Nitrogen Fate and Efficiency of Fertilizer Application under a Rapeseed–Wheat–Rice Rotation System in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Information
2.2. Experiment Design
2.3. Plant and Soil Sampling and Measurements
2.4. Calculations and Statistical Analysis
3. Results
3.1. The Effects of N Application Rate on Previous Crop Yield
3.2. Effects of N Application Rate in the Previous Season and N Management in Rice Season, on Rice Yield, Biomass, and Harvest Index
3.3. Effects of N Application Rate in the Previous Season and N Management in Rice Season, on N Accumulation and N-Use Efficiency (NUE) in Rice
3.4. Fate of 15N-Labeled Urea in the Previous Season Crop
3.5. Residual N Uptake and Use Regulated by N Management in Rice Season
4. Discussion
4.1. The Fate of 15N Fertilizer of the Previous Crop in Rapeseed/Wheat and Rice Crop Rotation
4.2. Crop Yield Influenced by N Rates and N Management in Rapeseed/Wheat and Rice Rotation System
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohammed, Y.A.; Kelly, J.; Chim, B.K.; Rutto, E.; Waldschmidt, K.; Mullock, J.; Torres, G.; Desta, K.G.; Raun, W. Nitrogen fertilizer management for improved grain quality and yield in winter wheat in Oklahoma. J. Plant Nutr. 2013, 36, 749–761. [Google Scholar] [CrossRef]
- Peng, S.B.; Buresh, R.J.; Huang, J.L.; Zhong, X.H.; Zou, Y.B.; Yang, J.C. Improving nitrogen fertilization in rice by site-specifc Nmanagement. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Xiang, C.; Jia, X.P.; Huang, J.K.; Powlson, D. Reducing excessive nitrogen use in Chinese wheat production through knowledge training: What are the implications for the public extension system? Agroecol. Sustain. Food Syst. 2015, 39, 189–208. [Google Scholar] [CrossRef]
- Fowler, D.; Pyle, J.A.; Raven, J.A.; Sutton, M.A. The global nitrogen cycle in the twenty-first century: Introduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 1–12. [Google Scholar] [CrossRef]
- Evanoski-Cole, A.R.; Gebhart, K.A.; Sive, B.C.; Zhou, Y.; Capps, S.L.; Day, D.E. Composition and sources of winter haze in the Bakken oil and gas extractionregion. Atmos. Environ. 2017, 156, 77–87. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture of the People’s Republic of China. The Action Plan for Zero-Growth Fertilizer Use by 2020. 2015. Available online: http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm (accessed on 18 March 2018).
- Shang, Q.Y.; Gao, C.M.; Yang, X.X.; Wu, P.P.; Ling, N.; Shen, Q.R.; Guo, S.W. Ammonia volatilization in Chinese double ricecropping systems: A 3-year field measurement in long-term fertilizer experiments. Biol. Fertil. Soils 2014, 50, 715–725. [Google Scholar] [CrossRef]
- Zhang, J.T.; Wang, Z.M.; Liang, S.B. Quantitative study on the fate of residual soil nitrate in winter wheat based on a 15N-labeling method. PLoS ONE 2017, 12, e0171014. [Google Scholar] [CrossRef]
- Bouraima, A.K.; He, B.; Tian, T. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region. Environ. Sci. Pollut. Res. 2016, 23, 4541–4550. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Zhao, G.H.; Cheng, W.D.; Cuo, S.W.; Zhang, H.L. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields? Agric. Ecosyst. Environ. 2015, 209, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.H.; Shi, X.J.; Li, S.L.; Sun, X.F.; He, X.H. Nitrogen use efciency as affected by phosphorus and potassium in long-term rice and wheat experiments. J. Integr. Agric. 2014, 13, 588–596. Available online: http://www.docin.com/p-1373331377.html (accessed on 18 December 2013). [CrossRef]
- Wang, Y.; Li, Y.; Liu, F.; Li, Y.Y.; Song, L.F.; Li, H.; Meng, C.; Wu, J.S. Linking rice agriculture to nutrient chemical composition, concentration and mass flux in catchment streams in subtropical central China. Agric. Ecosyst. Environ. 2014, 184, 9–20. [Google Scholar] [CrossRef]
- Liu, B.; Zou, X.; Song, L.; Chen, L.; Li, S.Y. Effects of nitrogen fertilizer reduction and application of nitrogen fertilizer as base fertilizer on rapeseed yield and nitrogen absorption. Agric. Sci. Technol. 2013, 14, 116–121. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-HNNT201301029.htm (accessed on 24 December 2012).
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.J.; Sun, Y.Y.; Xu, H.; Li, Y.; Yan, F.J.; Jiang, M.J.; Ma, J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron. Sin. 2014, 40, 1639–1649, (in Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, D.Y.; Xu, C.M.; Yan, J.X.; Zhang, X.G.; Chen, S.; Wang, L.; Zhang, X.F. 15N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crop Res. 2017, 211, 27–36. [Google Scholar] [CrossRef]
- Li, P.F.; Li, X.K.; Hou, W.F.; Ren, T.; Cong, R.H.; Du, C.W.; Xing, L.H.; Wang, S.H.; Lu, J.W. Studying the fate and recovery efficiency of controlled release urea in paddy soil using 15N tracer technique. Sci. Agric. Sin. 2018, 51, 3961–3971. [Google Scholar] [CrossRef]
- Norman, R.; Roberts, T.; Slaton, N. Nitrogen uptake efficiency of a hybrid compared with a conventional, pure-line rice cultivar. Soil Sci. Soc. Am. J. 2013, 77, 1235–1240. [Google Scholar] [CrossRef]
- Cao, Y.S.; Yin, B. Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate. Agric. Ecosyst. Environ. 2015, 202, 1–7. [Google Scholar] [CrossRef]
- Pan, S.G.; Huang, S.Q.; Zhai, J. Effects of N management on yield and N uptake of rice in central China. J. Integr. Agric. 2012, 11, 1993–2000. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, Y.X.; Xiong, Z.Q.; Yan, X.Y.; Xing, G.X.; Zhu, Z.L. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China. Plant Soil 2009, 319, 225–234. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Zhang, H. The fate of fertilizer-derived nitrogen in a rice field in the Qingtongxia irrigation area. Acta Sci Circumst. 2010, 30, 1707–1714, (in Chinese with English Abstract). [Google Scholar] [CrossRef]
- Nikolenko, O.; Jurado, A.; Borges, A. VIsotopic composition of nitrogen species in groundwater under agricultural areas: A review. Sci. Total Environ. 2018, 621, 1415–1432. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.K.; Khizar, A. Microbial biomass carbon and nitrogen transformations in a loam soil amended with organic–inorganic N sources and their effect on growth and N-uptake in maize. Ecol. Eng. 2012, 39, 123–132. [Google Scholar] [CrossRef]
- Zhu, L.Z. Fate and management of fertilizer nitrogen in agro-ecosystems. In Nitrogen in Soils of China; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Gu, X.; Li, Y.; Huang, P. Effects of planting patterns and nitrogen application rates on yield, water and nitrogen use efficiencies of winter rapeseed rape (Brassica napus L.). Trans. Chin. Soc. Agric. Eng. 2018, 34, 113–123. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.P.; Xv, W.; Wang, H.; Sun, J.H. Influence of nitrogen rates with split application on N use efficiency and its eco-economic suitable amount analysis in rice. J. Zhejiang Univ. Agric. Life Sci. 2009, 35, 71–76. [Google Scholar] [CrossRef]
- Yan, J.; Shen, Q.R.; Yin, B.; Wan, X.J. Fertilizer-N uptake and distribution in rice plants using 15N tracer technique. J. Nucl. Agric. Sci. 2009, 23, 487–491, (in Chinese with English Abstract). Available online: http://en.cnki.com.cn/article_en/cjfdtotal-hnxb200903028.htm (accessed on 27 March 2009).
- Xie, Z.J.; He, Y.Q.; Tu, S.X.; Xu, C.X.; Liu, G.R.; Wang, H.M.; Cao, W.D.; Liu, H. Chinese milk vetch improves plant growth, development and 15 N recovery in the rice-based rotation system of South China. Sci. Rep. 2017, 7, 3577. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Zeng, X.Z.; Feng, W.Q.; Qin, Y.S.; Wang, C.Q.; Tu, S.H. Effects of long-term straw mulch and fertilization on crop yields and soil physical and chemical properties under rice-rapeseed rotation. J. Plant Nutr. Fertil. 2014, 6, 1450–1459. [Google Scholar] [CrossRef]
- Zou, J. Study on Response of Winter Rapeseed to NPKB Fertilization and Abundance & Difficiency Indicates of Soil Nutrients. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2010. [Google Scholar] [CrossRef]
- Tian, C.; Peng, J.W.; Song, H.X. Effects of combined application of organic fertilizers on nutrient absorption, grain yield and quality of winter rape. China Soil Fertil. 2012, 4, 70–74. [Google Scholar]
Year | Total N (g kg−1) | Organic Matter (g kg−1) | Available Nutrient (mg·kg−1) | pH | Bulk Density (g cm−3) | ||
---|---|---|---|---|---|---|---|
N | P | K | |||||
2017 | 1.52 | 24.21 | 114.93 | 23.89 | 52.61 | 6.19 | 1.31 |
2019 | 1.57 | 26.89 | 117.73 | 21.32 | 55.76 | 6.21 | 1.34 |
ANOVA | GY | HI | RNDff | NRR | NLR | NUE |
---|---|---|---|---|---|---|
Year | 5.09 ns | 0.73 ns | 1.63 ns | 1.71 ns | 1.01 ns | 0.76 ns |
Year × P | 2.55 ns | 0.66 ns | 2.44 ns | 0.43 ns | 1.67 ns | 2.83 ns |
Year × N | 1.71 ns | 0.05 ns | 0.07 ns | 1.23 ns | 2.06 ns | 2.31 ns |
Year × M | 0.95 ns | 0.74 ns | 0.26 ns | 1.49 ns | 2.33 ns | 2.71 ns |
Treatment (kg·ha−1) | 2018 | 2019 | ||
---|---|---|---|---|
Rapeseed (g·plot−1) | Wheat (g·plot−1) | Rapeseed (g·plot−1) | Wheat (g·plot−1) | |
Nc | 45.44 a | 472.96 a | 62.10 a | 505.07 a |
Nr | 43.89 b | 400.30 b | 47.75 b | 445.21 b |
Average | 44.66 | 436.63 | 54.92 | 475.14 |
F value | 11.03 * | 53.82 ** | 33.53 ** | 37.20 ** |
Treatment | PN (plant−1) | SPN (NO.panicle−1) | SSR (%) | 1000-GW (g) | GY (g·plot−1) | HI (%) | ||
---|---|---|---|---|---|---|---|---|
Pr | Nc | M0 | 7.44 c | 148.42 k | 87.03 g | 30.58 h | 74.61 f | 45.74 i |
M1 | 10.11 b | 169.87 d | 91.31 cd | 31.34 cde | 100.33 cd | 51.05 f | ||
M2 | 10.49 ab | 164.77 h | 91.07 d | 31.17 efg | 102.68 abcd | 50.81 g | ||
M3 | 10.40 ab | 175.47 b | 92.15 a | 32.16 a | 104.74 ab | 51.41 e | ||
average | 9.61 | 164.63 | 90.39 | 31.31 | 95.59 | 49.75 | ||
Nr | M0 | 7.63 c | 149.41 j | 86.15 h | 30.44 h | 69.11 g | 44.54 j | |
M1 | 10.47 ab | 174.33 c | 89.14 f | 31.22 defg | 100.33 cd | 51.66 d | ||
M2 | 10.19 b | 167.37 f | 90.05 e | 31.24 defg | 101.33 bcd | 52.84 b | ||
M3 | 10.75 a | 175.56 b | 91.30 cd | 32.06 a | 106.41 a | 54.12 a | ||
average | 9.76 | 166.67 | 89.16 | 31.24 | 94.30 | 50.79 | ||
Pw | Nc | M0 | 7.65 c | 147.92 k | 85.64 i | 29.94 i | 71.04 fg | 44.70 j |
M1 | 10.45 ab | 169.10 e | 88.91 f | 31.06 fg | 100.18 d | 51.74 d | ||
M2 | 10.51 ab | 178.32 a | 91.80 ab | 31.68 b | 105.44 a | 52.65 b | ||
M3 | 10.49 ab | 165.64 g | 91.63 bc | 31.06 g | 103.41 abcd | 52.20 c | ||
average | 9.78 | 165.25 | 89.50 | 30.94 | 95.02 | 50.32 | ||
Nr | M0 | 7.60 c | 151.01 i | 86.12 h | 29.22 j | 68.81 g | 44.52 j | |
M1 | 10.44 ab | 169.42 de | 88.99 f | 31.29 cdef | 95.56 e | 51.65 d | ||
M2 | 10.35 ab | 168.70 e | 91.02 d | 31.41 cd | 104.04 abc | 51.80 d | ||
M3 | 10.23 ab | 169.88 d | 91.91 ab | 31.49 bc | 100.63 cd | 50.38 h | ||
average | 9.66 | 164.75 | 89.51 | 30.85 | 92.26 | 49.59 | ||
F value | P | 0.95 ns | 50.67 * | 77.10 * | 119.30 ** | 5.09 ns | 208.49 ** | |
N | 0.10 ns | 15.86 * | 117.2 ** | 5.06 ns | 19.70 * | 33.94 ** | ||
M | 6.49 ns | 42.95 ** | 122.73 ** | 0.02 ns | 2.55 ns | 1156.98 ** | ||
P × N | 199.39 ** | 2894.82 ** | 1218.18 ** | 556.03 ** | 789.56 ** | 10184.70 ** | ||
P × M | 0.66 ns | 2003.61 ** | 41.44 ** | 46.09 ** | 3.28 * | 110.16 ** | ||
N × M | 0.73 ns | 401.02 ** | 7.72 ** | 18.80 ** | 1.71 ns | 81.16 ** | ||
P × N × M | 0.66 ns | 664.95 ** | 7.76 ** | 11.01 ** | 4.60 * | 340.68 ** |
Treatment | FTNA (g·pot−1) | MTNA (g·pot−1) | NMPE (kg·kg−1) | NGPE (kg·kg−1) | NAE (kg·kg−1) | NPFP (kg·kg−1) | ||
---|---|---|---|---|---|---|---|---|
Pr | Nc | M0 | 1.06 cd | 1.27 g | 127.44 ab | 58.74 a | - | - |
M1 | 1.26 abc | 1.90 bcde | 103.38 d | 52.81 h | 15.43 j | 60.20 abc | ||
M2 | 1.46 ab | 1.95 ab | 101.58 e | 52.65 i | 16.84 hi | 61.60 ab | ||
M3 | 1.51 a | 1.99 a | 96.10 g | 52.63 h | 18.07 efg | 62.84 a | ||
average | 1.32 | 1.77 | 107.07 | 54.21 | 16.78 | 61.54 | ||
Nr | M0 | 1.02 de | 1.21 g | 128.23 a | 57.12 b | - | - | |
M1 | 1.18 bcd | 1.81 f | 107.35 c | 55.43 d | 18.76 def | 60.19 abc | ||
M2 | 1.28 abc | 1.86 ef | 100.41 ef | 55.07 e | 19.33 cd | 60.79 abc | ||
M3 | 1.36 abc | 1.85 def | 99.81 f | 57.51 bc | 22.38 a | 63.84 a | ||
average | 1.21 | 1.68 | 108.92 | 56.28 | 20.16 | 61.61 | ||
Pw | Nc | M0 | 0.99 de | 1.26 g | 126.13 b | 56.38 c | - | - |
M1 | 1.29 abc | 1.92 abcd | 100.84 ef | 52.18 hi | 17.48 gh | 60.10 abc | ||
M2 | 0.93 e | 1.93 abc | 103.72 d | 53.58 g | 20.64 b | 63.26 a | ||
M3 | 1.49 ab | 1.95 ab | 94.02 h | 54.07 fg | 19.42 cd | 62.05 ab | ||
average | 1.17 | 1.76 | 106.15 | 54.05 | 19.18 | 61.8 | ||
Nr | M0 | 1.11 cd | 1.22 g | 126.69 ab | 56.4 c | - | - | |
M1 | 1.27 abc | 1.91 bcde | 99.31 f | 50.82 j | 16.05 ij | 57.33 c | ||
M2 | 1.17 bcd | 1.88 cde | 103.63 d | 54.47 g | 19.97 bc | 60.42 abc | ||
M3 | 1.28 abc | 1.92 bcd | 95.64 gh | 52.41 h | 19.09 cde | 60.37 abc | ||
average | 1.20 | 1.73 | 106.28 | 53.52 | 18.37 | 59.37 | ||
F value | P | 2.31 ns | 13.90 * | 37.32 * | 153.23 ** | 1.38 ns | 2.81 ns | |
N | 0.76 ns | 31.60 ** | 11.24 * | 44380.44 ** | 4.31 ns | 7.65 * | ||
M | 10.70 ** | 855.91 ** | 6492.95 ** | 583.35 ** | 55.37 ** | 4.33 * | ||
P × N | 2.71 ns | 7.80 * | 8.26 * | 21103.99 ** | 43.19 ** | 88.28 ** | ||
P × M | 3.64 * | 1.44 ns | 99.43 ** | 68.40 ** | 158.64 ** | 39.66 ** | ||
N × M | 1.24 ns | 0.49 ns | 16.25 ** | 59.60 ** | 196.50 ** | 51.93 ** | ||
P × N × M | 1.24 ns | 0.62 ns | 17.82 ** | 79.91 ** | 170.30 ** | 64.34 ** |
Treatment | 15N Accumulation of Rice Plant (mg 15N·pot−1) | 15N-Residue Ratio (%) | 15N Loss Ratio (%) | ||||
---|---|---|---|---|---|---|---|
TS | HS | MS | |||||
Pr | Nc | M0 | 13.48 de | 95.54 k | 97.57 lm | 11.84 hi | 68.78 b |
M1 | 16.22 bc | 101.83 fgh | 102.13 ij | 14.21 bcdef | 63.78 g | ||
M2 | 15.30 cd | 99.72 hij | 104.45 hij | 14.62 bcde | 63.32 h | ||
M3 | 15.55 cd | 104.03 def | 108.95 def | 14.82 bcd | 62.36 i | ||
average | 15.14 | 100.28 | 103.28 | 13.87 | 64.18 | ||
Nr | M0 | 12.07 ef | 97.36 jk | 101.70 j | 12.13 ghi | 67.28 c | |
M1 | 13.77 de | 108.02 abc | 108.56 efg | 13.02 efgh | 66.01 e | ||
M2 | 15.41 cd | 103.55 ef | 107.57 efgh | 13.56 defg | 66.00 e | ||
M3 | 15.22 cd | 105.58 cde | 111.98 bc | 12.93 fgh | 66.04 e | ||
average | 14.11 | 103.62 | 107.45 | 12.91 | 66.71 | ||
Pw | Nc | M0 | 15.27 cd | 100.59 ghi | 106.28 fgh | 18.94 a | 46.10 l |
M1 | 16.60 bc | 105.75 cde | 110.51 cde | 19.18 a | 44.14 o | ||
M2 | 17.08 ab | 100.17 ghi | 111.39 bc | 18.70 a | 45.24 m | ||
M3 | 17.91 ab | 101.61 fgh | 111.84 bc | 18.69 a | 44.62 n | ||
average | 17.71 | 105.53 | 111.75 | 18.12 | 45.02 | ||
Nr | M0 | 9.27 h | 85.53 m | 89.24 n | 18.91 a | 44.89 mn | |
M1 | 11.96 efg | 89.50 l | 94.62 m | 15.40 bc | 43.15 p | ||
M2 | 9.81 gh | 91.28 l | 102.17 ij | 13.69 defg | 43.27 p | ||
M3 | 10.62 fgh | 91.73 l | 105.37 ghi | 11.14 i | 42.18 q | ||
average | 10.41 | 89.51 | 97.85 | 14.78 | 43.37 | ||
F value | P | 23.19 ** | 252.29 ** | 13.83 * | 142.53 ** | 4740.04 ** | |
N | 172.97 ** | 148.16 ** | 31.59 ** | 17.02 ** | 1669.33 ** | ||
M | 23.43 ** | 75.82 ** | 145.65 ** | 5.34 ** | 798.51 ** | ||
P × N | 78.07 ** | 636.83 ** | 335.89 ** | 42.49 ** | 529.82 ** | ||
P × M | 0.19 ns | 4.51 ** | 3.70 ** | 20.27 ** | 166.87 ** | ||
N × M | 0.11 ns | 2.52 ns | 1.47 ns | 7.27 ** | 99.08 ** | ||
P × N × M | 5.11 ** | 1.82 ns | 2.67 * | 1.47 ns | 18.61 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Lan, Y.; Lyu, T.; Li, F.; Yang, Z.; Sun, Y.; Ma, J. Nitrogen Fate and Efficiency of Fertilizer Application under a Rapeseed–Wheat–Rice Rotation System in Southwest China. Agronomy 2021, 11, 258. https://doi.org/10.3390/agronomy11020258
Ma P, Lan Y, Lyu T, Li F, Yang Z, Sun Y, Ma J. Nitrogen Fate and Efficiency of Fertilizer Application under a Rapeseed–Wheat–Rice Rotation System in Southwest China. Agronomy. 2021; 11(2):258. https://doi.org/10.3390/agronomy11020258
Chicago/Turabian StyleMa, Peng, Yan Lan, Tengfei Lyu, Feijie Li, Zhiyuan Yang, Yongjian Sun, and Jun Ma. 2021. "Nitrogen Fate and Efficiency of Fertilizer Application under a Rapeseed–Wheat–Rice Rotation System in Southwest China" Agronomy 11, no. 2: 258. https://doi.org/10.3390/agronomy11020258
APA StyleMa, P., Lan, Y., Lyu, T., Li, F., Yang, Z., Sun, Y., & Ma, J. (2021). Nitrogen Fate and Efficiency of Fertilizer Application under a Rapeseed–Wheat–Rice Rotation System in Southwest China. Agronomy, 11(2), 258. https://doi.org/10.3390/agronomy11020258