Time-Dependent Changes in the Physico-Chemical Parameters and Growth Responses of Sedum acre (L.) to Waste-Based Growing Substrates in Simulation Extensive Green Roof Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Experimental Design
2.2. Growing Media Analyses
3. Plant Material and Analysis
4. Weather Data
5. Statistical Analyses
6. Results and Discussion
6.1. Component Analysis
6.2. Substrates Validation
7. Plant and Time-Depended Changes in the Physical and Chemical Parameters of Growing Substrates
8. Chemical Properties
9. Plant Analysis
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Kohler, M.; Liu, K.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. BioScience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Sutton, R.K. (Ed.) Green Roof Ecosystems. Introduction to Green Roof Ecosystems; Springer: New York, NY, USA, 2015. [Google Scholar]
- Francis, L.F.M.; Jensen, M.B. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Suszanowicz, D.; Kolasa-Więcek, A. The Impact of Green Roofs on the Parameters of the Environment in Urban Areas—Review. Atmosphere 2019, 10, 792. [Google Scholar] [CrossRef] [Green Version]
- Monterusso, M.A.; Rowe, D.B.; Rugh, C.L. Establishment and persistence of Sedum spp. and native taxa for green roof applications. Hortic. Sci. 2005, 40, 391–396. [Google Scholar] [CrossRef]
- Young, T.; Cameron, D.D.; Sorrill, J.; Edwards, T.; Phoenix, G.K. Importance of different components of green roof substrate on plant growth and physiological performance. Urban For. Urban Green. 2014, 13, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Lehvävirta, S.; Valkonen, J.P.T. Case study: Planting methods and beneficial substrate microbes effect on the growth of vegetated roof plants in Finland. Urban For. Urban Green. 2020, 53, 126722. [Google Scholar] [CrossRef]
- Besir, B.A.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Fassman-Beck, E.A.; Simcock, R. Living Roof Review and Design Recommendations for Stormwater Management; Technical Report 2013, TR2013/045; Auckland UniServices, Auckland Council: Auckland, New Zealand, 2013. [Google Scholar]
- Gabrych, M.; Kotze, J.; Lehvävirta, S. Substrate depth and roof strongly affect plant abundance on sedum-moss and meadow green roofs in Helsinki, Finland. Ecol. Eng. 2015, 86, 95–104. [Google Scholar] [CrossRef]
- Olszewski, M.W.; Young, C.A. Physical and chemical properties of green roof media and their effect on plant establishment. J. Environ. Hortic. 2011, 29, 81–86. [Google Scholar] [CrossRef]
- Cascone, S. Green Roof Design: State of the Art on Technology and Materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Ampim, P.A.Y.; Sloan, J.J.; Cabrera, R.I.; Harp, D.A.; Jaber, F.H. Green roof growing substrates: Types, ingredients, composition and properties. J. Environ. Hortic. 2010, 28, 244–252. [Google Scholar] [CrossRef]
- Rowe, D.B.; Monterusso, M.A.; Rugh, C.L. Assessment of heat-expanded slate and fertility requirements in green roof substrates. HortTechnology 2006, 16, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Durhman, A.K.; Rowe, D.B.; Rugh, C.L. Effect of substrate depth on initial growth, coverage, and survival of 25 succulent green roof plant taxa. HortScience 2007, 42, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, F.; Mohorko, R. Review on the roles and effects of growing media on plant performance in green roofs in world climates. Urban For. Urban Green. 2017, 23, 13–26. [Google Scholar] [CrossRef]
- Asaf, T.S.; Al-Ajlouni, M.G.; Ayad, J.Y.; Othman, Y.A.; Hilaire, R.S. Performance of six different soilless green roof substrate for the Mediterranean region. Sci. Total Environ. 2020, 730, 139182. [Google Scholar] [CrossRef]
- Grela, A.; Generowicz, A.; Mikuła, J. Possibilities of using volcanic tuffs in environmental protection. In Collective Work, Archives of Waste Management and Environmental Protection, Gliwice (2013); Pikoń, K., Stelmach, S., Eds.; Contemporary Problems of Environmental Protection; 2013; pp. 13–25. Available online: http://agrela.pl/?strona=publikacje (accessed on 1 February 2021). (In Polish)
- FLL Guidelines for the Planning, Execution and Upkeep of Green-Roof Sites; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau: Bonn, Germany, 2008.
- Akther, M.; He, J.; Chu, A.; Huang, J.; van Duin, B. Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones. Sustainability 2018, 10, 2864. [Google Scholar] [CrossRef] [Green Version]
- Molineux, C.; Fentiman, C.; Gange, A. Characterizing alternative recycled waste materials for use as green roof growing media in the UK. Ecol. Eng. 2009, 35, 1507–1513. [Google Scholar] [CrossRef]
- Molineux, C.J.; Newport, D.J.; Ayati, B.; Wang, C.; Connop, S.P.; Green, J.E. Bauxite residue (red mud) as a pulverised fuel ash substitute in the manufacture of lightweight aggregate. J. Clean. Prod. 2015, 112, 401–408. [Google Scholar] [CrossRef]
- Mickovski, S.B.; Buss, K.; McKenzie, B.M.; Sökmener, B. Laboratory study on the potential use of recycled inert construction waste material in the substrate mix for extensive green roofs. Ecol. Eng. 2013, 61, 706–714. [Google Scholar] [CrossRef]
- Bates, A.J.; Sadler, J.P.; Greswell, R.B.; Mackay, R. Effects of recycled aggregate growth substrate on green roof vegetation development: A six year experiment. Landsc. Urban Plan. 2015, 135, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Eksi, M.; Sevgi, O.; Akburak, S.; Yurtseven, H.; Esin, I. Assessment of recycled or locally available materials as green roof substrates. Ecol. Eng. 2020, 156, 105966. [Google Scholar] [CrossRef]
- Molineux, C.; Gange, A.; Connop, S.; Newport, D. Using recycled aggregates in green roof substrates for plant diversity. Ecol. Eng. 2015, 82, 596–604. [Google Scholar] [CrossRef]
- Solano, L.; Ristvey, A.G.; Lea-cox, J.D.; Cohan, S.M. Sequestering zinc from recycled crumb rubber in extensive green roof media. Ecol. Eng. 2012, 47, 284–290. [Google Scholar] [CrossRef]
- Carson, T.; Hakimdavar, R.; Sjoblom, K.; Culligan, P. Viability of recycled and waste materials as green roof substrates. GeoCongress 2012, 2012, 3644–3653. [Google Scholar]
- Grard, B.J.-P.; Bel, N.; Marchal, N.; Madre, F.; Castell, J.-F.; Cambier, P.; Houot, S.; Manouchehri, N.; Besancon, S.; Michel, J.-C.; et al. Recycling urban waste as possible use for rooftop vegetable garden. Future Food J. Food Agric. Soc. 2015, 3, 21–34. [Google Scholar]
- Xue, M.; Farrell, C. Use of organic wastes to create lightweight green roof substrates with increased plant-available water. Urban For. Urban Green. 2020, 48, 126569. [Google Scholar] [CrossRef]
- Datnoff, L.E.; Snyder, G.H.; Korndörfer, G.H. (Eds.) Silicon in Agriculture; Elsevier Science: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Adrees, M.; Ali, S.; Rizwan, M.; Zia-ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Qayyum, M.F.; Irshad, M.K. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicol. Environ. Saf. 2015, 119, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, A.; Domagała-Świątkiewicz, I.; Lis-Krzyścin, A. Waste silica as a valuable component of extensive green-roof substrates. Pol. J. Environ. Stud. 2017, 26, 643–653. [Google Scholar] [CrossRef]
- Krawczyk, A.; Domagała-Świątkiewicz, I.; Lis-Krzyścin, A. The effect of Substrate on Growth and Nutritional Status of Native Xerothermic Species Grown in Extensive Green Roof Technology. Ecol. Eng. 2017, 108, 194–202. [Google Scholar] [CrossRef]
- Stefanowicz, A.M.; Woch, M.W.; Kapusta, P. Inconspicuous waste heaps left by historical Zn–Pb mining are hot spots of soil contamination. Geoderma 2014, 235–236, 1–8. [Google Scholar] [CrossRef]
- Czerny, J.; Muszyński, M. Co-magmatism of the Permian volcanites of the Krzeszowice area in the light of pertochemical data. Mineral. Pol. 1997, 28, 3–24. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Soil and Plant Analysis Procedures; Institute of Environmental Protection, State Research Institute: Warsaw, Poland, 1991. (In Polish) [Google Scholar]
- PN-EN ISO 11732:2005 (U). Water Quality. Determination of Ammonium Nitrogen. Method Involving Flow Analysis (CFA and FIA) and Spectrometric Detection; Polish Committee for Standardization: Warszawa, Poland, 2005. (In Polish) [Google Scholar]
- PN-EN ISO 13395:2001. Water Quality. Determination of Nitrite Nitrogen and Nitrate and the Sum of Both by Flow Analysis (CFA and FIA) and Spectrometric Detection; Polish Committee for Standardization: Warszawa, Poland, 2001. (In Polish) [Google Scholar]
- Fasani, E. Plants that hyperaccumulate heavy metals. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Cham, Switzerland, 2012; pp. 55–74. [Google Scholar]
- Kabata-Pendias, H.; Szteke, A. Trace Elements in the Geo- and Biosphere; Puławy IUNG 2012; IUNG—Institute of Soil Science and Plant Cultivation–State Research Institute: Puławy, Poland, 2012. (In Polish) [Google Scholar]
- Kalembasa, D.; Wiśniewska, B. Changes of chemical composition of soil and perennial ryegrass (Lolium multiftorum) under the influence of the application of post-mushroom production bed. Zesz. Probl. Postęp. Nauk Rol. 2006, 512, 265–275. (In Polish) [Google Scholar]
- Köhler, M.; Poll, P.H. Long-term performance of selected old Berlin green roofs in comparison to younger extensive green roofs in Berlin. Ecol. Eng. 2010, 36, 722–729. [Google Scholar] [CrossRef]
- Thuring, C.E.; Dunnett, N. Vegetation composition of old extensive green roofs (from 1980s Germany). Ecol. Process. 2014, 3, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, C.R. Principles for selecting the proper components for a green roof growing media. In Proceedings of the 3rd North Amer. Green Roof Conf.: Greening Rooftops for Sustainable Communities, Washington, DC, USA, 4–6 May 2005; pp. 262–273. [Google Scholar]
- Getter, K.L.; Rowe, D.B. Effect of substrate depth and planting season on Sedum plug survival on green roofs. J. Environ. Hortic. 2007, 25, 95–99. [Google Scholar] [CrossRef]
- Getter, K.; Rowe, D.B.; Robertson, G.P.; Cregg, B.M.; Andersen, J.A. Carbon sequestration potential of extensive green roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Matzner, E.; Michalzik, B. Controls on the Dynamics of Dissolved Organic Matter in Soils: A Review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Tyler, G.; Olsson, T. Concentration of 60 elements in the soil solution as related to the soil acidity. Eur. J. Soil Sci. 2001, 52, 151–165. [Google Scholar] [CrossRef]
- FLL Guidelines for the Planning, Construction and Maintenance of Green Roofing. DAFA 2015; Stowarzyszenie Wykonawców Dachów Płaskich i Fasad (DAFA): Opole, Poland, 2015. (In Polish) [Google Scholar]
- Regulation of the Minister of Environment of 1 September 2016 on Methods of Assessing Soil Surface Pollution; Journal of Laws Item 1395: Warszawa, Poland, 2016. (In Polish)
Component | % | ||||
---|---|---|---|---|---|
II-Si | III-CaSM | IV-TSM | V-TUF | VI-MEL | |
Sand | 20 | 10 | 10 | 10 | 10 |
Crushed brick 2–10 mm | 20 | 30 | 20 | 20 | 20 |
Silica fume | 5 | 5 | 5 | 5 | 5 |
Silica waste | 20 | - | - | - | - |
Ca-aggregate 2–8 mm | - | 15 | - | - | - |
Zn-aggregate 2–10 mm | - | 5 | 5 | - | - |
Melaphyre 2–10 mm | - | - | 10 | 5 | 20 |
Tuff 2–10 mm | - | - | 15 | 20 | 5 |
Muck soil | 20 | 5 | - | 25 | 25 |
Urban compost | 15 | 15 | 15 | 15 | 15 |
Spent mushroom | - | 10 | 15 | - | - |
Coconut fibres | - | 5 | 5 | - | - |
Parameter | Unit | Si-Waste | Crushed Brick | Tuff | Melaphyre | Ca Aggregates | Zn Waste Aggregates |
---|---|---|---|---|---|---|---|
pH | in H2O | 7.86 | 10.1 | 8.19 | 8.87 | 10.8 | 7.98 |
EC | mS cm−1 | 0.16 | 0.88 | 0.36 | 0.87 | 0.92 | 0.73 |
Bulk density | g cm−3 | 1.5 | 0.77 | 1.2 | 1.2 | 1.5 | 1.3 |
Water capacity | % wv | 33 | 46 | 16 | 13 | 4 | 14 |
>5 | Fractions (mm) | 67 | 2–8 mm | 2–10 mm | 2–10 mm | 2–8 mm | 1 |
5–3 | 8 | 15 | |||||
3–2 | 3 | 32 | |||||
2–1 | 1 | 13 | |||||
1–0.3 | 8 | 24 | |||||
<0.06 | 13 | 15 |
Parameter/Element | Unit | Si-Waste | Silica Fume | Sand | Muck Soil | Compost | Spent Mushroom | Coconut Fibres | Tuff | Melaphyre | Zn Waste Aggregates |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | H2O | 7.86 | 7.56 | 6.91 | 4.72 | 7.69 | 6.80 | 4.76 | 8.19 | 8.87 | 7.98 |
EC | mS cm−1 | 0.16 | 0.19 | 0.56 | 0.27 | 3.7 | 4.0 | 1.7 | 0.36 | 0.87 | 0.73 |
Bulk density | g cm−3 | 1.5 | 0.07 | 1.5 | 0.24 | 0.34 | 0.13 | 0.10 | 1.2 | 1.2 | 1.3 |
Water capacity | %wv | 33 | 3.3 | 35 | 71 | 60 | 62 | 56 | 16 | 13 | 14 |
Organic matter | % | 0.5 | 0.0 | 0.7 | 64 | 26 | 45 | 87 | - | - | - |
P | * mg dm−3 | 4.4 | 114 | 0.63 | 0.27 | 397 | 315 | 40 | 458 * | 1511 | 0 |
K | 123 | 107 | 20 | 13 | 376 | 1649 | 1614 | 184 | 312 | 24 | |
Ca | 4616 | 1240 | 322 | 953 | 2571 | 4230 | 43 | 34,829 | 16,370 | 103,986 | |
Mg | 218 | 248 | 17 | 97 | 430 | 363 | 71 | 3005 | 2132 | 7932 | |
SO4-S | 42 | 46 | 23 | 209 | 317 | 2267 | 5.2 | 21 | 39 | 191 | |
Element | Unit | Si-Waste | Silica Fume | Sand | Muck Soil | Compost | Spent Mushroom | Coconut Fibres | Tuff | Melaphyre | Zn Waste Aggregates |
B | ** mg kg−1 | 4.4 | 1.9 | 0.23 | 6.1 | 17 | 23 | 8.9 | 0.81 | 0.73 | 1.00 |
Cu | 89 | 47 | 7.8 | 5.8 | 10 | 18 | 16 | 2.7 | 6.5 | trace | |
Fe | 2691 | 1406 | 1012 | 2520 | 4561 | 3672 | 132 | 236 | 490 | 2026 | |
Mn | 2603 | 1246 | 169 | 178 | 219 | 452 | 112 | 113 | 221 | 379 | |
Zn | 517 | 118 | 8.0 | 31 | 227 | 121 | 99 | 17 | 4.0 | 297 | |
As | 3.5 | 11 | 1.0 | 4.3 | 1.2 | trace | trace | 1.9 | 4.9 | 0.4 | |
Cd | 2.1 | 20 | trace | 1.3 | 0.76 | 0.13 | 0.02 | trace | trace | 4.8 | |
Cr | 11 | 8.7 | 2.5 | 0.42 | 9.8 | 3.2 | 0.10 | 15 | 11.5 | trace | |
Ni | 13 | 3.2 | 1.4 | 15 | 3.2 | 2.2 | 0.01 | 0.8 | 3.5 | trace | |
Pb | 128 | 104 | 4.4 | 24 | 17 | 3.5 | 1.0 | 1.8 | trace | 69.9 |
Substrate | BD g cm−3 | WC % wv | Mass kg m−2 | OM % | % Fractions (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 3 | 2 | 1 | 0.3 | 0.06 | <0.06 | |||||
I-Contr. * | 1.0 d | 46 bc | 63 d | 8 c | 34.4 a | 9.1 ab | 10.9 ab | 14.6 d | 24.1 b | 6.9 ab | 0.1 a |
II-Si | 0.88 c | 51 d | 53 c | 8 c | 31.6 a | 9.7 abc | 13.6 c | 5.8 a | 28.9 b | 9.1 bc | 1.3 c |
III-CaSM | 0.78 b | 47 d | 46 b | 14 d | 52.0 b | 12.3 c | 9.6 a | 6.3 ab | 12.5 a | 6.6 a | 0.7 a |
IV-TSM | 0.69 a | 51 d | 41 a | 18 e | 48.2 b | 11.7 bc | 12.2 bc | 5.8 a | 15.6 a | 6.1 a | 0.5 ab |
V-TUF | 1.4 e | 38 a | 82 e | 5 b | 30.9 a | 8.5 a | 9.2 a | 7.5 b | 35.7 c | 7.9 abc | 0.3 ab |
VI-MEL | 1.3 e | 42 ab | 79 e | 4 a | 31.0 a | 8.0 a | 12.0 bc | 12.0 c | 26.0 b | 10.0 c | 1.0 bc |
Substrate | pH | EC | NH4-N | NO3-N | P | K | Ca | Mg | SO4-S | Na |
---|---|---|---|---|---|---|---|---|---|---|
I-control | 7.84 e | 0.4 a | 8.2 e | 24 a | 40 a | 260 b | 4062 c | 125 a | 188 c | 86 b |
II-Si | 7.13 a | 1.8 c | 3.1 bc | 21 a | 125 d | 167 a | 3030 a | 245 bc | 61 b | 18 a |
III-CaSM | 7.48 c | 1.6 bc | 1.4 ab | 28 a | 105 c | 608 c | 4925 d | 254 c | 352 e | 83 b |
IV-TSM | 7.31 b | 1.7 c | 4.3 cd | 187 c | 276 e | 1499 e | 3256 ab | 362 e | 577 f | 192 d |
V-TUF | 7.69 d | 1.6 bc | 6.0 d | 116 b | 119 d | 891 d | 4159 c | 294 d | 282 d | 109 c |
VI-MEL | 7.70 d | 1.0 abc | 1.0 a | 9 a | 57 b | 179 a | 3595 b | 229 b | 30 a | 13 a |
Substrate | B | Cu | Fe | Mn | Zn | Cd | Ni | Pb | Cr | Sr |
I-control | 0.7 b | 9 a | 747 a | 81 a | 25 a | 0.25 a | 1.6 a | 9 a | 0.9 a | 30 c |
II-Si | 0.9 d | 38 cd | 1031 b | 2434 e | 124 c | 1.7 c | 4.2 c | 43 b | 5.7 d | 43 e |
III-CaSM | 0.8 c | 44 d | 1465 c | 362 b | 326 d | 4.8 d | 2.6 b | 208 c | 2.1 b | 34 d |
IV-TSM | 2.5 f | 36 cd | 876 ab | 381 b | 311 d | 1.1 b | 2.5 a | 42 b | 1.8 b | 32 d |
V-TUF | 1.3 e | 30 bc | 973 b | 793 d | 88 b | 1.4 bc | 2.8 b | 28 ab | 3.4 c | 26 b |
VI-MEL | 0.4 a | 26 b | 903 ab | 695 c | 81 b | 1.2 bc | 2.5 b | 25 ab | 3.5 c | 23 a |
Factor | BD g cm−3 | WC %w/v | Mass kg m−2 | OM % | % Fractions (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 3 | 2 | 1 | 0.3 | 0.06 | <0.06 | ||||||
Year | 2014 | 1.0 a | 44.3 a | 60 a | 9.3 b | 35.6 | 10.6 | 13.7 b | 8.0 a | 21.5 a | 9.4 a | 1.2 a |
2015 | 1.1 b | 46.9 b | 66 b | 8.9 a | 37.1 | 10.0 | 10.6 a | 9.4 b | 23.6 b | 8.3 a | 1.1 a | |
Substrate | I-Cont | 0.85 a | 43 a | 51 a | 9 c | 42.7 b | 9.6 ab | 7.8 a | 7.5 a | 22.4 c | 9.3 ab | 0.7 a |
II-Si | 0.88 a | 53 c | 53 a | 15 e | 31.8 a | 10.3 b | 13.3 c | 7.8 ab | 24.2 c | 11.4 b | 1.1 a | |
III-CaSM | 0.89 a | 47 b | 54 a | 10 d | 50.8 c | 10.8 b | 11.6 bc | 7.9 ab | 11.0 a | 6.5 a | 1.4 a | |
IV-TSM | 1.0 b | 47 b | 61 b | 8 c | 31.3 a | 13.3 c | 19.2 d | 10 bc | 17.5 b | 7.3 ab | 1.4 a | |
V-TUF | 1.3 c | 43 a | 78 c | 7 b | 30.2 a | 7.6 a | 8.7 ab | 6.9 a | 37.0 d | 8.5 ab | 1.0 a | |
VI-MEL | 1.3 c | 40 a | 80 c | 5 a | 29.0 a | 9.7 ab | 12.7 c | 12.0 c | 24.8 c | 10.6 ab | 1.2 a |
Factor | pH | EC | NH4-N | NO3-N | P | K | Ca | Mg | SO4-S | Na | |
---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2014 | 7.93 b | 0.07 b | 4.0 b | 6.2 b | 118 a | 166 b | 4160 a | 314 a | 31 a | 14 a |
2015 | 7.78 a | 0.05 a | 1.0 a | 3.5 a | 193 b | 103 a | 7389 b | 465 b | 31 a | 28 b | |
Substrate | I-Control | 7.93 cd | 0.06 a | 1.6 a | 2.1 a | 49 a | 61 ab | 6026 b | 202 a | 31 a | 17 a |
II-Si | 7.87 c | 0.06 a | 5.6 b | 8.2 bc | 175 bc | 162 c | 2585 a | 341 ab | 26 a | 23 a | |
III-CaSM | 7.62 a | 0.06 a | 0.7 a | 8.8 c | 153 bc | 33 a | 6812 b | 360 b | 19 a | 19 a | |
IV-TSM | 7.74 b | 0.06 a | 2.1 a | 2.2 a | 218 c | 92 b | 6858 b | 437 b | 32 a | 19 a | |
V-TUF | 8.02 d | 0.07 a | 2.8 ab | 3.4 ab | 211 c | 239 d | 5374 b | 395 b | 41 a | 23 a | |
VI-MEL | 8.14 e | 0.09 a | 2.4 ab | 4.1 abc | 125 ab | 221 d | 6991 b | 603 c | 36 a | 26 a |
Factor | B | Cu | Fe | Mn | Zn | Cd | Ni | Pb | Cr | Sr | |
---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2014 | 1.27 b | 23 a | 1719 a | 888 a | 181 a | 2.0 a | 3.9 a | 70 a | 2.6 a | 28 a |
2015 | 0.57 a | 37 b | 2233 b | 2232 b | 203 b | 2.5 b | 5.1 b | 86 b | 3.7 b | 40 b | |
Substrate | I-Control | 0.63 a | 11 a | 1025 a | 580 a | 33 a | 0.27 a | 2.2 a | 10 a | 0.6 a | 29 ab |
II-Si | 1.15 c | 35 bc | 1833 c | 1081 c | 122 b | 1.3 bc | 6.0 d | 45 c | 5.4 b | 42 d | |
III-CaSM | 0.81 b | 45 c | 2224 d | 1276 c | 488 d | 5.6 e | 2.8 ab | 215 e | 1.9 a | 38 cd | |
IV-TSM | 1.06 c | 24 ab | 1568 b | 856 b | 306 c | 3.6 d | 3.4 bc | 144 d | 1.3 a | 24 a | |
V-TUF | 1.10 c | 34 bc | 1433 b | 864 b | 119 b | 1.5 c | 4.0 c | 32 bc | 5.4 b | 33 bc | |
VI-MEL | 0.79 ab | 31 bc | 3772 e | 2305 d | 86 b | 1.2 b | 8.6 e | 21 ab | 4.1 b | 38 cd |
Factor | % d.m. | Biomass g m−2 | N | P | K | Ca | Mg | S | |
---|---|---|---|---|---|---|---|---|---|
Year | 2014 | 10.7 a | 3671 b | 1.55 b | 0.29 a | 2.06 b | 2.62 b | 0.19 b | 0.35 b |
2015 | 11.0 a | 1555 a | 1.36 a | 0.42 b | 0.95 a | 1.88 a | 0.16 a | 0.22 a | |
Substrate | I-control | 13.4 b | 1269 a | 1.15 a | 0.30 b | 1.25 a | 2.34 b | 0.13 a | 0.32 b |
II-Si | 10.1 a | 2590 de | 1.46 bc | 0.40 c | 1.76 c | 1.92 a | 0.17 bc | 0.22 a | |
III-CaSM | 11.4 ab | 2456 cd | 1.59 c | 0.44 cd | 1.49 b | 1.69 a | 0.25 d | 0.28 ab | |
IV-TSM | 8.6 a | 1879 bc | 1.96 d | 0.48 d | 1.67 c | 2.61 c | 0.19 bc | 0.31 b | |
V-TUF | 10.5 a | 4481 f | 1.40 b | 0.29 b | 1.69 c | 2.45 bc | 0.16 ab | 0.29 b | |
VI-MEL | 11.3 ab | 3004 e | 1.21 a | 0.19 a | 1.33 ab | 2.53 bc | 0.19 c | 0.28 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczyk, A.; Domagała-Świątkiewicz, I.; Lis-Krzyścin, A. Time-Dependent Changes in the Physico-Chemical Parameters and Growth Responses of Sedum acre (L.) to Waste-Based Growing Substrates in Simulation Extensive Green Roof Experiment. Agronomy 2021, 11, 298. https://doi.org/10.3390/agronomy11020298
Krawczyk A, Domagała-Świątkiewicz I, Lis-Krzyścin A. Time-Dependent Changes in the Physico-Chemical Parameters and Growth Responses of Sedum acre (L.) to Waste-Based Growing Substrates in Simulation Extensive Green Roof Experiment. Agronomy. 2021; 11(2):298. https://doi.org/10.3390/agronomy11020298
Chicago/Turabian StyleKrawczyk, Anna, Iwona Domagała-Świątkiewicz, and Agnieszka Lis-Krzyścin. 2021. "Time-Dependent Changes in the Physico-Chemical Parameters and Growth Responses of Sedum acre (L.) to Waste-Based Growing Substrates in Simulation Extensive Green Roof Experiment" Agronomy 11, no. 2: 298. https://doi.org/10.3390/agronomy11020298
APA StyleKrawczyk, A., Domagała-Świątkiewicz, I., & Lis-Krzyścin, A. (2021). Time-Dependent Changes in the Physico-Chemical Parameters and Growth Responses of Sedum acre (L.) to Waste-Based Growing Substrates in Simulation Extensive Green Roof Experiment. Agronomy, 11(2), 298. https://doi.org/10.3390/agronomy11020298