Higher Biochar Rate Can Be Efficient in Reducing Nitrogen Mineralization and Nitrification in the Excessive Compost-Fertilized Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils, Biochars, and Compost Characteristics
2.2. Extracting Water-Soluble Biochar N and Analyses
2.3. Nitrogen Incubation Experiment
2.4. Statistical Analysis
3. Results
3.1. Water-Soluble Extracts of Biochar
3.2. Changes in Nitrogen Mineralization
3.3. Changes in Soil Properties
3.4. Principal Components (PCs) and Factor Correlation Coefficients
4. Discussion
4.1. Impacts of Biochar on Nitrogen Mineralization, Immobilization and Nitrification
4.2. Effects of pH on Soil N Mineralization
4.3. Effects of C:N Ratio on Soil N Mineralization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jindo, K.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mastrolonardo, G.; Sánchez-Monedero, A.A.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chem. Biol. Technol. Agric. 2020, 7, 15. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, B.; Zhang, Y.; Hu, T.; Lin, Z.; Liu, G.; Wang, X.; Ma, J.; Wang, H.; Jin, H.; et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Glob. Chang. Biol. 2019, 25, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; López, G.; Kuikman, P.J.; Holden, N.M. Biochar, compost and biochar- compost blend as options to recover nutrients and sequester carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Shiono, T.; Shinogi, Y. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J. Environ. Qual. 2012, 41, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Kammann, C.I.; Linsel, S.; Gobling, J.W.; Koyro, H. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil 2011, 345, 195–210. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Stromberger, M.E.; Lentz, R.D.; Dungan, R.S. Hardwood biochar and manure co-application to a calcareous soil. Chemosphere 2016, 142, 84–91. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Stromberger, M.E.; Lentz, R.D.; Dungan, R.S. Hardwood biochar influences calcareous soil physicochemical and microbiological status. J. Environ. Qual. 2014, 43, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. High temperature-produced biochar can be efficient in nitrate loss prevention and carbon sequestration. Geoderma 2019, 338, 48–55. [Google Scholar] [CrossRef]
- Fatima, S.; Riaz, M.; Al-Wabel, M.I.; Arif, M.S.; Yasmeen, T.; Hussain, Q.; Roohi, M.; Fahad, S.; Ali, K.; Arif, M. Higher biochar rate strongly reduced decomposition of soil organic matter to enhance C and N sequestration in nutrient-poor alkaline calcareous soil. J. Soils Sediments 2020, 21, 148–162. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Chang, Y.-F. Nitrogen availability in biochar-amended soils with excessive compost application. Agronomy 2020, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Clough, T.; Condron, L.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275. [Google Scholar] [CrossRef] [Green Version]
- Gul, S.; Whalen, J.K. Biochemical cycling of nitrogen and phosphorus in biochar amended soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Chang, Y.-F. Kinetics of C mineralization of biochars in three excessive compost-fertilized soils: Effects of feedstocks and soil properties. Agronomy 2020, 10, 1749. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Chang, Y.-F. Carbon dynamics and fertility in biochar-amended soils with excessive compost application. Agronomy 2019, 9, 511. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Durenkamp, Y.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Bio. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Henriksen, A.; Selmer-Olsen, A.R. Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 1970, 95, 514–518. [Google Scholar] [CrossRef]
- Krom, M.D. Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 1980, 105, 305–316. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Chang, Y.-F. Effects of biochar to excessive compost-fertilized soils on the nutrient status. Agronomy 2020, 10, 683. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.N.; Xu, C.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Mizuta, K.; Matsumoto, T.; Hatate, Y.; Nishihara, K.; Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004, 95, 255–257. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions-a metaanalysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Ducey, T.F.; Ippolito, J.A.; Cantrell, K.B.; Novak, J.M.; Lentz, R.D. Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl. Soil Ecol. 2013, 65, 65–72. [Google Scholar] [CrossRef]
- Luo, X.X.; Chen, L.; Zheng, H.; Chang, J.J.; Wang, H.F.; Wang, Z.Y.; Xing, B.S. Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma 2016, 282, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-C.; Chang, Y.-F. Effects of rice husk biochar on carbon release and nutrient availability in three cultivation age of greenhouse soils. Agronomy 2020, 10, 990. [Google Scholar] [CrossRef]
- Li, X.; Neupane, A.; Xu, S.; Abdoulmoumine, N.; DeBruyn, J.M.; Walker, F.; Jagadamma, S. Application methods influence biochar-fertilizer interactive effects on soil nitrogen dynamics. Soil Sci. Soc. Am. J. 2020, 84, 1871–1884. [Google Scholar] [CrossRef]
- Yu, M.; Liang, S.; Dai, Z.; Li, Y.; Luo, Y.; Tang, C.; Xu, J. Plant material and its biochar differ in their effects on nitrogen mineralization and nitrification in a subtropical forest soil. Sci. Total Environ. 2021, 763, 143048. [Google Scholar] [CrossRef]
- Dodson, J. Wheat Straw Ash and Its Use as a Silica Source. Ph.D. Thesis, University of York, Heslington, UK, September 2011. [Google Scholar]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Robertson, G.; Groffman, P. Nitrogen transformations. In Soil Microbiology and Biochemistry, 3rd ed.; Paul, E.A., Clark, F.E., Eds.; Springer: New York, NY, USA, 2007; pp. 341–364. [Google Scholar]
- Rigby, H.; Clarke, B.O.; Pritchard, D.L.; Meehan, B.; Beshah, F.; Smith, S.R.; Porter, N.A. A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Sci. Total Environ. 2016, 541, 1310–1338. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, J.A.; Spokas, K.A.; Novak, J.M.; Lentz, R.D.; Cantrell, K.B. Biochar elemental composition and factors influencing nutrient retention. In Biochar for Environmental Management: Science and Technology, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2015; pp. 137–162. [Google Scholar]
- Streubel, J.D.; Collins, H.P.; Garcia-Perez, M.; Tarara, J.; Granatstein, D.; Kruger, C. Influence of contrasting bochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J. 2011, 75, 1402–1413. [Google Scholar] [CrossRef]
- Mechler, M.A.A.; Jiang, R.W.; Silverthorn, T.K.; Oelbermann, M. Impact of biochar on soil characteristics and temporal greenhouse gas emissions: A field study from southern Canada. Biomass Bioenergy 2018, 118, 154–162. [Google Scholar] [CrossRef]
- Romero, C.M.; Li, C.; Owens, J.; Ribeiro, G.O.; Mcallister, T.A.; Okine, E.; Hao, X. Nutrient cycling and greenhouse gas emissions from soil amended with biochar-manure mixtures. Pedosphere 2021, 31, 289–302. [Google Scholar] [CrossRef]
- Amonette, J.E.; Joseph, S. Characteristics of biochar: Microchemical properties. In Biochar for Environmental Management: Science and Technology, 1st ed.; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 33–52. [Google Scholar]
- Belyaeva, O.N.; Haynes, R.J. Comparison of the effects of conventional organic amendments and biochar on the chemical, physical and microbial properties of coal fly ash as a plant growth medium. Environ. Earth Sci. 2012, 66, 1987–1997. [Google Scholar] [CrossRef]
- Ameloot, N.; Sleutel, S.; Das, K.C.; Kanagaratnam, J.; Neve, S. Biochar amendment to soils with contrasting organic matter level: Effects on N mineralization and biological soil properties. GCB Bioenergy 2015, 7, 135–144. [Google Scholar] [CrossRef]
- Sigua, G.C.; Novak, J.M.; Watts, D.W.; Szögi, A.A.; Shumaker, P.D. Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols. Chemosphere 2016, 145, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Xu, Z. Biochar: Nutrient properties and their enhancement. In Biochar for Environmental Management: Science and Technology, 1st ed.; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 67–84. [Google Scholar]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Borchard, N.; Wolf, A.; Laabs, V.; Aeckersberg, R.; Scherer, H.W.; Moeller, A.; Amelung, W. Physical activation of biochar and its meaning for soil fertility and nutrient leaching–A greenhouse experiment. Soil Use Manag. 2012, 28, 177–184. [Google Scholar] [CrossRef]
Source of Variation | Df 1 | TIN | pH | TC | TN | C/N | ||
---|---|---|---|---|---|---|---|---|
Between-subject effect | ||||||||
Soil | 2 | *** 2 | *** | *** | *** | * | *** | *** |
Biochar | 2 | ns | *** | *** | *** | *** | *** | *** |
Rate | 2 | *** | *** | *** | *** | *** | *** | *** |
Soil × Biochar | 4 | *** | * | ns | *** | * | *** | * |
Biochar × Rate | 4 | ns | *** | *** | *** | ns | *** | ns |
Soil × Rate | 4 | *** | *** | * | *** | ns | ** | *** |
Within-subject effect | ||||||||
Time | 9 | *** | *** | *** | *** | *** | *** | *** |
Time × Soil | 18 | *** | *** | *** | *** | * | *** | ns |
Time × Biochar | 18 | *** | *** | *** | *** | *** | *** | *** |
Time × Rate | 18 | *** | *** | *** | *** | *** | *** | *** |
Time × Soil × Biochar | 36 | *** | * | ns | ** | ** | *** | *** |
Time × Soil × Rate | 36 | *** | *** | *** | *** | ns | ** | ns |
Time × Biochar × Rate | 36 | ** | *** | *** | *** | *** | ** | ** |
Soil | Treats 1 | (mg·kg−1·d−1) | (mg·kg−1·d−1) | Rate of net N 2 Mineralization (mg·kg−1·d−1) |
---|---|---|---|---|
SAO | Control | −0.089 a 3 | 0.835 a | 0.739 a |
A2 | −0.106 a | 0.706 b | 0.600 b | |
A5 | −0.106 a | 0.618 b | 0.492 bc | |
B2 | −0.106 a | 0.710 b | 0.604 b | |
B5 | −0.102 a | 0.676 b | 0.554 b | |
L2 | −0.108 a | 0.658 b | 0.550 b | |
L5 | −0.108 a | 0.500 c | 0.394 c | |
MAI | Control | −0.008 a | 0.741 a | 0.713 a |
A2 | −0.006 a | 0.578 b | 0.492 b | |
A5 | −0.004 a | 0.518 b | 0.494 b | |
B2 | −0.008 a | 0.600 b | 0.572 ab | |
B5 | −0.004 a | 0.508 b | 0.504 b | |
L2 | −0.006 a | 0.524 b | 0.496 b | |
L5 | −0.004 a | 0.332 c | 0.328 c | |
SAI | Control | −0.073 a | 0.684 a | 0.553 a |
A2 | −0.088ab | 0.538 ab | 0.454 ab | |
A5 | −0.078 ab | 0.512 b | 0.432 ab | |
B2 | −0.098 ab | 0.540 ab | 0.444 ab | |
B5 | −0.122 b | 0.482 b | 0.358 ab | |
L2 | −0.076 ab | 0.514 b | 0.438 ab | |
L5 | −0.090 ab | 0.394 b | 0.308 ab |
Soil | Treats 1 | TIN | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 week 2 | 57 weeks | 1 week | 57 weeks | 1 week | 57 weeks | ||||||||||||||||||||
Mean ± SD (mg·kg−1) 2 | Change (%) 3 | Mean ± SD (mg·kg−1) 2 | Change (%) 3 | Mean ± SD (mg·kg−1) 2 | Change (%) 3 | Mean ± SD (mg·kg−1) 2 | Change (%) 3 | Mean ± SD (mg·kg−1) 2 | Change(%) 3 | Mean ± SD (mg·kg−1) 2 | Change (%) 3 | ||||||||||||||
SAO | Control | 180 | ±5.9 | a 4 | 210 | ±6.0 | a | 62.6 | ±8.8 | e | 1387 | ±22 | a | 242 | ±10 | a | 1597 | ±23 | a | ||||||
A2 | 168 | ±5.6 | b | −6 | 202 | ±6.4 | a | −4 | 76.8 | ±7.4 | cde | 23 | 1313 | ±21 | b | −5 | 245 | ±9.1 | a | 1 | 1515 | ±24 | b | −5 | |
A5 | 143 | ±2.5 | e | −21 | 176 | ±4.5 | c | −16 | 78.8 | ±2.0 | bcd | 26 | 1138 | ±13 | d | −18 | 222 | ±2.5 | b | −9 | 1314 | ±16 | d | −18 | |
B2 | 159 | ±6.2 | c | −11 | 191 | ±5.1 | b | −9 | 63.6 | ±3.4 | e | 1 | 1246 | ±27 | c | −10 | 223 | ±5.2 | b | −8 | 1437 | ±27 | c | −10 | |
B5 | 149 | ±8.6 | d | −17 | 173 | ±9.4 | c | −18 | 62.6 | ±8.8 | e | −0.1 | 1045 | ±50 | e | −25 | 212 | ±17 | b | −13 | 1218 | ±53 | e | −24 | |
L2 | 174 | ±5.6 | ab | −3 | 204 | ±5.7 | a | −3 | 66.8 | ±7.0 | de | 7 | 1148 | ±17 | d | −17 | 241 | ±8.5 | a | −1 | 1352 | ±18 | d | −15 | |
L5 | 162 | ±5.9 | c | −10 | 193 | ±5.8 | b | −8 | 62.4 | ±6.4 | e | −1 | 862 | ±23 | h | −38 | 224 | ±8.0 | b | −8 | 1055 | ±26 | f | −34 | |
MAI | Control | 22.3 | ±5.1 | j | 44.8 | ±7.0 | g | 75.9 | ±16 | cde | 1003 | ±42 | f | 98.1 | ±16 | gh | 1048 | ±42 | f | ||||||
A2 | 18.8 | ±2.6 | jk | −16 | 43.2 | ±4.0 | g | −4 | 88.2 | ±7.8 | abc | 16 | 857 | ±20 | h | −15 | 107 | ±7.8 | fg | 9 | 901 | ±20 | g | −14 | |
A5 | 19.4 | ±3.2 | jk | −13 | 46.4 | ±4.2 | g | 3 | 99.4 | ±6.8 | a | 31 | 793 | ±14 | jk | −21 | 119 | ±8.3 | f | 21 | 840 | ±17 | h | −20 | |
B2 | 19.8 | ±3.9 | jk | −12 | 45.8 | ±5.9 | g | 2 | 67.8 | ±11 | de | −11 | 853 | ±27 | h | −15 | 87.6 | ±11 | h | −11 | 899 | ±31 | g | −14 | |
B5 | 15.4 | ±2.8 | k | −32 | 40.2 | ±1.9 | gh | −10 | 78.6 | ±5.0 | bcd | 4 | 726 | ±36 | lm | −28 | 94.0 | ±4.2 | gh | −4 | 767 | ±35 | j | −27 | |
L2 | 19.4 | ±1.2 | jk | −13 | 39.2 | ±2.4 | gh | −13 | 76.6 | ±8.3 | cde | 1 | 733 | ±13 | lm | −27 | 95.8 | ±8.9 | gh | −2 | 772 | ±14 | ij | −26 | |
L5 | 14.8 | ±4.5 | k | −34 | 33.8 | ±5.4 | h | −25 | 74.4 | ±14 | cde | −2 | 523 | ±60 | n | −48 | 89.4 | ±12 | h | −9 | 557 | ±62 | l | −47 | |
SAI | Control | 68.8 | ±4.0 | f | 92.2 | ±6.8 | d | 87.6 | ±12 | abc | 922 | ±36 | g | 156 | ±11 | c | 1015 | ±35 | f | ||||||
A2 | 63.8 | ±1.8 | fg | −7 | 86.0 | ±2.0 | de | −7 | 83.2 | ±6.5 | bc | −5 | 836 | ±43 | hj | −9 | 147 | ±5.7 | cde | −6 | 922 | ±43 | g | −9 | |
A5 | 54.6 | ±11 | hi | −21 | 72.8 | ±14 | f | −21 | 93.2 | ±17 | ab | 6 | 765 | ±36 | kl | −17 | 148 | ±10 | cde | −6 | 838 | ±35 | h | −17 | |
B2 | 64.2 | ±3.9 | fg | −7 | 88.4 | ±6.1 | de | −4 | 83.6 | ±9.2 | bc | −5 | 808 | ±44 | ij | −12 | 148 | ±13 | cde | −6 | 896 | ±46 | g | −12 | |
B5 | 59.2 | ±2.7 | gh | −14 | 83.8 | ±4.9 | e | −9 | 93.2 | ±7.8 | ab | 7 | 705 | ±26 | m | −24 | 153 | ±7.9 | cd | −2 | 788 | ±27 | ij | −22 | |
L2 | 52.8 | ±3.1 | i | −23 | 73.8 | ±4.2 | f | −20 | 83.6 | ±12 | bc | −5 | 737 | ±20 | lm | −20 | 136 | ±11 | e | −13 | 811 | ±19 | hi | −20 | |
L5 | 49.0 | ±2.9 | i | −29 | 66.0 | ±4.5 | f | −28 | 89.6 | ±12 | abc | 2 | 537 | ±21 | n | −42 | 139 | ±13 | de | −11 | 604 | ±23 | k | −41 |
Soil | Treats 1 | pH | C/N | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Week 2 | 57 Weeks | 1 Week | 57 Weeks | ||||||||||||||
Mean ± SD | Change (%) 3 | Mean ± SD | Change (%) 3 | Mean ± SD | Change (%) 3 | Mean ± SD | Change (%) 3 | ||||||||||
SAO | Control | 6.43 | ±0.04 | l 4 | 6.19 | ±0.07 | ij | 9.6 | ±1.09 | k | 8.2 | ±0.41 | j | ||||
A2 | 6.52 | ±0.07 | ij | 1 | 6.20 | ±0.01 | ij | 0.1 | 13 | ±0.44 | ij | 33 | 12 | ±0.38 | fgh | 44 | |
A5 | 6.62 | ±0.06 | h | 3 | 6.35 | ±0.02 | g | 3 | 20 | ±1.24 | de | 113 | 18 | ±0.74 | bc | 120 | |
B2 | 6.38 | ±0.07 | l | −1 | 6.16 | ±0.02 | j | −1 | 13 | ±0.98 | ij | 34 | 13 | ±0.66 | f | 56 | |
B5 | 6.50 | ±0.02 | jk | 1 | 6.22 | ±0.02 | i | 0.5 | 18 | ±1.82 | f | 90 | 19 | ±0.88 | b | 127 | |
L2 | 6.44 | ±0.02 | kl | 0.3 | 6.28 | ±0.02 | h | 1 | 16 | ±2.34 | g | 64 | 13 | ±0.82 | fg | 53 | |
L5 | 6.58 | ±0.05 | hi | 2 | 6.43 | ±0.03 | f | 4 | 21 | ±1.68 | cd | 124 | 18 | ±0.69 | bc | 115 | |
MAI | Control | 7.23 | ±0.07 | cde | 6.85 | ±0.04 | cd | 8.5 | ±1.68 | k | 6.8 | ±0.54 | k | ||||
A2 | 7.30 | ±0.04 | bc | 1 | 6.83 | ±0.01 | d | −0.2 | 15 | ±0.80 | g | 82 | 11 | ±0.21 | gh | 69 | |
A5 | 7.42 | ±0.03 | a | 2 | 6.86 | ±0.04 | cd | 0.2 | 23 | ±1.54 | b | 175 | 18 | ±0.93 | bc | 162 | |
B2 | 7.36 | ±0.05 | ab | 1 | 6.92 | ±0.03 | b | 1 | 12 | ±0.70 | j | 41 | 11 | ±0.60 | hi | 60 | |
B5 | 7.42 | ±0.03 | a | 2 | 6.92 | ±0.03 | b | 1 | 18 | ±1.72 | f | 110 | 17 | ±0.57 | cd | 151 | |
L2 | 7.18 | ±0.04 | ef | −1 | 6.90 | ±0.05 | bc | 1 | 12 | ±0.52 | j | 40 | 10 | ±0.19 | i | 50 | |
L5 | 7.28 | ±0.08 | cd | 0.5 | 7.03 | ±0.07 | a | 3 | 19 | ±1.28 | ef | 125 | 16 | ±1.05 | d | 140 | |
SAI | Control | 7.05 | ±0.04 | g | 6.73 | ±0.06 | e | 8.6 | ±0.82 | k | 7.0 | ±0.39 | k | ||||
A2 | 7.28 | ±0.02 | cd | 3 | 6.84 | ±0.08 | d | 2 | 15 | ±1.55 | gh | 76 | 12 | ±0.48 | fg | 74 | |
A5 | 7.28 | ±0.06 | cd | 4 | 6.88 | ±0.04 | bcd | 2 | 25 | ±0.76 | a | 191 | 20 | ±0.49 | a | 186 | |
B2 | 7.14 | ±0.04 | f | 1 | 6.84 | ±0.01 | d | 2 | 13 | ±1.34 | hij | 56 | 14 | ±3.13 | e | 99 | |
B5 | 7.22 | ±0.05 | de | 2 | 6.86 | ±0.03 | cd | 2 | 23 | ±2.27 | bc | 166 | 21 | ±1.20 | a | 197 | |
L2 | 7.14 | ±0.04 | f | 1 | 6.88 | ±0.04 | bcd | 2 | 14 | ±1.78 | ghi | 64 | 12 | ±0.83 | fg | 73 | |
L5 | 7.26 | ±0.04 | cd | 3 | 6.98 | ±0.01 | a | 4 | 20 | ±1.58 | de | 132 | 19 | ±0.40 | b | 163 |
Parameter 1 | 1 week | 57 weeks | ||
---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |
Total variance | 43.8% | 23.9% | 46.7% | 23.4% |
pH | −0.803 *2 | 0.158 | −0.973 * | 0.112 |
0.887 * | −0.441 * | 0.906 * | −0.374 * | |
−0.615 * | −0.129 | 0.855 * | −0.151 | |
TIN | 0.814 * | −0.518 * | 0.899 * | −0.207 |
Cumulative CO2–C | 0.856 * | −0.228 | −0.083 | 0.489 * |
TC | 0.193 | 0.095 | 0.144 | 0.267 |
TN | 0.593 * | 0.665 * | 0.813 * | 0.170 |
TP | 0.085 | 0.136 | 0.472 * | −0.093 |
C/N | −0.080 | −0.027 | −0.106 | 0.099 |
P | 0.063 | 0.953 * | −0.177 | 0.915 * |
K | −0.420 * | 0.113 | −0.507 * | 0.310 |
Ca | −0.439 * | 0.875 * | −0.383 * | 0.846 * |
Mg | −0.959 * | −0.042 | −0.956 * | −0.117 |
Fe | −0.722 * | −0.434 * | −0.707 * | −0.661 * |
Mn | −0.927 * | 0.321 | −0.877 * | 0.398 * |
Cu | 0.585 * | 0.792 * | 0.594 * | 0.792 * |
Pb | 0.554 * | 0.819 * | 0.508 * | 0.844 * |
Zn | 0.978 * | 0.030 | 0.970 * | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-C.; Chang, Y.-F. Higher Biochar Rate Can Be Efficient in Reducing Nitrogen Mineralization and Nitrification in the Excessive Compost-Fertilized Soils. Agronomy 2021, 11, 617. https://doi.org/10.3390/agronomy11040617
Tsai C-C, Chang Y-F. Higher Biochar Rate Can Be Efficient in Reducing Nitrogen Mineralization and Nitrification in the Excessive Compost-Fertilized Soils. Agronomy. 2021; 11(4):617. https://doi.org/10.3390/agronomy11040617
Chicago/Turabian StyleTsai, Chen-Chi, and Yu-Fang Chang. 2021. "Higher Biochar Rate Can Be Efficient in Reducing Nitrogen Mineralization and Nitrification in the Excessive Compost-Fertilized Soils" Agronomy 11, no. 4: 617. https://doi.org/10.3390/agronomy11040617
APA StyleTsai, C. -C., & Chang, Y. -F. (2021). Higher Biochar Rate Can Be Efficient in Reducing Nitrogen Mineralization and Nitrification in the Excessive Compost-Fertilized Soils. Agronomy, 11(4), 617. https://doi.org/10.3390/agronomy11040617