 | 13/02/2015 | 529 | 882 | 705 | 622 |
Potato | 123 | 01/10/2014 | 01/02/2015 | 389 | 648 | 518 | 457 |
Peppers | 150 | 01/10/2014 | 28/02/2015 | 481 | 801 | 641 | 566 |
Peas | 150 | 15/09/2014 | 12/02/2015 | 490 | 816 | 653 | 576 |
Deciduous fruit trees | |||||||
Grape | 275 | 01/3/2014 | 01/12/2014 | 933 | 1555 | 1244 | 1098 |
Fig | 275 | 01/3/2014 | 01/12/2014 | 948 | 1579 | 1263 | 1115 |
Evergreen fruit trees | |||||||
Date Palm | 365 | 01/01/2014 | 01/01/2015 | 1119 | 1865 | 1492 | 1316 |
Olives | 365 | 01/01/2014 | 01/01/2015 | 1119 | 1865 | 1492 | 1316 |
Citrus | 365 | 01/01/2014 | 01/01/2015 | 1548 | 2581 | 2065 | 1822 |
Banana | 365 | 01/01/2014 | 01/01/2015 | 2022 | 3369 | 2695 | 2378 |
Surface | Sprinkler | Drip | |||
---|---|---|---|---|---|
Crop | S1% | S2% | CWR [mm] | ||
Field crops | |||||
Faba bean | 55 | 658 | 527 | 465 | |
Wheat | 20 | 70 | 804 | 643 | |
Barley | 20 | 70 | 803 | 643 | |
Sunflower | 35 | 820 | 656 | 579 | |
Maize | 50 | 1133 | 906 | 799 | |
Sugarbeet | 5 | 75 | |||
Soybean | 50 | 1069 | 855 | 755 | |
Onion | 15 | 75 | 808 | 646 | 570 |
Berssem | 50 | 45 | 1625 | 1300 | |
Alfalfa | 50 | 45 | 3374 | 2699 | |
Cotton | 60 | - | |||
Vegetable crops | |||||
Potato | 5 | 778 | 622 | 549 | |
Watermelon | 70 | 993 | 794 | 701 | |
Fruit trees | |||||
Apple | 25 | ||||
Pear | 50 | ||||
Banana | 20 | 3369 | 2695 | 2378 |
ETa (mm) | ETr | |||
---|---|---|---|---|
Cold Pixels | Toshka | Abu Simbel | ||
Minimum | 2.81 | 2.40 | 2.74 | 4.49 |
Maximum | 5.74 | 6.56 | 4.77 | 13.40 |
Mean | 4.73 | 4.79 | 3.62 | 8.90 |
SD | 0.88 | 1.08 | 0.69 | 2.40 |
CV (%) | 18.53 | 22.67 | 19.16 | 26.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elnashar, A.; Abbas, M.; Sobhy, H.; Shahba, M. Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach. Agronomy 2021, 11, 260. https://doi.org/10.3390/agronomy11020260
Elnashar A, Abbas M, Sobhy H, Shahba M. Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach. Agronomy. 2021; 11(2):260. https://doi.org/10.3390/agronomy11020260
Chicago/Turabian StyleElnashar, Abdelrazek, Mohamed Abbas, Hassan Sobhy, and Mohamed Shahba. 2021. "Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach" Agronomy 11, no. 2: 260. https://doi.org/10.3390/agronomy11020260
APA StyleElnashar, A., Abbas, M., Sobhy, H., & Shahba, M. (2021). Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach. Agronomy, 11(2), 260. https://doi.org/10.3390/agronomy11020260