Correlation Analysis of High-Throughput Fruit Phenomics and Biochemical Profiles in Native Peppers (Capsicum spp.) from the Primary Center of Diversification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Conventional Descriptors Assessment
2.3. Fruit Characterization with Tomato Analyzer
2.4. Biochemical Methods
2.4.1. Soluble Solid Content, pH, and Titratable Acidity
2.4.2. Determination of Total Polyphenol Content
2.4.3. Trolox Equivalent Antioxidant Capacity (TEAC)
2.4.4. Determination of Moisture Content and Dry Mass
2.5. Data Analysis
3. Results
3.1. Biochemical Analysis
3.2. Morphological Assessment with Conventional and TA Descriptors
3.3. Divergences among Geographical Regions
3.4. Variations between Pungent and Non-Pungent Accessions
3.5. Correlation between Biochemical and Morphometric Parameters
3.6. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and spice Capsicum, 2nd ed.; CABI Publishing: Wallingford, UK, 2012. [Google Scholar]
- Carrizo García, C.; Barfuss, M.H.J.; Sehr, E.M.; Barboza, G.E.; Samuel, R.; Moscone, E.A.; Ehrendorfer, F. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann. Bot. 2016, 118, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Carrizo García, C.; Sterpetti, M.; Volpi, P.; Ummarino, M.; Saccardo, F. Wild Capsicums: Identification and in situ analysis of Brazilian species. In Breakthroughs in the Genetics and Breeding of Capsicum and Eggplant; Lanteri, S., Rotino, G.L., Eds.; Eucarpia: Torino, Italy, 2013; pp. 205–213. [Google Scholar]
- FAOSTAT. About Trade: Crops and Livestock Products. 2020. Available online: http://faostat.fao.org/site/535/default.aspx#ancor (accessed on 19 April 2020).
- Scossa, F.; Roda, F.; Tohge, T.; Georgiev, M.I.; Fernie, A.R. The Hot and the Colorful: Understanding the Metabolism, Genetics and Evolution of Consumer Preferred Metabolic Traits in Pepper and Related Species. Crit. Rev. Plant Sci. 2019, 38, 339–381. [Google Scholar] [CrossRef]
- Crosby, K.M. Pepper. In Handbook of Plant Breeding. Vegetables II; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; pp. 221–248. [Google Scholar]
- Buckenhüskes, H.J. Current requirements on paprika powder for food industry. In Capsicum: The Genus Capsicum; Krishna, A., Ed.; Taylor and Francis Ltd.: London, UK, 2003; pp. 223–230. [Google Scholar]
- Brugarolas, M.; Martinez-Carrasco, L.; Martinez-Poveda, A.; Ruiz, J.J. A competitive strategy for vegetable products: Traditional varieties of tomato in the local market. Span. J. Agric. Res. 2009, 7, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Mendes, N.; de Andrade Gonçalves, É.C.B. The role of bioactive components found in peppers. Trends Food Sci. Technol. 2020, 99, 229–243. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Paran, I.; Fallik, E. Breeding for Fruit Quality in Pepper (Capsicum spp.). In Breeding for Fruit Quality; Jenks, M.A., Bebeli, B.J., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 307–322. [Google Scholar]
- Brewer, M.T.; Lang, L.; Fujimura, K.; Dujmovic, N.; Gray, S.; van der Knaap, E. Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant. Physiol. 2006, 141, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, G.R.; Moyseenko, J.B.; Robbins, M.D.; Morejón, N.H.; Francis, D.M.; van der Knaap, E. Tomato Analyzer: A Useful Software Application to Collect Accurate and Detailed Morphological and Colorimetric Data from Two-dimensional Objects. JoVE J. Vis. Exp. 2010, 37, e1856. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo, M.J.; Brewer, M.T.; Anderson, C.; Sullivan, D.; Gray, S.; van der Knaap, E. Tomato Fruit Shape Analysis Using Morphometric and Morphology Attributes Implemented in Tomato Analyzer Software Program. J. Am. Soc. Hortic. Sci. 2009, 134, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, G.R.; Muños, S.; Anderson, C.; Sim, S.-C.; Michel, A.; Causse, M.; Gardener, B.B.M.; Francis, D.; van der Knaap, E. Distribution of SUN, OVATE, LC, and FAS in the Tomato Germplasm and the Relationship to Fruit Shape Diversity. Plant. Physiol. 2011, 156, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Figàs, M.R.; Prohens, J.; Raigón, M.D.; Fernández-de-Córdova, P.; Fita, A.; Soler, S. Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool Tomato Analyzer. Genet. Resour. Crop. Evol. 2015, 62, 189–204. [Google Scholar]
- Hurtado, M.; Vilanova, S.; Plazas, M.; Gramazio, P.; Herraiz, F.J.; Andújar, I.; Prohens, J. Phenomics of fruit shape in eggplant (Solanum melongena L.) using Tomato Analyzer software. Sci. Hortic. 2013, 164, 625–632. [Google Scholar] [CrossRef]
- Plazas, M.; Andújar, I.; Vilanova, S.; Gramazio, P.; Herraiz, F.J.; Prohens, J. Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front. Plant Sci. 2014, 5, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naegele, R.P.; Mitchell, J.; Hausbeck, M.K. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum. PLoS ONE 2016, 11, e0156969. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, P.; Greco, B. Large Scale Phenotyping Provides Insight into the Diversity of Vegetative and Reproductive Organs in a Wide Collection of Wild and Domesticated Peppers (Capsicum spp.). Plants 2018, 7, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira-Dias, L.; Fita, A.; Vilanova, S.; Sánchez-López, E.; Rodríguez-Burruezo, A. Phenomics of elite heirlooms of peppers (Capsicum annuum L.) from the Spanish centre of diversity: Conventional and high-throughput digital tools towards varietal typification. Sci. Hortic. 2020, 265, 109245. [Google Scholar] [CrossRef]
- Nankar, A.N.; Tringovska, I.; Grozeva, S.; Todorova, V.; Kostova, D. Application of high-throughput phenotyping tool Tomato Analyzer to characterize Balkan Capsicum fruit diversity. Sci. Hortic. 2020, 260, 1–12. [Google Scholar] [CrossRef]
- García-González, C.A.; Silvar, C. Phytochemical Assessment of Native Ecuadorian Peppers (Capsicum spp.) and Correlation Analysis to Fruit Phenomics. Plants 2020, 9, 986–1011. [Google Scholar]
- Nankar, A.N.; Tringovska, I.; Grozeva, S.; Ganeva, D.; Kostova, D. Tomato Phenotypic Diversity Determined by Combined Approaches of Conventional and High-Throughput Tomato Analyzer Phenotyping. Plants 2020, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Vilarinho, L.B.O.; da Silva, D.J.H.; Greene, A.; Salazar, K.D.; Alves, C.; Eveleth, M.; Nichols, B.; Tehseen, S.; Khoury, J.K., Jr.; Johnson, J.V.; et al. Inheritance of fruit traits in Capsicum annuum: Heirloom cultivars as sources of quality parameters relating to pericarp shape, color, thickness, and total soluble solids. J. Am. Soc. Hortic. Sci. 2015, 140, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Mennella, G.; D’Alessandro, A.; Francese, G.; Fontanella, D.; Parisi, M.; Tripodi, P. Occurrence of variable levels of health-promoting fruit compounds in horn-shaped Italian sweet pepper varieties assessed by a comprehensive approach. J. Sci. Food Agric. 2018, 98, 3280–3289. [Google Scholar] [CrossRef]
- Tripodi, P.; Ficcadenti, N.; Rotino, G.L.; Festa, G.; Bertone, A.; Pepe, A.; Caramanico, R.; Migliori, C.A.; Spadafora, D.; Schiavi, M.; et al. Genotypic and environmental effects on the agronomic, health-related compounds and antioxidant properties of chilli peppers for diverse market destinations. J. Sci. Food Agric. 2019, 99, 4550–4560. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, S.; Garcés-Claver, A.; Mallor, C.; Sáenz de Miera, L.E.; Fayos, O.; Pomar, F.; Merino, F.; Silvar, C. New Insights into Capsicum spp. Relatedness and the Diversification Process of Capsicum annuum in Spain. PLoS ONE 2014, 9, e116276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvar, C.; García-González, C.A. Deciphering Genetic Diversity in the Origins of Pepper (Capsicum spp.) and Comparison with Worldwide Variability. Crop. Sci. 2016, 56, 3100–3111. [Google Scholar] [CrossRef]
- Silvar, C.; García-González, C.A. Screening old peppers (Capsicum spp.) for disease resistance and pungency-related traits. Sci. Hortic. 2017, 218, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Maza, M.; Garcés-Claver, A.; Park, S.W.B.; Kang, C.; Arnedo-Andrés, M.S. A versatile PCR marker for pungency in Capsicum spp. Mol. Breed. 2012, 30, 889–898. [Google Scholar] [CrossRef]
- IPGRI; AVRDC; CATIE. Descriptors for Capsicum (Capsicum spp.); International Plant Genetic Resources Institute: Rome, Italy, 1995. [Google Scholar]
- Darrigues, A.; Hall, J.; van der Knaap, E.; Francis, D.M.; Dujmovic, N.; Gray, S. Tomato analyzer-color test: A new tool for efficient digital phenotyping. J. Am. Soc. Hort. Sci. 2008, 133, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS + radical cation assay. Free Radic. Res. 1997, 3, 195–199. [Google Scholar] [CrossRef]
- SPSS. SPSS Statistics for Windows; Version 17.0; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Abdi, H. The Bonferonni and Šidák Corrections for Multiple Comparisons. In Encyclopedia of Measurement and Statistics; Salkind, N.J., Ed.; Sage: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Tadesse, T.; Hewett, E.W.; Nichols, M.A.; Fisher, K.J. Changes in physicochemical attributes of sweet pepper cv. Domino during fruit growth and development. Sci. Hortic. 2002, 93, 91–103. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. J. Funct. Foods 2011, 3, 44–49. [Google Scholar] [CrossRef]
- Fox, A.J.; Pozo-Insfran, D.D.; Lee, J.; Sargent, S.; Talcott, S. Ripening-induced Chemical and Antioxidant Changes in Bell Peppers as Affected by Harvest Maturity and Postharvest Ethylene Exposure. HortScience 2005, 40, 732–736. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, C.; Mendonça, V.Z.; Gouveia, A.M.; Carpanetti, M.G.; Tavares, A.E.; Lanna, N.D.; Evangelista, R.M.; Cardoso, A.I. Physicochemical and biochemical traits of sweet pepper hybrids as a function of harvest times. Food Chem. 2018, 257, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 2011, 72, 1358–1370. [Google Scholar] [CrossRef]
- Kantar, M.B.; Anderson, J.E.; Lucht, S.A.; Mercer, K.; Bernau, V.; Case, K.A.; Le, N.C.; Frederiksen, M.K.; DeKeyser, H.C.; Wong, Z.Z.; et al. Vitamin variation in Capsicum spp. provides opportunities to improve nutritional value of human diets. PLoS ONE 2016, 11, e0161464. [Google Scholar] [CrossRef]
- Meckelmann, S.W.; Riegel, D.W.; van Zonneveld, M.J.; Ríos, L.; Peña, K.; Ugas, R.; Quinonez, L.; Mueller-Seitz, E.; Petz, M. Compositional Characterization of Native Peruvian Chili Peppers (Capsicum spp.). J. Agric. Food Chem. 2013, 61, 2530–2537. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Menichini, F.; Tundis, R. Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: A comparison between fresh and processed peppers. LWT Food Sci. Technol. 2015, 64, 623–631. [Google Scholar] [CrossRef]
- Souza-Sora, G.T.; Haminiuk, C.W.I.; Vieira da Silva, M.; Ferreira Zielinski, A.A.; Almeida Gonçalves, G.; Bracht, A.; Peralta, R.M. A comparative study of the capsaicinoid and phenolic contents and in vitro antioxidant activities of the peppers of the genus Capsicum: An application of chemometrics. J. Food Sci. Technol. 2015, 52, 8086–8094. [Google Scholar] [CrossRef] [Green Version]
- Bogusz, S.; Libardi, S.H.; Dias, F.F.; Coutinho, J.P.; Bochi, V.C.; Rodrigues, D.; Melo, A.M.; Godoy, H.T. Brazilian Capsicum peppers: Capsaicinoid content and antioxidant activity. J. Sci. Food Agric. 2018, 98, 217–224. [Google Scholar] [CrossRef]
- Materska, M. Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L.). J. Funct. Foods 2014, 7, 269–277. [Google Scholar] [CrossRef]
- Menichini, F.; Tundis, R.; Bonesi, M.; Loizzo, M.; Conforti, F.; Statti, G.; Cindio, B.; Houghton, P. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chem. 2009, 114, 553–560. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive characteristics and antioxidant activities of nine peppers. J. Funct. Foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
- Carvalho, A.; Mattietto, R.A.; Rios, A.O.; Maciel, R.A.; Moresco, K.; Oliveira, T.C. Bioactive compounds and antioxidant activity of pepper (Capsicum sp.) genotypes. J. Food Sci. Technol. 2015, 52, 7457–7464. [Google Scholar] [CrossRef]
- Álvarez-Parrilla, E.; Rosa, L.A.; Amarowicz, R.; Shahidi, F. Antioxidant activity of fresh and processed Jalapeño and Serrano peppers. J. Agric. Food Chem. 2011, 59, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Lownds, N.; Banaras, M.; Bosland, P. Relationships between postharvest water loss and physical properties of pepper fruit (Capsicum annuum L.). HortScience 1993, 28, 1182–1184. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.L.; Stommel, J.; Fung, R.W.; Wang, C.Y.; Whitaker, B. Influence of cultivar and harvest method on postharvest storage quality of pepper (Capsicum annuum L.) fruit. Postharvest Biol. Technol. 2006, 42, 243–247. [Google Scholar] [CrossRef]
- Ziino, M.; Condurso, C.; Romeo, V.; Tripodi, G.; Verzera, A. Volatile compounds and capsaicinoid content of fresh hot peppers (Capsicum annuum L.) of different Calabrian varieties. J. Sci. Food Agric. 2009, 89, 774–780. [Google Scholar] [CrossRef]
- Giuffrida, D.; Dugo, P.; Torre, G.; Bignardi, C.; Cavazza, A.; Corradini, C.; Dugo, G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. 2013, 140, 794–802. [Google Scholar] [CrossRef]
- Gurung, T.; Techawongstien, S.; Suriharn, B.; Techawongstien, S. Impact of Environments on the Accumulation of Capsaicinoids in Capsicum spp. HortScience 2011, 46, 1576–1581. [Google Scholar] [CrossRef]
- Tripodi, P.; Cardi, T.; Bianchi, G.; Migliori, C.A.; Schiavi, M.; Rotino, G.L.; Lo Scalzo, R. Genetic and environmental factors underlying variation in yield performance and bioactive compound content of hot pepper varieties (Capsicum annuum) cultivated in two contrasting Italian locations. Eur. Food Res. Technol. 2018, 244, 1555–1567. [Google Scholar] [CrossRef]
- Bozokalfa, M.K.; Esiyok, D.; Turhan, K. Patterns of phenotypic variation in a germplasm collection of pepper (Capsicum annuum L.) from Turkey. Span. J. Agric. Res. 2009, 7, 83–95. [Google Scholar] [CrossRef]
- Rivera, A.; Monteagudo, A.B.; Igartua, E.; Taboada, A.; García-Ulloa, A.; Pomar, F.; Riveiro-Leira, M.; Silvar, C. Assessing genetic and phenotypic diversity in pepper (Capsicum annuum L.) landraces from North-West Spain. Sci. Hortic. 2016, 203, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Paran, I.; Knaap, E.V. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J. Exp. Bot. 2007, 58, 3841–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, N.M.; Yusof, N.A.; Yahaya, A.F.; Rozali, N.N.; Othman, R. Carotenoids of Capsicum Fruits: Pigment Profile and Health-Promoting Functional Attributes. Antioxidants 2019, 8, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Concepcíon, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gómez-Gómez, L.; Hornero-Méndez, D.; Limón, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar]
- Arimboor, R.; Natarajan, R.B.; Menon, K.; Chandrasekhar, L.P.; Moorkoth, V. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: Analysis and stability—A review. J. Food Sci. Technol. 2014, 52, 1258–1271. [Google Scholar] [CrossRef] [Green Version]
- Berry, H.M.; Rickett, D.; Baxter, C.J.; Enfissi, E.M.; Fraser, P. Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on colour intensity traits. J. Exp. Bot. 2019, 70, 2637–2650. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.; Chunthawodtiporn, J.; Ashrafi, H.; Stoffel, K.; Weir, A.; Deynze, A.V. Regions Underlying Population Structure and the Genomics of Organ Size Determination in Capsicum annuum. Plant. Genome 2017, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Barchi, L.; Lefèbvre, V.; Sage-Palloix, A.; Lanteri, S.; Palloix, A. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor. Appl. Genet. 2009, 118, 1157–1171. [Google Scholar] [CrossRef]
- Qin, C.; Changshui, Y.; Shen, Y.; Fang, X.; Chen, L.; Min, J.; Cheng, J.; Zhao, S.; Xu, M.; Luo, Y.; et al. Whole genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl. Acad. Sci. USA 2014, 111, 5135–5140. [Google Scholar] [CrossRef] [Green Version]
- Ibiza, V.P.; Blanca, J.; Cañizares, J.; Nuez, F. Taxonomy and genetic diversity of domesticated Capsicum species in the Andean region. Genet. Resour. Crop. Evol. 2012, 59, 1077–1088. [Google Scholar] [CrossRef]
- Kraft, K.H.; Brown, C.H.; Nabhan, G.P.; Luedeling, E.; Luna Ruiz, J.J.; d’Eeckenbrugge, G.C.; Hijmans, R.J.; Gepts, P. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl. Acad. Sci. USA 2014, 111, 6165–6170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, E.; Zhang, D.; Deslattes Mays, A.; Staftner, R.A.; Stommel, J.R. Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution. BMC Genet. 2012, 13, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trait | Sum of Squares | F value † | C. annuum | C. baccatum | C. chinense | C. frutescens | C. pubescens | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | 429,598.7 | 32.0 *** | 159.56 | a | 138.72 | ab | 121.49 | b | 74.05 | c | 125.77 | b |
50.21 | 39.36 | 36.26 | 25.55 | 19.51 | ||||||||
A | 66,629,009.1 | 34.8 *** | 1242.11 | a | 840.47 | b | 760.86 | b | 300.00 | c | 946.34 | ab |
84.79 | 59.83 | 62.87 | 42.02 | 38.09 | ||||||||
WMH | 14,766.4 | 50.6 *** | 19.05 | b | 16.51 | bc | 19.37 | b | 12.74 | c | 26.59 | ab |
60.23 | 37.33 | 41.04 | 14.90 | 24.65 | ||||||||
MW | 13,637.9 | 39.1 *** | 24.44 | ab | 19.54 | c | 22.27 | bc | 14.39 | d | 28.50 | ab |
53.63 | 35.34 | 35.77 | 20.07 | 22.28 | ||||||||
HMW | 70,333.5 | 37.7 *** | 56.29 | a | 52.91 | a | 43.00 | b | 25.84 | c | 40.43 | b |
49.92 | 41.75 | 39.75 | 26.67 | 25.50 | ||||||||
MH | 100,288.6 | 44.7 *** | 62.33 | a | 56.97 | a | 45.83 | b | 26.55 | c | 43.10 | b |
50.32 | 42.25 | 39.89 | 26.29 | 23.96 | ||||||||
CH | 96,081.5 | 42.7 *** | 64.07 | a | 58.18 | ab | 47.71 | bc | 28.72 | d | 45.15 | c |
49.31 | 41.10 | 38.31 | 24.87 | 22.80 | ||||||||
FSIEI | 330.4 | 108.6 *** | 2.69 | a | 2.96 | a | 2.18 | b | 1.84 | bc | 1.57 | c |
34.78 | 31.89 | 40.60 | 15.44 | 29.06 | ||||||||
FSIEII | 579.7 | 79.7 *** | 3.36 | a | 3.32 | a | 2.53 | b | 2.01 | bc | 1.61 | c |
51.53 | 35.40 | 52.56 | 19.30 | 35.44 | ||||||||
CFSI | 789.9 | 73.1 *** | 3.90 | a | 3.67 | a | 2.83 | b | 2.21 | bc | 1.78 | c |
56.95 | 37.12 | 54.88 | 18.62 | 33.60 | ||||||||
PFB | 11.4 | 74.7 *** | 1.03 | a | 0.84 | b | 0.84 | b | 0.83 | b | 0.82 | b |
24.42 | 17.14 | 23.31 | 15.50 | 17.49 | ||||||||
DFB | 0.7 | 7.01 *** | 0.589 | b | 0.544 | b | 0.550 | b | 0.668 | a | 0.565 | b |
29.31 | 24.83 | 35.05 | 13.61 | 16.75 | ||||||||
FST | 33.0 | 7.6 *** | 1.895 | a | 1.647 | ab | 1.807 | a | 1.249 | b | 1.492 | ab |
47.00 | 31.02 | 89.90 | 17.21 | 26.18 | ||||||||
E | 0.2 | 47.4 *** | 0.098 | a | 0.079 | b | 0.079 | b | 0.067 | b | 0.065 | b |
39.65 | 32.28 | 41.15 | 26.55 | 25.70 | ||||||||
C | 4.7 | 135.6 *** | 0.313 | a | 0.319 | a | 0.245 | b | 0.219 | b | 0.157 | c |
27.40 | 27.87 | 45.45 | 19.64 | 49.82 | ||||||||
R | 0.5 | 16.9 *** | 0.418 | c | 0.423 | c | 0.428 | bc | 0.467 | ab | 0.476 | a |
24.30 | 19.96 | 20.17 | 17.59 | 13.21 | ||||||||
SH | 0.0 | 12.8 *** | 0.018 | ab | 0.011 | b | 0.013 | b | 0.013 | b | 0.027 | a |
166.91 | 228.81 | 197.08 | 121.20 | 101.67 | ||||||||
PAMI | 30,505.5 | 1.1 ns | 134.39 | a | 129.38 | a | 124.94 | a | 121.95 | a | 136.91 | a |
67.99 | 52.05 | 65.88 | 76.47 | 68.43 | ||||||||
PAMA | 312,234.0 | 27.2 *** | 99.45 | c | 84.53 | c | 107.75 | bc | 134.32 | a | 128.90 | ab |
62.02 | 45.45 | 49.49 | 27.07 | 48.68 | ||||||||
PIA | 0.3 | 34.15 *** | 0.030 | b | 0.011 | b | 0.012 | b | 0.011 | b | 0.054 | a |
230.80 | 258.98 | 220.87 | 121.01 | 127.85 | ||||||||
Ob | 0.1 | 7.4 *** | 0.004 | c | 0.015 | ab | 0.022 | a | 0.009 | bc | 0.007 | c |
870.35 | 362.11 | 342.52 | 313.75 | 476.11 | ||||||||
Ov | 5.7 | 71.9 *** | 0.381 | a | 0.240 | b | 0.254 | b | 0.212 | b | 0.261 | b |
40.97 | 54.41 | 56.73 | 60.64 | 43.68 | ||||||||
VAs | 2.1 | 26.5 *** | 0.223 | a | 0.163 | ab | 0.147 | bc | 0.086 | c | 0.120 | bc |
89.66 | 71.02 | 79.25 | 71.18 | 56.92 | ||||||||
HAob | 0.3 | 4.7 ** | 0.007 | c | 0.026 | ab | 0.037 | a | 0.010 | bc | 0.006 | c |
993.76 | 481.46 | 436.67 | 326.04 | 470.86 | ||||||||
HAov | 47.3 | 61.2 *** | 0.757 | a | 0.526 | b | 0.382 | bc | 0.181 | c | 0.281 | c |
79.88 | 82.77 | 83.32 | 71.74 | 59.60 | ||||||||
WWP | 3.9 | 58.8 *** | 0.277 | b | 0.392 | a | 0.391 | a | 0.370 | a | 0.356 | a |
47.07 | 33.39 | 35.10 | 30.95 | 27.42 | ||||||||
DAMI | 249,026.5 | 13.82 *** | 87.48 | ab | 77.38 | b | 98.19 | ab | 108.29 | a | 117.08 | a |
76.51 | 89.84 | 69.80 | 41.31 | 51.32 | ||||||||
DAMA | 450,771.9 | 57.0 *** | 57.69 | bc | 52.16 | c | 76.91 | b | 119.21 | a | 100.75 | a |
71.33 | 84.33 | 65.28 | 52.39 | 36.42 | ||||||||
DIA | 0.0 | 0.5 ns | 0.004 | a | 0.004 | a | 0.004 | a | 0.005 | a | 0.003 | a |
293.85 | 131.82 | 266.24 | 137.72 | 216.82 | ||||||||
DEP | 5.9 | 42.6 *** | 0.101 | b | 0.221 | a | 0.104 | b | 0.059 | b | 0.041 | b |
187.84 | 97.51 | 179.04 | 143.39 | 227.32 | ||||||||
EC | 0.2 | 14.8 *** | 0.733 | b | 0.748 | ab | 0.755 | ab | 0.768 | a | 0.762 | a |
9.19 | 6.38 | 6.35 | 2.90 | 4.36 | ||||||||
PEC | 0.0 | 1.4 ns | 0.899 | a | 0.895 | a | 0.893 | a | 0.888 | a | 0.890 | a |
9.39 | 4.02 | 4.17 | 1.25 | 0.55 | ||||||||
DEC | 0.1 | 5.2 *** | 0.911 | a | 0.903 | a | 0.900 | a | 0.891 | a | 0.886 | a |
11.01 | 5.68 | 5.22 | 2.52 | 1.33 | ||||||||
FSII | 557.7 | 78.56 *** | 3.34 | a | 3.30 | a | 2.51 | b | 1.99 | bc | 1.63 | c |
50.51 | 35.74 | 52.99 | 17.90 | 34.42 | ||||||||
ECA | 0.8 | 51.6 *** | 0.477 | a | 0.441 | b | 0.424 | b | 0.437 | b | 0.422 | b |
14.60 | 11.77 | 16.52 | 7.31 | 9.19 | ||||||||
LD | 94,434.3 | 109.1 *** | 31.88 | a | 34.82 | a | 22.61 | b | 16.39 | bc | 11.70 | c |
50.12 | 44.20 | 67.60 | 25.84 | 67.23 | ||||||||
TPA | 6,660,826.0 | 21.1 *** | 474.05 | a | 359.14 | ab | 326.27 | b | 140.59 | c | 422.15 | ab |
88.91 | 60.27 | 58.90 | 42.69 | 36.99 | ||||||||
TPAR | 0.1 | 14.2 *** | 0.417 | b | 0.424 | ab | 0.434 | ab | 0.439 | a | 0.439 | a |
12.84 | 8.98 | 10.41 | 6.88 | 3.59 | ||||||||
TPT | 173.5 | 37.6 *** | 2.72 | b | 2.61 | b | 2.76 | b | 1.98 | c | 3.64 | a |
53.88 | 33.27 | 33.65 | 20.00 | 19.47 | ||||||||
TPTR | 0.0 | 4.32 ** | 0.212 | a | 0.206 | a | 0.206 | a | 0.204 | a | 0.203 | a |
17.80 | 10.30 | 17.10 | 5.87 | 6.72 | ||||||||
AR | 104,422.8 | 99.5 *** | 175.39 | b | 185.74 | a | 185.45 | a | 180.04 | ab | 161.58 | c |
8.89 | 9.04 | 9.08 | 7.71 | 9.25 | ||||||||
AG | 312,572.3 | 101.8 *** | 87.62 | b | 100.76 | a | 109.18 | a | 87.04 | b | 64.68 | c |
20.08 | 25.49 | 34.29 | 33.48 | 38.45 | ||||||||
AB | 45,985.1 | 40.5 *** | 42.26 | ab | 40.05 | ab | 47.21 | a | 36.07 | bc | 29.27 | c |
29.45 | 29.66 | 53.24 | 39.36 | 37.53 | ||||||||
AL | 57,469.9 | 104.3 *** | 102.40 | b | 106.23 | ab | 109.47 | a | 101.66 | b | 89.71 | c |
10.66 | 8.19 | 13.90 | 11.43 | 11.49 | ||||||||
ALV | 28,364.8 | 116.9 *** | 47.80 | b | 52.17 | a | 54.21 | a | 48.52 | b | 40.99 | c |
11.62 | 14.30 | 18.68 | 15.77 | 16.53 | ||||||||
AaV | 23,304.1 | 47.6 *** | 28.78 | ab | 26.05 | bc | 21.74 | c | 30.40 | ab | 33.79 | a |
22.09 | 35.27 | 72.80 | 32.07 | 30.71 | ||||||||
AbV | 10,312.7 | 44.2 *** | 43.36 | b | 48.29 | a | 47.36 | a | 46.92 | a | 41.41 | b |
11.02 | 18.63 | 19.53 | 9.90 | 13.67 | ||||||||
AHue | 38,146.3 | 61.9 *** | 56.70 | bc | 61.11 | ab | 66.18 | a | 57.55 | b | 51.14 | c |
10.65 | 17.83 | 27.11 | 16.25 | 22.24 | ||||||||
ACh | 3096.5 | 15.9 *** | 52.30 | b | 55.95 | a | 54.57 | ab | 56.62 | a | 54.46 | ab |
11.35 | 12.15 | 15.72 | 9.94 | 10.00 |
Trait | Pungent C. annuum | Non-Pungent C. annuum | Sig. | ||
---|---|---|---|---|---|
Mean | CV % | Mean | CV % | ||
PHE | 111.61 | 31.15 | 90.32 | 37.77 | 0.05 |
FWE | 7.18 | 141.45 | 17.73 | 85.64 | <0.001 |
FPL | 3.12 | 26.24 | 3.69 | 23.80 | <0.001 |
P | 113.92 | 62.90 | 208.77 | 26.86 | <0.001 |
A | 722.51 | 111.93 | 1802.42 | 55.41 | <0.001 |
WMH | 14.27 | 70.49 | 24.19 | 44.08 | <0.001 |
MW | 18.34 | 64.30 | 31.02 | 35.92 | <0.001 |
HMW | 39.83 | 61.47 | 74.05 | 26.61 | <0.001 |
MH | 43.95 | 62.38 | 82.15 | 26.61 | <0.001 |
CH | 45.66 | 60.56 | 83.92 | 26.41 | <0.001 |
FSIEI | 2.54 | 36.66 | 2.85 | 32.11 | <0.001 |
FSIEII | 3.18 | 55.95 | 3.56 | 46.71 | 0.019 |
CFSI | 3.68 | 62.11 | 4.13 | 51.47 | 0.033 |
PFB | 0.98 | 27.64 | 1.07 | 20.24 | <0.001 |
DFB | 0.61 | 23.23 | 0.57 | 35.06 | 0.008 |
FST | 1.69 | 41.07 | 2.11 | 48.21 | <0.001 |
E | 0.09 | 43.08 | 0.10 | 35.50 | 0.001 |
C | 0.30 | 31.83 | 0.33 | 21.69 | <0.001 |
SH | 0.01 | 175.79 | 0.02 | 156.55 | 0.019 |
Ov | 0.35 | 45.79 | 0.41 | 34.99 | <0.001 |
VAs | 0.16 | 101.96 | 0.29 | 73.96 | <0.001 |
HAov | 0.55 | 101.43 | 0.99 | 58.38 | <0.001 |
WWP | 0.30 | 42.74 | 0.26 | 51.25 | 0.001 |
DAMI | 98.01 | 66.19 | 76.12 | 88.54 | <0.001 |
DAMA | 65.37 | 62.17 | 49.41 | 81.29 | <0.001 |
EC | 0.74 | 9.41 | 0.73 | 8.84 | 0.021 |
FSII | 3.13 | 54.20 | 3.57 | 46.29 | 0.006 |
LD | 28.92 | 55.12 | 35.08 | 44.00 | <0.001 |
TPA | 240.75 | 115.09 | 725.64 | 55.93 | <0.001 |
TPAR | 0.43 | 11.82 | 0.40 | 12.97 | <0.001 |
TPT | 1.95 | 56.29 | 3.55 | 38.11 | <0.001 |
AaV | 27.94 | 24.34 | 29.68 | 19.27 | 0.004 |
AHue | 57.43 | 10.96 | 55.91 | 10.12 | 0.007 |
ACh | 51.77 | 13.34 | 52.88 | 8.73 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-López, J.; Rodríguez-Moar, S.; Silvar, C. Correlation Analysis of High-Throughput Fruit Phenomics and Biochemical Profiles in Native Peppers (Capsicum spp.) from the Primary Center of Diversification. Agronomy 2021, 11, 262. https://doi.org/10.3390/agronomy11020262
González-López J, Rodríguez-Moar S, Silvar C. Correlation Analysis of High-Throughput Fruit Phenomics and Biochemical Profiles in Native Peppers (Capsicum spp.) from the Primary Center of Diversification. Agronomy. 2021; 11(2):262. https://doi.org/10.3390/agronomy11020262
Chicago/Turabian StyleGonzález-López, Jorge, Simón Rodríguez-Moar, and Cristina Silvar. 2021. "Correlation Analysis of High-Throughput Fruit Phenomics and Biochemical Profiles in Native Peppers (Capsicum spp.) from the Primary Center of Diversification" Agronomy 11, no. 2: 262. https://doi.org/10.3390/agronomy11020262
APA StyleGonzález-López, J., Rodríguez-Moar, S., & Silvar, C. (2021). Correlation Analysis of High-Throughput Fruit Phenomics and Biochemical Profiles in Native Peppers (Capsicum spp.) from the Primary Center of Diversification. Agronomy, 11(2), 262. https://doi.org/10.3390/agronomy11020262