Investigation on the Relationship between Morphological and Anatomical Characteristic of Savoy Cabbage and Kale Leaves and Infestation by Cabbage Whitefly (Aleyrodes proletella L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Stomata Count
2.3. Scanning Electron Microscopy (SEM)
2.4. Histological Observations
2.5. Statistical Analyses
3. Results
3.1. Host Preference of A. proletella on Cultivars of Savoy Cabbage and Kale
3.2. Morphology of Abaxial Leaf Surface Using LM and SEM
3.3. Internal Leaf Structure Using LM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martin, J.H.; Mifsud, D.; Rapisarda, C. The whiteflies (Hemiptera: Aleyrodidae) of Europe and the Mediterranean basin. Bull. Entomol. Res. 2000, 90, 407–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nebreda, M.; Nombela, G.; Muňiz, M. Comparative host suitability of some Brassica cultivars for the whitefly, Aleyrodes proletella (Hemiptera: Aleyrodidae). Environ. Entomol. 2005, 34, 205–209. [Google Scholar] [CrossRef]
- Trdan, S.; Papler, U. Susceptibility of four different vegetables brassicas to cabbage whitefly (Aleyrodes proletella L., Aleyrodidae) attack. Rijksuniv. Gent. Fak. Landbouwkd. Toegep. Biol. Wet. 2002, 67, 531–535. [Google Scholar]
- Łabanowski, G.S. Cabbage whitefly—Aleyrodes proletella (L. 1758)—pest of Brassica vegetables in Poland. Zesz. Nauk. Inst. Ogrod. 2015, 23, 49–61. [Google Scholar]
- Ramsey, A.D.; Ellis, P.R. Resistance of wild Brassicas to the cabbage whitefly Aleyrodes proletella. Acta Hortic. 1996, 407, 507–514. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; Jermy, T.; van Loon, J.J.A. Plant as Insect Food: Not the Ideal, in Insect-Plant Biology; Schoonhoven, L.M., Jermy, T., van Loon, J.J.A., Eds.; Chapman & Hall: London, UK, 1998; pp. 83–120. [Google Scholar]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M.H.; Snyder, J.C. The alcohol and epoxy alcohol of zingiberene, produced in trichomes of wild tomatoes, are more repellent to spider mites than zingiberene. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef]
- Goiana, E.S.S.; Dias-Pini, N.S.; Muniz, C.R.; Soares, A.A.; Alves, J.C.; Vidal-Neto, F.C.; Da Silva, C.S.B. Dwarf-cashew resistance to whitefly (Aleurodicus cocois) linked to morphological and histochemical characteristics of leaves. Pest Manag. Sci. 2020, 76, 464–471. [Google Scholar] [CrossRef]
- De Oliveira, J.R.F.; Resende, J.T.V.; Filho, R.B.L.; Roberto, S.R.; Silva, P.R.; Rech, C.; Nardi, C. Tomato breeding for sustainable crop systems: High levels of zingiberene providing resistance to multiple arthropods. Horticulturae 2020, 6, 34. [Google Scholar] [CrossRef]
- Hondelmann, P.; Paul, C.H.; Schreiner, M.; Meyhöfer, R. Importance of antixenosis and antibiosis resistance to the cabbage whitefly (Aleyrodes proletella) in Brussels sprout cultivars. Insects 2020, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Krips, O.E.; Kleijn, P.W.; Willems, P.E.L.; Gols, G.J.Z.; Dicke, M. Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp. Appl. Acarol. 1999, 23, 119–131. [Google Scholar] [CrossRef]
- Seki, K. Leaf-morphology-assisted selection for resistance to two-spotted spider mite Tetranychus uriticae Koch (Acari: Tetranychidae) in carnations (Dianthus caryophyllus L). Pest Manag. Sci. 2016, 72, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, N.; Ward, D.; Saltz, D. Calcium oxalate crystals in leaves of Pancratium sickenbergeri: Constitutive or induced defense? Funct. Entomol. 2002, 16, 99–105. [Google Scholar] [CrossRef]
- Stoner, K.S. Glossy leaf wax and plant resistance to insects in Brassica oleracea under natural infestation. Environl. Entomol. 1990, 19, 730–739. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Blaney, W.M.; Simmonds, M.J.S.; Wightman, J.A. The identification and characterization of resistance in wild-species of Arachis to Spodoptera litura (Lepidoptera, Noctuidae). Bull. Entomol. Res. 1993, 83, 421–429. [Google Scholar] [CrossRef]
- Handley, M.E.; Lamont, B.B.; Fairbanks, M.M.; Rafferty, C.M. Plant structural traits and their role in anti-herbivore defence. Perspec. Plant Ecol. Evol. Syst. 2007, 8, 157–178. [Google Scholar] [CrossRef]
- Warabieda, W.; Olszak, R.W.; Dyki, B. Morphological and anatomical character of apple leaves associated with cultivar susceptibility to spider mite infestation. Acta Agrob. 1997, 50, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, T.; Hirai, N.; Sakamoto, Y.; Komuro, J. Effects of morphological characteristics of Cucumis sativus seedlings grown at different vapor pressure deficits on initial colonization of Bemisia tabaci (Hemiptera: Aleyrodidae). J. Econ. Entomol. 2009, 102, 2265–2267. [Google Scholar] [CrossRef]
- Rustamani, M.A.; Khatri, I.; Leghari, M.H.; Sultana, R.; Mandokhail, A.S. Trichomes of cotton leaf as an aspect of resistance to sucking insect pests. Sindh. Univ. Res. J. 2014, 46, 351–356. [Google Scholar]
- Warabieda, W.; Solomon, M. Influence of leaf pubescence on the behavior of the two-spotted spider mite (Tetranychus urtiae) and the European red mite (Panonychus ulmi). Acta Agrobt. 2003, 65, 109–115. [Google Scholar]
- Huchelmann, A.; Boutry, M.; Hachez, C. Plant glandular trichomes: Natural cell factories of high biotechnological interest. Plant Physiol. 2017, 175, 6–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broekgaarden, C.; Riviere, P.; Steenhus, G.; del sol Cuenca, M.; Kos, M.; Vosman, B. Phloem-specific resistance in Brassica oleracea against the whitefly Aleyrodes proletella. Entomol. Exp. Appl. 2012, 142, 153–164. [Google Scholar] [CrossRef]
- Dyki, B.; Habdas, H. Metoda izolowania epidermy liści pomidora i ogórka dla mikroskopowej oceny rozwoju grzybów patogenicznych. The method of isolation of epidermis of tomato and cucumber leaves for microscopic investigation of pathogenic fungus development. Acta Agrobot. 1996, 49, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Pathan, A.K.; Bond, J.; Gaskin, R.E. Sample preparation for scanning electron microscopy of plant surfaces—Horses for courses. Micron 2008, 39, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: New York, NY, USA, 1999; p. 322. [Google Scholar]
- Muñiz, M.; Nebreda, M. Differential variation in host preference of Aleyrodes proletella (L.) on some cauliflower cultivars. IOBC/WPRS Bull. 2003, 26, 49–52. [Google Scholar]
- Scott Brown, A.S.; Simmonds, M.S.J. Leaf morphology of hosts and nonhosts of the thrips Heliothrips haemorrhoidalis (Bouché). Bot. J. Linn. Soc. 2006, 152, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.A.; Fishbein, M.; Jetter, R.; Salminen, J.P.; Goldstein, J.B.; Freitag, A.E.; Sparks, J.P. Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.) chemistry, ecophysiology and insect behavior. New Phytol. 2009, 183, 848–867. [Google Scholar] [CrossRef]
- Chamarthi, S.K.; Sharma, H.C.; Sahrawat, K.L.; Narasu, L.M.; Dhillon, M.K. Physico-phemical mechanism of resistance to shoot fly, Atherigona soccata in sorgum, Sorgum bicolor. J. Appl. Entomol. 2010, 135, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Butter, N.S.; Vir, B.K. Morphological basis of resistance in cotton to the whitefly Bemisia tabaci. Phytoparasitica 1989, 17, 251–261. [Google Scholar] [CrossRef]
- Hasanuzzaman, A.T.M.; Islam, M.N.; Zhang, Y.; Zhang, C.-Y.; Liu, T.-X. Leaf morphological characters can be a factor for intra-varietal preference of whitefly Bemisia tabaci among eggplant varieties. PLoS ONE 2016, 11, e0153880. [Google Scholar] [CrossRef] [Green Version]
- Byrne, D.N.; Bellows, T.S., Jr. Whitefly biology. Ann. Rev. Entomol. 1991, 36, 431–457. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marasek-Ciolakowska, A.; Soika, G.; Warabieda, W.; Kowalska, U.; Rybczyński, D. Investigation on the Relationship between Morphological and Anatomical Characteristic of Savoy Cabbage and Kale Leaves and Infestation by Cabbage Whitefly (Aleyrodes proletella L.). Agronomy 2021, 11, 275. https://doi.org/10.3390/agronomy11020275
Marasek-Ciolakowska A, Soika G, Warabieda W, Kowalska U, Rybczyński D. Investigation on the Relationship between Morphological and Anatomical Characteristic of Savoy Cabbage and Kale Leaves and Infestation by Cabbage Whitefly (Aleyrodes proletella L.). Agronomy. 2021; 11(2):275. https://doi.org/10.3390/agronomy11020275
Chicago/Turabian StyleMarasek-Ciolakowska, Agnieszka, Grażyna Soika, Wojciech Warabieda, Urszula Kowalska, and Dariusz Rybczyński. 2021. "Investigation on the Relationship between Morphological and Anatomical Characteristic of Savoy Cabbage and Kale Leaves and Infestation by Cabbage Whitefly (Aleyrodes proletella L.)" Agronomy 11, no. 2: 275. https://doi.org/10.3390/agronomy11020275
APA StyleMarasek-Ciolakowska, A., Soika, G., Warabieda, W., Kowalska, U., & Rybczyński, D. (2021). Investigation on the Relationship between Morphological and Anatomical Characteristic of Savoy Cabbage and Kale Leaves and Infestation by Cabbage Whitefly (Aleyrodes proletella L.). Agronomy, 11(2), 275. https://doi.org/10.3390/agronomy11020275