Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated under Hyper-Arid Conditions in Northern Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Study Site, Plant Material and Experimental Design
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Blade Nutrient Content
3.2.1. Macronutrients
3.2.2. Micronutrients
3.2.3. Relationship between Macronutrients
3.3. Principal Component Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pszczólkowski, P.; Lacoste, P. Native varieties, an opportunity for Chilean pisco. Rev. Fac. Ciencias Agrar. 2016, 48, 239–251. [Google Scholar]
- Banks, G.; Overton, J. Old world, new world, third world? Reconceptualising the worlds of wine. J. Wine Res. 2010, 21, 57–75. [Google Scholar] [CrossRef]
- Mora, G.M. The Chilean wine industry. In The Palgrave Handbook of Wine Industry Economics; Ugaglia, A.A., Cardebat, J.M., Corsi, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 177–200. [Google Scholar]
- SAG. Catastro Vitícola Nacional. Available online: http://www.sag.cl/ambitos-de-accion/catastro-viticola-nacional/1490/publicaciones (accessed on 30 November 2020).
- Mitchell, J.T.; Terry, W.C. Contesting pisco: Chile, Peru, and the politics of trade. Geogr. Rev. 2011, 101, 518–535. [Google Scholar] [CrossRef]
- Agosin, E.; Belancic, A.; Ibacache, A.; Baumes, R.; Bordeu, E. Aromatic potential of certain Muscat grape varieties important for Pisco production in Chile. Am. J. Enol. Vitic. 2000, 51, 404–408. [Google Scholar]
- Belancic, A.; Agosin, E.; Ibacache, A.; Bordeu, E.; Baumes, R.; Razungles, A.; Bayonove, C. Influence of sun exposure on the aromatic composition of Chilean Muscat grape cultivars Moscatel de Alejandría and Moscatel Rosada. Am. J. Enol. Vitic. 1997, 48, 181–186. [Google Scholar]
- Martínez-Pinilla, O.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Sensory profiling and changes in colour and phenolic composition produced by malolactic fermentation in red minority varieties. Food Res. Int. 2012, 46, 286–293. [Google Scholar] [CrossRef]
- García-Carpintero, E.G.; Sánchez-Palomo, E.; Gallego, M.A.G.; González-Viñas, M.A. Volatile and sensory characterization of red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages. Food Res. Int. 2011, 44, 1549–1560. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Terroir and typicity of Carignan from Maule Valley (Chile): The resurgence of a minority variety. OENO One 2019, 53, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Gamboa, G.; Liu, S.; Pszczólkowski, P. Resurgence of minority and autochthonous grapevine varieties in South America: A review of their oenological potential. J. Sci. Food Agric. 2020, 100, 465–482. [Google Scholar] [CrossRef]
- Liang, N.N.; Pan, Q.H.; He, F.; Wang, J.; Reeves, M.J.; Duan, C.Q. Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China. J. Agric. Food Chem. 2013, 61, 6016–6027. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Strategies in vineyard establishment to face global warming in viticulture: A mini review. J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef]
- Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Effect of rootstocks on volatile composition of Merlot wines. J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef] [PubMed]
- Rubio, B.; Lalanne-Tisné, G.; Voisin, R.; Tandonnet, J.P.; Portier, U.; Van Ghelder, C.; Lafargue, M.; Petit, J.P.; Donnart, M.; Joubard, B.; et al. Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background. BMC Plant Biol. 2020, 20, 213. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Isaacs, R.; Bostanian, N.J.; Lasnier, J. Principles of arthropod pest management in vineyards. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Charles, V., Isaacs, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–16. [Google Scholar]
- Franck, N.; Zamorano, D.; Wallberg, B.; Hardy, C.; Ahumada, M.; Rivera, N.; Montoya, M.; Urra, C.; Meneses, C.; Balic, I.; et al. Contrasting grapevines grafted into naturalized rootstock suggest scion- driven transcriptomic changes in response to water deficit. Sci. Hortic. 2019, 262, 109031. [Google Scholar] [CrossRef]
- Ibacache, A.; Sierra, C. Influence of rootstocks on nitrogen, phosphorus and potassium content in petioles of four table grape varieties. Chil. J. Agric. Res. 2009, 69, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Ibacache, A.; Verdugo-Vásquez, N.; Zurita-Silva, A. Rootstock: Scion combinations and nutrient uptake in grapevines. In Fruit Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 297–316. [Google Scholar]
- Gutiérrez-Gamboa, G.; Gómez-Plaza, E.; Bautista-Ortín, A.B.; Garde-Cerdán, T.; Moreno-Simunovic, Y.; Martínez-Gil, A.M. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. J. Sci. Food Agric. 2019, 99, 2846–2854. [Google Scholar] [CrossRef] [PubMed]
- Aballay, E.; Prodan, S.; Correa, P.; Allende, J. Assessment of rhizobacterial consortia to manage plant parasitic nematodes of grapevine. Crop Prot. 2020, 131, 105103. [Google Scholar] [CrossRef]
- Ibacache, A.; Albornoz, F.; Zurita-Silva, A. Yield responses in Flame seedless, Thompson seedless and Red Globe table grape cultivars are differentially modified by rootstocks under semi arid conditions. Sci. Hortic. 2016, 204, 25–32. [Google Scholar] [CrossRef]
- Bavestrello-Riquelme, C.; Cavieres, L.; Gallardo, J.; Ibacache, A.; Franck, N.; Zurita-Silva, A. Evaluación de la tolerancia a estrés por sequía en cuatro genotipos naturalizados de vid (Vitis vinifera) provenientes del norte de Chile. Idesia 2012, 30, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Milla-Tapia, A.; Gómez, S.; Moncada, X.; León, P.; Ibacache, A.; Rosas, M.; Carrasco, B.; Hinrichsen, P.; Zurita-Silva, A. Naturalised grapevines collected from arid regions in Northern Chile exhibit a high level of genetic diversity. Aust. J. Grape Wine Res. 2013, 19, 299–310. [Google Scholar] [CrossRef]
- Jones, G.V. Climate and terroir: Impacts of climate variability and change on wine. GeoSci. Can. 2005, 9, 1–14. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Compt. Rend. Acad. Agric. Fr. 1978, 64, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Amerine, M.A.; Winkler, A.J. Composition and quality of musts and wines of California grapes. Hilgardia 1944, 15, 493–675. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I. Relationship between viticultural climatic indices and grape maturity in Australia. Int. J. Biometeorol. 2017, 61, 1849–1862. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, N.; Koukourikou, M.A.; Karagiannidis, N. Effects of various rootstocks on xylem exudates cytokinin content, nutrient uptake and growth patterns of grapevine Vitis vinifera L. cv. Thompson seedless. Agronomie 2000, 20, 363–373. [Google Scholar] [CrossRef]
- Garcia, M.; Gallego, P.; Daverède, C.; Ibrahim, H. Effect of three rootstocks on grapevine (Vitis vinifera L.) cv. Négrette, grown hydroponically. I. Potassium, calcium and magnesium nutrition. S. Afr. J. Enol. Vitic. 2001, 22, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Keller, M. The Science of Grapevines, Anatomy and Physiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Sierra, C.; Lancelloti, A.; Vidal, I. Elemental sulphur as pH and soil fertility amendment for some Chileans soils of Regions III and IV. Agric. Técnica 2007, 67, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.; Serralheiro, R. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Pistocchi, C.; Ragaglini, G.; Colla, V.; Branca, T.A.; Tozzini, C.; Romaniello, L. Exchangeable sodium percentage decrease in saline sodic soil after basic oxygen furnace slag application in a lysimeter trial. J. Environ. Manag. 2017, 203, 896–906. [Google Scholar] [CrossRef]
- Robinson, J.B. Critical Plant Tissue Values and Application of Nutritional Standards for Practical Use in Vineyards, Proceedings of the Soil Environment and Vine Mineral Nutrition Symposium, San Diego, CA, USA, 29–30 June 2004; Smart, D.R., Christensen, L.P., Eds.; The American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 61–68. [Google Scholar]
- Hafeez, B.; Khanif, Y.M.; Saleem, M. Role of zinc in plant nutrition—A review. Am. J. Exp. Agric. 2013, 3, 374–391. [Google Scholar] [CrossRef]
- Song, C.; Yan, Y.; Rosado, A.; Zhang, Z.; Castellarin, S.D. ABA alleviates uptake and accumulation of zinc in grapevine (Vitis vinifera L.) by inducing expression of ZIP and detoxification-related genes. Front. Plant Sci. 2019, 10, 872. [Google Scholar] [CrossRef]
- Gainza-Cortés, F.; Pérez-Dïaz, R.; Pérez-Castro, R.; Tapia, J.; Casaretto, J.A.; González, S.; Peña-Cortés, H.; Ruiz-Lara, S.; González, E. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. BMC Plant Biol. 2012, 12, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, P.; Jensen, F.L. Grapevine response to concentrate and to dilute application of two zinc compounds. Am. J. Enol. Vitic. 1978, 29, 213–216. [Google Scholar]
- Vasconcelos, M.C.; Greven, M.; Winefield, C.S.; Trought, M.C.T.; Raw, V. The flowering process of Vitis vinifera: A review. Am. J. Enol. Vitic. 2009, 60, 411–434. [Google Scholar]
- Sabir, A.; Sari, G. Zinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition in grapevines (Vitis vinifera L.). Sci. Hortic. 2019, 244, 61–67. [Google Scholar] [CrossRef]
- Milla-Tapia, A.; Cabezas, J.A.; Cabello, F.; Lacombe, T.; Martínez-Zapater, J.M.; Hinrichsen, P.; Cervera, M.T. Determining the Spanish origin of representative ancient american grapevine varieties. Am. J. Enol. Vitic. 2007, 58, 242–251. [Google Scholar]
- Verdugo-Vásquez, N.; Zurita-Silva, A. Potencial Productivo y Enologico de Variedades Pisqueras no Tradicionales; Instituto de Investigaciones Agropecuarias: La Serena, Chile, 2020; p. 76. [Google Scholar]
- Verdenal, T.; Spangenberg, J.E.; Zufferey, V.; Dienes-Nagy, Á.; Viret, O.; Van Leeuwen, C.; Spring, J.L. Impact of crop load on nitrogen uptake and reserve mobilisation in Vitis vinifera. Funct. Plant Biol. 2020, 47, 744. [Google Scholar] [CrossRef]
- Toumi, M.; Nedjimi, B.; Halitim, A.; Garcia, M. Effects of K-Mg ratio on growth and cation nutrition of Vitis vinifera L. cv. “Dattier de Beiruth” grafted on SO4 rootstock. J. Plant Nutr. 2016, 39, 904–911. [Google Scholar] [CrossRef]
- Gautier, A.T.; Cookson, S.J.; Lagalle, L.; Ollat, N.; Marguerit, E. Influence of the three main genetic backgrounds of grapevine rootstocks on petiolar nutrient concentrations of the scion, with a focus on phosphorus. OENO One 2020, 54, 1–13. [Google Scholar] [CrossRef]
- Ksouri, R.; Gharsalli, M.; Lachaal, M. Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency. J. Plant Physiol. 2005, 162, 335–341. [Google Scholar] [CrossRef]
- Bascuñán-Godoy, L.; Franck, N.; Zamorano, D.; Sanhueza, C.; Carvajal, D.E.; Ibacache, A. Rootstock effect on irrigated grapevine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion. Sci. Hortic. 2015, 218, 284–292. [Google Scholar] [CrossRef]
- Christensen, L.P. Rootstock selection. In Wine Grape Varieties in California; Christensen, L.P., Dokoozlian, N.K., Walker, M.A., Wolpert, J.A., Eds.; ANR Pub 3419; UC Agriculture and Natural Resource: Oakland, CA, USA, 2003; pp. 12–15. [Google Scholar]
- Rogiers, S.Y.; Greer, D.H.; Moroni, F.J.; Baby, T. Potassium and magnesium mediate the light and CO2 photosynthetic responses of grapevines. Biology 2020, 9, 144. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Coetzee, Z.A.; Walker, R.R.; Deloire, A.; Tyerman, S.D. Potassium in the grape (Vitis vinifera L.) berry: Transport and function. Front. Plant Sci. 2017, 8, 1629. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Pradubsuk, S.; Davenport, J.R. Seasonal distribution of micronutrients in mature ‘Concord’ grape: Boron, iron, manganese, copper, and zinc. J. Am. Soc. Hortic. Sci. 2011, 136, 69–77. [Google Scholar] [CrossRef]
- Fernando, D.R.; Lynch, J.P. Manganese phytotoxicity: New light on an old problem. Ann. Bot. 2015, 116, 313–319. [Google Scholar] [CrossRef]
- Shenker, M.; Plessner, O.E.; Tel-Or, E. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J. Plant Physiol. 2004, 161, 197–202. [Google Scholar] [CrossRef]
- Ducic, T.; Polle, A. Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 2005, 17, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Slunjski, S.; Coga, L.; Herak Ćustić, M.; Petek, M.; Spoljar, A. Phosphorus, manganese and iron ratios in grapevine (Vitis vinifera L.) leaves on acid and calcareous soils. Acta Hortic. 2012, 938, 299–306. [Google Scholar] [CrossRef]
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate acquisition. Plant Soil 2005, 274, 37–49. [Google Scholar] [CrossRef]
- Nielsen, D.; Nielsen, G.H.; Sinclair, A.H.; Linehan, D.J. Soil phosphorus status, pH and the manganese nutrition of wheat on JSTOR. Plant Soil 1992, 145, 45–50. [Google Scholar] [CrossRef]
- Pedas, P.; Husted, S.; Skytte, K.; Schjoerring, J.K. Elevated phosphorus impedes manganese acquisition by barley plants. Front. Plant Sci. 2011, 2, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef] [PubMed]
- Degu, A.; Hochberg, U.; Wong, D.C.J.; Alberti, G.; Lazarovitch, N.; Peterlunger, E.; Castellarin, S.D.; Herrera, J.C.; Fait, A. Swift metabolite changes and leaf shedding are milestones in the acclimation process of grapevine under prolonged water stress. BMC Plant Biol. 2019, 19, 1–17. [Google Scholar] [CrossRef]
- Doupis, G.; Bosabalidis, A.M.; Patakas, A. Comparative effects of water deficit and enhanced UV-B radiation on photosynthetic capacity and leaf anatomy traits of two grapevine (Vitis vinifera L.) cultivars. Theor. Exp. Plant Physiol. 2016, 28, 131–141. [Google Scholar] [CrossRef]
- Senbayram, M.; Gransee, A.; Wahle, V.; Thiel, H. Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop Pasture Sci. 2015, 66, 1229. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, H.; Zeng, J.; Perraiz, T.; Xie, Z.; Zhu, X.; Wang, C. Fertilization of grapevine based on gene expression. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Lamers, J.; van der Meer, T.; Testerink, C. How plants sense and respond to stressful environments. Plant Physiol. 2020, 182, 1624–1635. [Google Scholar] [CrossRef] [Green Version]
- Marín, D.; Armengol, J.; Carbonell-Bejerano, P.; Escalona, J.M.; Gramaje, D.; Hernández-Montes, E.; Intrigliolo, D.S.; Martínez-Zapater, J.M.; Medrano, H.; Mirás-Avalos, J.M.; et al. Challenges of viticulture adaptation to global change: Tackling the issue from the roots. Aust. J. Grape Wine Res. 2021, 27, 8–25. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
Rootstock | Abbreviation | Pedigree 1 | Origin |
---|---|---|---|
1103 Paulsen | 1103 P | V. berlandieri × V. rupestris | Italy |
140 Ruggeri | 140 Ru | V. berlandieri × V. rupestris | Italy |
Harmony | Harmony | Couderc 1613 × V. champinii (Dog Ridge) | USA |
R32 | R32 | V. vinifera | Chile |
Season | GST (°C) | CI (°C) | HI (Heat Units) | GDD (Heat Units) | SON Mean (Heat Units) | SON Max (Heat Units) | PP May-Apr (mm) |
---|---|---|---|---|---|---|---|
2017–18 | 18.1 | 8.6 | 2488 | 1727.0 | 1442.9 | 2391.3 | 236.3 |
2018–19 | 18.4 | 8.8 | 2573 | 1780.2 | 1533.4 | 2505.6 | 36.2 |
2019–20 | 18.8 | 10.5 | 2608 | 1855.6 | 1443.3 | 2402.2 | 7.9 |
30-years (mean) a | 18.5 | 10.0 | 2409.7 | 1808.2 | 1493.2 | 2310.7 | 93.1 |
Factor | N (%) | P (%) | K (%) | Ca (%) | Mg (%) |
---|---|---|---|---|---|
Variety (V) | |||||
Moscatel Amarilla | 1.96 b | 0.14 b | 1.07 | 2.00 | 0.28 a |
Moscatel Negra | 2.22 a | 0.17 a | 1.07 | 2.01 | 0.25 b |
Rootstock (R) | |||||
1103 P | 2.10 ab | 0.15 ab | 0.99 c | 2.01 b | 0.28 b |
140 Ru | 2.08 ab | 0.15 ab | 1.08 b | 1.87 bc | 0.27 b |
Harmony | 2.04 b | 0.14 b | 1.29 a | 1.77 c | 0.20 c |
R32 | 2.15 a | 0.16 a | 0.91 c | 2.36 a | 0.32 a |
Season (S) | |||||
2017–18 | 1.93 b | 0.14 b | 0.96 c | 2.25 a | 0.31 a |
2018–19 | 2.15 a | 0.15 a | 1.06 b | 2.08 b | 0.25 b |
2019–20 | 2.18 a | 0.16 a | 1.19 a | 1.68 c | 0.24 b |
Signif 1 | |||||
V | 0.0001 2 | 0.0001 | 0.74 | 0.83 | 0.001 |
R | 0.012 | 0.041 | 0.0001 | 0.0001 | 0.0001 |
S | 0.00001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
V × R | 0.033 | 0.45 | 0.000 | 0.55 | 0.31 |
R × S | 0.11 | 0.30 | 0.33 | 0.019 | 0.017 |
Factor | Zn (ppm) | Mn (ppm) | Cu (ppm) |
---|---|---|---|
Variety (V) | |||
Moscatel Amarilla | 36.5 b | 113.4 | 6.9 |
Moscatel Negra | 42.4 a | 118.2 | 6.5 |
Rootstock (R) | |||
1103 P | 35.8 | 109.6 bc | 6.4 |
140 Ru | 38.1 | 123.1 ab | 6.8 |
Harmony | 40.7 | 98.6 c | 6.5 |
R32 | 43.3 | 131.8 a | 7.1 |
Season (S) | |||
2017–18 | 54.3 a | 96.9 b | 6.2 |
2018–19 | 19.0 c | 126.1 a | 7.0 |
2019–20 | 45.0 b | 124.3 a | 7.0 |
Signif 1 | |||
V | 0.022 2 | 0.30 | 0.24 |
R | 0.19 | 0.0001 | 0.51 |
S | 0.0001 | 0.0001 | 0.16 |
V × R | 0.87 | 0.09 | 0.18 |
R × S | 0.19 | 0.007 | 0.7 |
Factor | K/Ca | K/Mg | K/(Ca+Mg) |
---|---|---|---|
Variety (V) | |||
Moscatel Amarilla | 0.59 | 4.21 b | 0.51 |
Moscatel Negra | 0.56 | 4.63 a | 0.50 |
Rootstock (R) | |||
1103 Pa | 0.52 c | 3.87 b | 0.46 b |
140 Ru | 0.60 b | 4.18 b | 0.52 b |
Harmony | 0.77 a | 6.64 a | 0.69 a |
R32 | 0.40 d | 3.00 c | 0.35 c |
Season (S) | |||
2017–18 | 0.44 c | 3.42 c | 0.39 c |
2018–19 | 0.52 b | 4.54 b | 0.46 b |
2019–20 | 0.76 a | 5.31 a | 0.66 a |
Signif 1 | |||
V | 0.15 2 | 0.007 | 0.34 |
R | 0.0001 | 0.0001 | 0.0001 |
S | 0.0001 | 0.0001 | 0.0001 |
V × R | 0.75 | 0.02 | 0.56 |
R × S | 0.001 | 0.19 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdugo-Vásquez, N.; Gutiérrez-Gamboa, G.; Villalobos-Soublett, E.; Zurita-Silva, A. Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated under Hyper-Arid Conditions in Northern Chile. Agronomy 2021, 11, 327. https://doi.org/10.3390/agronomy11020327
Verdugo-Vásquez N, Gutiérrez-Gamboa G, Villalobos-Soublett E, Zurita-Silva A. Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated under Hyper-Arid Conditions in Northern Chile. Agronomy. 2021; 11(2):327. https://doi.org/10.3390/agronomy11020327
Chicago/Turabian StyleVerdugo-Vásquez, Nicolás, Gastón Gutiérrez-Gamboa, Emilio Villalobos-Soublett, and Andrés Zurita-Silva. 2021. "Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated under Hyper-Arid Conditions in Northern Chile" Agronomy 11, no. 2: 327. https://doi.org/10.3390/agronomy11020327
APA StyleVerdugo-Vásquez, N., Gutiérrez-Gamboa, G., Villalobos-Soublett, E., & Zurita-Silva, A. (2021). Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated under Hyper-Arid Conditions in Northern Chile. Agronomy, 11(2), 327. https://doi.org/10.3390/agronomy11020327